25.3解直角三角形(4)
- 格式:ppt
- 大小:1.99 MB
- 文档页数:16
第二十五章 锐角三角比(P59-P82)1. 内容目录第一节:锐角的三角比(Ⅱ)25.1 锐角的三角比的意义; 25.2 求锐角的三角比的值。
第二节:解直角三角形(Ⅲ)25.3 解直角三角形; 25.4 解直角三角形的应用。
2.中考考纲要求(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问题。
3.重点和难点 重点是应用锐角三角比的意义及运用解直角三角形的方法进行有关几何计算。
难点是解直角三角形的应用。
4.知识结构框架图表5. 知识点1、 锐角的三角比(1) 定义:在直角三角形ABC 中,A 为一锐角,则∠A 的正弦=A a sin A=c∠的对边,即斜边∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tanA=A b∠的对边,即∠的邻边∠A 的余切=A a =A b∠的邻边,即cotA ∠的对边注:三角函数值是一个比值.定义的前提是有一个角为直角,故如果题目中无直角条件时,应设法构造一个直角。
若A ∠为一锐角,则sinA,cosA,tanA,cotA 的取值范分别是:0sinA<1,0<cosA<1,tanA>0,cotA>0<。
同一个锐角的正切和余切值互为倒数,即:1tanA cotA=1tanA=cot A或2、 特殊锐角的三角比的值(1) 特殊锐角(30°,45°,60°)的三角比的值(2) 同角,互余的两角多的三角比之间的关系:倒数关系:1tanA=cot A平方关系:22sin A+cos A=1 积商关系:sin cos tanA=,cot cos sin A A A AA=余角和余函数的关系:如果090A B ∠+∠=,那么sinA=cosB, tanA=cotB (正弦和余弦,正切和余切被称为余函数关系)。
图25.3.5图25.3.6 25.3解直角三角形4-- 坡度问题课时学习目标1.掌握坡角与坡度概念, 能利用解直角三角形解决有关实际问题。
2.由实际问题转化为几何问题时,学会自己画图,建立模型.学习重点难点重点: 灵活应用解直角三角形知识解决实际问题。
难点:由实际问题转化为几何问题(建模)。
课前预习导学 ( 自学课本完成下列问题)1.坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即=i .(坡度通常写成1∶m 的形式,如i =1∶6.)2.坡面与水平面的夹角叫做坡角,记作α,有tan α= .3.坡度越大,坡角α就越 ,坡面就越 .4.计算: ︒︒+︒+︒60cot 60tan 30cos 30sin 22225.如图,两建筑物的水平距离BC 为24米,从点A 测得点D 的俯角α=30°,测得点C 的俯角β=60°,求AB 和CD 两座建筑物的高.(结果保留根号)课堂学习研讨例1如图25.3.6,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)例2、 一水库大坝的横断面为梯形ABCD ,坝顶宽6米,坝高20米,斜坡 AB 的坡度1i =1∶3,斜坡CD 的坡度2i =1∶2.5.求:(1) 斜坡AB 与坝底AD 的长度;(精确到0.1米)(2) 斜坡CD 的坡角α.(精确到1°)A B CA AB B CC 30° 第3题 课达标堂检测1. 如果a ∠是等腰直角三角形的一个锐角,则tan α的值是 。
2.如图,坡角为30 的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3. 如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌。
解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
25.3-25.4 解直角三角形及其应用【学习目标】1、理解解直角三角形的意义,会用锐角互余、锐角三角比和勾股定理等解直角 三角形和解决一些简单的实际问题。
2、了解测量中的概念,并能灵活应用相关知识解决某些实际问题,而在将实际问题转化为直角三角形问题时,•怎样合理构造直角三角形以及如何正确选用直角三角形的边角关系是本节难点,也是中考的热点.3、正确地建立解直角三角形的数学模型以及熟悉测量,航海,航空,•工程等实际问题中的常用概念是解决这类问题的关键.(1)准确理解几个概念:①仰角,俯角;②坡角;③坡度;④方位角. (2)将实际问题抽象为数学问题的关键是画出符合题意的图形.(3)在一些问题中要根据需要添加辅助线,构造出直角三角形,•从而转化为解直角三角形的问题.【主要概念】【1】勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
【2】如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):【3】任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
【4】任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边CA90B 90∠-︒=∠︒=∠+∠得由B A【5】0°、30°、45°、60°、90°特殊角的三角函数值【6】解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222cba=+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)【7】应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。
用字母i表示,即hil=。
坡度一般写成1:m的形式,如1:5i=等。
导入新课 1.观察
引入新课:如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处.问大树在折断之前高多少米?
