第二章:LTI连续时间系统的时域分析
- 格式:pdf
- 大小:362.70 KB
- 文档页数:10
第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。
状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。
解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。
方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。
本题也可以用卷积积分求系统的零状态响应。
方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。
信号与系统MATLAB仿真——LTI连续系统的时域分析1. 知识回顾(1)经典时域分析⽅法线性时不变(LTI)系统是最常见最有⽤的⼀类系统,描述这类系统的输⼊-输出特性的是常系数线性微分⽅程。
\begin{array}{l} {y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = \\ {b_m}{f^{(m)}}(t) + {b_{m - 1}}{f^{(m - 1)}}(t) + \cdot \cdot \cdot + {b_1}{f^{(1)}}(t) + {b_0}f(t) \end{array}齐次解:{y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = 0特征⽅程:{\lambda ^n} + {a_{n - 1}}{\lambda ^{n - 1}} + \cdot \cdot \cdot + {a_1}\lambda + {a_0} = 0均为单根:{y_h}(t) = \sum\limits_{i = 1}^n {{C_i}{e^{{\lambda _i}t}}}有重根(r重根):{y_h}(t) = \sum\limits_{i = 1}^r {{C_i}{t^{i - 1}}{e^{{\lambda _1}t}}}共轭复根({\lambda _{1,2}} = \alpha \pm j\beta ):{e^{\alpha t}}({C_1}\cos \beta t + {C_2}\sin \beta t)r重复根:{e^{\alpha t}}(\sum\limits_{i = 1}^r {{C_{1i}}{t^{i - 1}}} \cos \beta t + \sum\limits_{i = 1}^r {{C_{2i}}{t^{i - 1}}} \sin \beta t)特解:f(t) = {t^m}所有的特征根均不等于0:{y_p}(t) = {P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}有r重等于0的特征根:{y_p}(t) = {t^r}[{P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}] f(t) = {e^{\alpha t}}:\alpha 不是特征根:{y_p}(t) = P{e^{\alpha t}}\alpha 是特征单根:{y_p}(t) = {P_1}t{e^{\alpha t}} + {P_0}{e^{\alpha t}}\alpha 是r重特征根:{y_p}(t) = ({P_r}{t^r} + {P_{r - 1}}{t^{r - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}){e^{\alpha t}} f(t) = \cos \beta t或\sin \beta t:所有特征根均不等于 \pm j\beta :{y_p}(t) = {P_1}\cos \beta t + {P_2}\sin \beta t\pm j\beta 是特征单根:{y_p}(t) = t[{P_1}\cos \beta t + {P_2}\sin \beta t]全解:y(t) = {y_h}(t) + {y_p}(t)(2)零输⼊响应与零状态响应y(t) = {y_{zi}}(t) + {y_{zs}}(t)(3)冲激响应和阶跃响应\left\{ \begin{array}{l} \delta (t) = \frac{{{\rm{d}}\varepsilon (t)}}{{{\rm{d}}t}}\\ \varepsilon (t) = \int_{ - \infty }^t {\delta (\tau ){\rm{d}}\tau } \end{array} \right. \left\{ \begin{array}{l} h(t) = \frac{{{\rm{d}}g(t)}}{{{\rm{d}}t}}\\ g(t) = \int_{ - \infty }^t {h(\tau ){\rm{d}}\tau } \end{array} \right.(4)卷积积分y(t) = {f_1}(t) * {f_2}(t) = \int_{ - \infty }^{ + \infty } {{f_1}(\tau ){f_2}(t - } \tau ){\rm{d}}\tau系统的零状态响应:{y_{zs}}(t) = f(t) * h(t)卷积积分的性质:交换律分配率结合律任意函数与单位冲激函数卷积的结果仍是函数本⾝:f(t) * \delta (t) = f(t)2. 利⽤MATLAB求LTI连续系统的响应LTI连续系统以常微分⽅程描述,如果系统的输⼊信号及初始状态已知,便可以求出系统的响应。