2.1 LTI连续系统的响应
- 格式:ppt
- 大小:328.50 KB
- 文档页数:26
信号与系统电子教案信号与系统西安电子科技大学第二章连续系统的时域分析LTI连续系统的时域分析,归结为:建立并求解线性微分方程。
由于在其分析过程涉及的函数变量均为时间t,故称为时域分析法。
这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。
两种基本的求解方法:解微分方程法卷积法2.1 LTI 连续系统的响应一、微分方程的经典解y (n)(t) + a n-1y (n-1)(t) + …+ a 1y (1)(t) + a 0y (t)= b m f (m)(t) + b m-1f (m-1)(t) + …+ b 1f (1)(t) + b 0f (t)微分方程的经典解:y(t)(完全解) = y h (t)(齐次解) + y p (t)(特解)齐次解是齐次微分方程y (n)+a n-1y (n-1)+…+a 1y (1)(t)+a 0y(t)=0的解。
y h (t)的函数形式由上述微分方程的特征根确定。
特解的函数形式与激励函数的形式有关。
例1:描述某系统的微分方程为y”(t) + 5y’(t) + 6y(t) = f(t)求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;(2)当f(t) = e-2t,t≥0;y(0)= 1,y’(0)=0时的全解。
解: (1) a.求方程齐次解:特征方程为λ2 + 5λ+ 6 = 0其特征根λ1= –2,λ2= –3。
齐次解为yh (t) = C1e –2t + C2e –3tc.确定全解:y(t) = y h (t) + y p (t) = C 1e –2t + C 2e –3t + e –t其中待定常数C 1,C 2由初始条件确定。
y(0) = C 1+C 2+ 1 = 2,y’(0) = –2C 1 –3C 2 –1= –1 解得C 1 = 3 ,C 2 = –2最后得全解y(t) = 3e –2t –2e –3t + e –t , t≥0 b.求方程特解:当f(t) = 2e –t 时,其特解可设为y p (t) = Pe –t将其代入微分方程得Pe –t + 5(–Pe –t ) + 6Pe –t = 2e –t 解得P=1于是特解为y p (t) = e –t(2)齐次解同上。
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。