显然,我们可以利用勾股定理求出折断倒下的部分的长
度为222410 =26 , 26+10=36所以,
大树在折断之前的高为36米.
2.思考
1.在三角形中共有几个元素?
2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、
∠B 这五个元素间有哪些等量关系呢? 3.讨论复习
师白:Rt △ABC 的边角关系、三边关系、角角关系分别是什么?
总结:直角三角形的边与角之间的关系 (1)两锐角互余∠A +∠B =90°; (2)三边满足勾股定理a2+b2=c2;
(3)边与角关系sinA =cosB =a c ,cosA =sinB =b
c ,
tanA =cotB =a b ,cotA =tanB =b
a .
教师引导,让学生自主
探究,体会探究过程 ,理解知识的推导过程。
加强对知识的理解提高学生学习兴趣。
5
m i n。
《新课程课堂同步练习册·数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y三、1. x ≥212. x >-13. x =0 §22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 2 2. x -2 3. 42或(-4)2 27)(或27)(- 4. 1 5. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ·1+n (n ≥3,且n 为正整数)三、1. (1)15 (2)32 (3) -108 2. 1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C二、1.33, 210 2. x =2 3. 6 三、1.(1) 232 (2) 3-22(3) 10 (4) 2 2. 258528=÷nn ,因此是2倍. 3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=. §22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33(3) 1 (4)3-25 (5)25-23 (6)3a -2 2. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2×20×30(或2(20+2x )x +2×30x =30×20 或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21- 4. x 1=-22,x 2=22三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米 §23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=452. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9.2. x=2175+或x=2175-.3. x 1=242q p p -+-,x 2=242q p p ---.§23.2 一元二次方程的解法(四)华东版九年级数学(上) 第3页一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-12.41,16253. 4 三、1.(1)222±=x ; (2)4173±-=x ; (3)aac b b x 242-±-=. 2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0, 所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251-- 三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2 三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21; 5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=2000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)×1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),做一个这样的箱子要花35×20=700元钱). 三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二)一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x .由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52 .整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得21(5-m ) ×2m=21×5×7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2..§23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2. 5113. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC .∵ 矩形DMNC 与矩形ABCD 相似,DM MNAB BC=, ∴21AD 2=AB 2,∴ 由AB =4得,AD =42华东版九年级数学(上) 第5页(2)矩形DMNC 与矩形ABCD的相似比为2DM AB =§24.3 相似三角形(一) 一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略 §24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==ED AC EF AB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°,又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4 或△BAD∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BCPN ADAE =, 1288x x =-, 解得x =4.8cm. 3.(1)8,(2)1:4. §24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4.712或2 三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DE BECD AB =,即1850.050.16=⨯=⨯=DE CD BE AB (米). 2.(1)△CDP ∽△P AE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°,∴ ∠PCD=∠EP A . ∴ △CDP ∽△P AE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△P AE 知AP CD AE PD =, ∴ AE=233116)3211(32-=-⨯=⋅CD AP PD解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△P AE 知2=AP CD ,∴ 2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A华东版九年级数学(上) 第7页二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(1(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ·cot α=2×2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. 2.5 3.4. 8三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ·tan ∠CAB =4×0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、12. 2633. