第三章LTI连续系统的频域分析
- 格式:ppt
- 大小:3.33 MB
- 文档页数:98
[精品]连续时间LTI系统的频率特性及频域分析连续时间LTI系统(Linear Time-Invariant System)是指可用于描述各种物理和工程系统运动规律的动态系统。
它们由一对连续时变系统(如模型、结构和控制)和一对线性运算符构成,其具有因变量(响应)和自变量(输入)之间的线性关联性、时间不变性、结构连续的性质,并且在响应上呈现出定义的平稳性,因而它们在描述众多系统运动规律中被广泛应用。
对于连续时间LTI系统的频域特性的研究,则涉及这些系统的相位特性、幅频特性、切趾特性等。
同时,也要探讨系统中不同频率分量的传输特性,因为有不同频率分量的信号既可以幅频分析也可以相位分析,可以衡量系统不同频率下的相应响应。
由于连续时间LTI系统在有限频率通道内传播信号时发生了部分信号丢失,因此我们引入了频域分析得到系统频响阻抗。
这样一来,它就可以用来测量系统频带上的增益,系统的模态表现,以及系统的传播属性和可控特性。
在频域分析过程中,由于信号可以被分解为离散频率分量,所以对于单个频率分量来说,有关连续时间LTI系统的分析可以比较容易地完成。
一般情况下,每一个频率分量的传播特性由一个线性系数连接,称之为频响函数,可以衡量一个系统的频率响应情况。
总的来说,对于连续时间LTI系统,研究其频率特性及频域分析具有重要的意义。
他可以提供一个系统的相位特性、幅频特性、切趾特性等详细的分析,而且由于信号可以分解为离散频率分量,因此可以很容易地实现频域分析,并衡量一个系统的频率响应情况。
此外,还可以利用频域分析来测量系统的增益,模态表现,以及系统的传播属性和可控特性,进而提高系统的性能,实现性能的优化。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。
●简化电路分析与运算,总响应=单元响应之和。
1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。
一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。
2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。
令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。
3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。
物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。
二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。
连续系统的频域分析第三章傅⽴叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号⾓频率ω的函数,与t⽆关.主要内容:⼀、信号的分解为正交函数。
⼆、周期信号的频域分析?付⾥叶级数(求和),频谱的特点。
信号三、⾮周期信号的频域分析?付⾥叶变换(积分),性质。
分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数⼀、正交:两个函数满⾜φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。
⼆、正交函数集:⼏个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满⾜ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三⾓函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满⾜: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三⾓函数集是完备正交集。
推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)?t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:⼏个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。