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD=AB .又在Rt △ABC 中,tan 60AB BC =,ABBC∴=即BC AB =.BD BC CD =+,AB AB CD ∴=+.∴ CD =AB -33AB =180-180×33=180-603(米). 答:小岛C ,D 间的距离为(180-米.3.有触礁危险.ABC D 60°45°理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴ BD =PD =x .在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .x AD 330tan =︒= ∵ AD =AB +BD , ∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四)一、1.C 2.A二、1. 30° 2.2+3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F , 在Rt △ABE 中,tan AE B BE =,∴ tan AE BE B ==6tan55. ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°, 所以DF =7=AE ,且FC =12.1, 所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ·sin 15°≈50×0.26=13.0. ∴ CE =BF =BD ·cos 15°≈50×0.97=48.5. ∴ AE =CE ·tan 10°≈48.5×0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10×0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10×0.98=9.8(米)在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米),AB =AD -BD ≈23.33-9.8=13.53≈13.5(米) 答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)一、1. D 2. B 3. C 4. A 5. B西 东PA CBN M 60° 45°F华东版九年级数学(上) 第9页二、1. 20,30 2. 0.18 3.124. 0.2 三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A二、1. 25 2. 35 3.(1)14 (2)113 (3)413 4. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是61 2. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1.13 2. 34 3. 12 4.(1)32;(2)61;(3)21三、1. 树形图:第一张卡片上的整式 x x -1 2第二张卡片上的整式 x -1 2 x 2 x x -1 所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - 所以P (能组成分式)63==. 2.(1)设绿球的个数为x .由题意,得21212x =++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:红2 黄 绿 红1 黄 绿 红1 红2 绿 红1 红2 红1 红2 黄绿开始 第二次摸球 第一次摸球 黄由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种. ∴ P (两次都摸到红球)21126==.3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,土口 木 开始 土(土,土) 口(土,口) 木(土,木) 土(口,土) 口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)华东版九年级数学(上) 第11页 (口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利§26.2 模拟实验——用替代物做模拟实验一、1. A 2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理三、1. 略 2. 14,后者答案不唯一 3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一§26.2 模拟实验——用计算器做模拟实验一、1. B 2. B二、1.1 6 6 2.1 30 13三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张, 故甲摸出“石头”的概率为31155=. (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=. (3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=; 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514. 故甲先摸出“锤子”获胜的可能性最大.3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。
《25.3 解直角三角形及其应用》2010年测试卷一、选择题(共9小题,每小题4分,满分36分)2.(4分)计算的值是().C D.3.(4分)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C=().<sinα≤<cosα≤C≤tanα≤D.≤cotα≤5.(4分)在△ABC中,∠C=90°,sinA=,则sinB的值是().C D.27.(4分)(2001•贵阳)如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2:3,顶宽是3米,路基高是4米,则路基的下底宽是()8.(4分)(2007•淄博)王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地().m .m9.(4分)(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为()二、填空题(共9小题,每小题4分,满分36分)10.(4分)某人沿着坡度i=1:的山坡走了50米,则他离地面_________米高.11.(4分)等腰三角形的周长是2+,腰长为1,则其底边上的高为_________.12.(4分)若4cos2α=1,则锐角α=_________.13.(4分)在Rt△ABC中,∠C=90°,cosA=_________.(三边分别对应a,b,c)14.(4分)(2002•泸州)如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_________元.15.(4分)(2009•黄浦区二模)如图,在△ABC中,∠C=90°,∠BAC=60°,D是边BC的中点,则tan∠CAD=_________.16.(4分)(2007•济宁)计算:﹣tan45°的值是_________.17.(4分)(2007•黄冈)计算:2sin60°=_________.18.(4分)化简=_________.三、解答题(共9小题,满分78分)19.(8分)计算(1+tan60°﹣sin60°)(1﹣tan60°+cos30°)20.(8分)在Rt△ABC中,a=50,c=50,解这个三角形.21.(8分)在Rt△ABC中,∠C=90°,cosA=,∠B的平分线BD=16,求AB.22.(9分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)23.(9分)(2009•河南模拟)一艘轮船自西向东航行,在A处测得北偏东60°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的北偏东45°方向上之后,轮船继续向东航行多少海里,距离小岛C最近?(结果保留根号)24.(9分)(2007•晋江市质检)如图所示,一辆吊车的吊臂以63°的倾角倾斜于水平面,如果这辆吊车支点A距地面的高度AB为2m,且点A到铅垂线ED的距离为AC=15m,求吊臂的最高点E到地面的高度ED的长(精确到0.1 m).25.(9分)(2007•怀化)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.26.(9分)(2007•贵阳)如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC 的距离是6km,仰角是43度.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54°,解答下列问题:(1)火箭到达B点时距离发射点有多远?(精确到0.01km)(2)火箭从A点到B点的平均速度是多少?(精确到0.1km/s)27.(9分)(2007•江苏)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)《25.3 解直角三角形及其应用》2010年测试卷参考答案与试题解析一、选择题(共9小题,每小题4分,满分36分)2.(4分)计算的值是().C D.3.(4分)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C=()|+sinA=,,.<sinα≤<cosα≤C≤tanα≤D.≤cotα≤,∴,,,∴α≤,=∴,,∴,5.(4分)在△ABC中,∠C=90°,sinA=,则sinB的值是().C D.,sinB===2C==,AE=5×.7.(4分)(2001•贵阳)如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2:3,顶宽是3米,路基高是4米,则路基的下底宽是()8.(4分)(2007•淄博)王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地().m .m=50AC=.9.(4分)(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为()DB==BC=(二、填空题(共9小题,每小题4分,满分36分)10.(4分)某人沿着坡度i=1:的山坡走了50米,则他离地面25米高.:11.(4分)等腰三角形的周长是2+,腰长为1,则其底边上的高为.2+BC=AD==,故答案为12.(4分)若4cos2α=1,则锐角α=60°.±,13.(4分)在Rt△ABC中,∠C=90°,cosA=.(三边分别对应a,b,c)cosA=.14.(4分)(2002•泸州)如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要504元.15.(4分)(2009•黄浦区二模)如图,在△ABC中,∠C=90°,∠BAC=60°,D是边BC的中点,则tan∠CAD=.aCD=CAD==16.(4分)(2007•济宁)计算:﹣tan45°的值是0.,﹣,,;,,,,.17.(4分)(2007•黄冈)计算:2sin60°=.×=,,;,,,,.18.(4分)化简=.﹣三、解答题(共9小题,满分78分)19.(8分)计算(1+tan60°﹣sin60°)(1﹣tan60°+cos30°)﹣)20.(8分)在Rt△ABC中,a=50,c=50,解这个三角形.==5021.(8分)在Rt△ABC中,∠C=90°,cosA=,∠B的平分线BD=16,求AB.cosA=CBD=8AB==16AB=16.22.(9分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)×23.(9分)(2009•河南模拟)一艘轮船自西向东航行,在A处测得北偏东60°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的北偏东45°方向上之后,轮船继续向东航行多少海里,距离小岛C最近?(结果保留根号)∴AD=∴∴BD=24.(9分)(2007•晋江市质检)如图所示,一辆吊车的吊臂以63°的倾角倾斜于水平面,如果这辆吊车支点A距地面的高度AB为2m,且点A到铅垂线ED的距离为AC=15m,求吊臂的最高点E到地面的高度ED的长(精确到0.1 m).25.(9分)(2007•怀化)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.,得出∴∴26.(9分)(2007•贵阳)如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC 的距离是6km,仰角是43度.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54°,解答下列问题:(1)火箭到达B点时距离发射点有多远?(精确到0.01km)(2)火箭从A点到B点的平均速度是多少?(精确到0.1km/s)中,27.(9分)(2007•江苏)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)×=1.2 AB=。
2021-2022学年九年级数学上册尖子生同步培优题典【沪教版】专题25.3解直角三角形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•上城区校级一模)已知在△ABC 中,∠C =90°,∠B =50°,AB =10,那么BC 的长为( )A .10cos50°B .10sin50°C .10tan50°D .10cot50°2.(2020秋•嘉定区期末)在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB ,垂足为D ,下列四个选项中,不正确的是( )A .AC AB =√32 B .BC CD =√32 C .BD CD =√33 D .BC AC =√333.(2020秋•嘉定区期末)在平面直角坐标系xOy 中,已知点P (1,3),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tan α的值是( )A .√1010B .13C .3√1010D .34.(2020秋•静安区期末)在Rt △ABC 中,∠C =90°,CD 是高,如果AB =m ,∠A =α,那么CD 的长为( )A .m •sin α•tan αB .m •sin α•cos αC .m •cos α•tan αD .m •cos α•cot α5.(2020秋•杨浦区期末)在△ABC 中,如果sin A =12,cot B =√33,那么这个三角形一定是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形6.(2020秋•徐汇区校级期中)如图,直线OA 过点(2,1),直线OA 与x 轴的夹角为α,则tan α的值为( )A .√55B .12C .2D .√57.(2019秋•虹口区期末)在Rt △ABC 中,∠C =90°,如果BC =2,tan B =2,那么AC =( )A .1B .4C .√5D .2√58.(2019秋•崇明区期末)在Rt △ABC 中,∠C =90°,如果AC =8,BC =6,那么∠B 的余切值为( )A .34B .43C .35D .45 9.(2019秋•金山区期末)如图,已知在平面直角坐标系xOy 内有一点A (2,3),那么OA 与x 轴正半轴的夹角α的余切值是( )A .32B .23C .3√1313D .2√131310.(2019秋•松江区期中)如图,在等腰△ABC 中,AB =AC ,BD 是AC 边上的高,cos C =13,则△BCD 与△ABD 的面积比是( )A .1:3B .2:7C .2:9D .2:11二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•金山区期末)在△ABC 中,AB :AC :BC =1:2:√5,那么tan B = .12.(2021•滨湖区模拟)在△ABC 中,AB =5,BC =8,∠B =60°,则△ABC 的面积是 .13.(2020秋•徐汇区期末)如图,点P 在线段BC 上,AB ⊥BC ,DP ⊥AP ,CD ⊥DP ,如果BC =10,AB =2,tan C =12,那么DP 的长是 .14.(2020秋•闵行区期末)在直角坐标平面内有一点A (12,5),点A 与原点O 的连线与x 轴的正半轴的夹角为θ,那么cosθ=.15.(2020秋•崇明区期末)已知锐角△ABC中,AB=5,BC=7,sin B=45,那么∠C=度.16.(2020秋•徐汇区期末)如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=45,ED=5,如果△ECD的面积是6,那么BC的长是.17.(2021•杨浦区二模)如图,已知在正方形网格中,点A、B、C、D在小正方形的顶点上,线段AB与线段CD相交于点O,那么tan∠AOC=.18.(2020秋•虹口区期末)如图,图中提供了一种求cot15°的方法.作Rt△ABC,使∠C=90°,∠ABC =30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+√3)t,那么cot15°=cot D=CDAC=2+√3.运用以上方法,可求得cot22.5°的值是.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,AC=6,cos A=35.D是AB边的中点,过点D作直线CD的垂线,与边BC相交于点E.(1)求线段CE的长;(2)求sin∠BDE的值.20.(2021•虹口区二模)如图,在△ABC中,∠ACB=45°,cot B=32,BC=10.(1)求AB的长;(2)如果CD为边AB上的中线,求∠DCB的正切值.21.(2021•青浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD的长;(2)求∠EBC的正切值.22.(2021•奉贤区二模)如图,已知,在Rt△ABC中,∠C=90°,AB=4,BC=2,点D是AC的中点,联结BD并延长至点E,使∠E=∠BAC.(1)求sin∠ABE的值;(2)求点E到直线BC的距离.23.(2020秋•上海期末)如图,在△ABC中,AB=7,BC=8,AC=5,求:△ABC的面积和∠C的度数.24.(2020秋•崇明区期末)如图,已知⊙O的半径为√2,在⊙O中,OA、OB是圆的半径,且OA⊥OB,点C在线段AB的延长线上,且OC=AB.(1)求线段BC的长;(2)求∠BOC的正弦值.。
《新课程课堂同步练习册²数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y 三、1. x ≥21 2. x >-1 3. x =0§22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 2 2. x -2 3. 42或(-4)2 27)(或27)(-4. 15. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ²1+n (n ≥3,且n 为正整数) 三、1. (1)15 (2)32 (3) -108 2.1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C 二、1.33,210 2. x =2 3. 6三、1.(1)232 (2) 3-22 (3) 10 (4) 22. 258528=÷n n ,因此是2倍.3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=.§22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33 (3) 1 (4)3-25 (5)25-23 (6)3a -22. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2³20³30(或2(20+2x )x +2³30x =30³20 或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C 二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21-4. x 1=-22,x 2=22三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米§23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=452. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9. 2. x=2175+或x=2175-. 3. x 1=242qp p -+-,x 2=242qp p ---.§23.2 一元二次方程的解法(四) 一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-1 2.41,1625 3. 4三、1.(1)222±=x ; (2)4173±-=x ; (3)aacbb x 242-±-=.2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0,所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251--三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2 三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21;5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=2000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)³1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)³(3+2)=35(米2),做一个这样的箱子要花35³20=700元钱). 三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二) 一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x . 由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52 .整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2. 由题意,得21(5-m ) ³2m=21³5³7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2.. §23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D 二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2.511 3. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC .∵ 矩形DMNC 与矩形ABCD 相似,D M M N A BB C=,∴21AD 2=AB 2,∴ 由AB =4得,AD =42(2)矩形DMNC 与矩形ABCD 的相似比为2D M A B=§24.3 相似三角形(一) 一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略 §24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==EDAC EFAB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°,又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4 或△BAD∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BCPN ADAE =, 1288x x=-, 解得x =4.8cm.3.(1)8,(2)1:4. §24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4. 712或2三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DEBE CDAB = ,即1850.050.16=⨯=⨯=DE CD BE AB (米).2.(1)△CDP ∽△P AE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°, ∴ ∠PCD=∠EP A . ∴ △CDP ∽△P AE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6³33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△P AE 知APCD AEPD=, ∴ AE=233116)3211(32-=-⨯=⋅CDAPPD解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x 由△CDP ∽△P AE 知2=APCD,∴2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A 二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(12(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ²cot α=2³2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. 2.5 3.4. 8三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ²tan ∠CAB =4³0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、132. 263 3. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD=AB .又在Rt △ABC 中,tan 60AB BC= ,AB BC∴=,即3B CA B=.BD BC CD =+ ,3AB AB C D ∴=+.∴ CD =AB -33AB =180-180³33=180-603(米).ABC D 60° 45°答:小岛C ,D 间的距离为(180-米. 3.有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴ BD =PD =x .在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .x AD 330tan =︒=∵ AD =AB +BD ,∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四) 一、1.C 2.A二、1. 30° 2.2+3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F , 在Rt △ABE 中,tan A E B B E =,∴ tan A E B E B==6tan 55.∴6221624.4tan 55B C B E A D =+=⨯+≈(cm ).答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°, 所以DF =7=AE ,且FC =12.1, 所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ²sin 15°≈50³0.26=13.0. ∴ CE =BF =BD ²cos 15°≈50³0.97=48.5. ∴ AE =CE ²tan 10°≈48.5³0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10³0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10³0.98=9.8(米) 在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米),AB =AD -BD ≈23.33-9.8=13.53≈13.5(米)答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)西东PACBN M 60° 45°F一、1. D 2. B 3. C 4. A 5. B 二、1. 20,30 2. 0.18 3.124. 0.2三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A 二、1.252. 353.(1)14(2)113(3)4134. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是612. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1.132.343.124.(1)32;(2)61;(3)21三、1. 树形图:第一张卡片上的整式 x x -1 2第二张卡片上的整式 x -1 2 x 2 x x -1 所有可能出现的结果 1x x -2x1x x-12x -2x21x -也可用表格表示: 所以P (能组成分式)4263==.2.(1)设绿球的个数为x .由题意,得21212x=++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:开始由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种.∴ P (两次都摸到红球)21126==.3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)土 口木开始土(土,土)口(土,口) 木(土,木) 土(口,土)口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)华东版九年级数学(上) 第11页总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利§26.2 模拟实验——用替代物做模拟实验 一、1. A 2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理 三、1. 略 2.14,后者答案不唯一3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一 §26.2 模拟实验——用计算器做模拟实验 一、1. B 2. B二、1.1 6 6 2.1 30 13 三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31155=.(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=.(3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=;若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=;若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514.故甲先摸出“锤子”获胜的可能性最大. 3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。
第二节解直角三角形 25.3解直角三角形 思考:直角三角形ABC 的三条边和两个锐角∠A 、∠B 这五个元素之间有哪些关系?直角三角形的边与角之间的关系(1)两锐角互余:∠A +∠B =90;(2)三边满足勾股定理:a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =cot B =a b ;cot A =tan B =b a.我们已掌握直角三角形的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.为什么两个已知元素中至少有一条边?由直角三角形全等的判定定理可知,如果给定的直角三角形的一条边和一个锐角,或者给定它的两条边,那么这个直角三角形的形状和大小就完全确定,解直角三角形与确定一个直角三角形所需要的条件是一致的.由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形.例1 在△ABC 中,∠C =90°,AC =85,角平分线AD =16153,解这个直角三角形.解:在Rt △△ACD 中,∵cos ∠CAD =AC AD =851615=3, ∴∠CAD =30°.又AD 平分∠CAD ,∴∠CAB =60°,∠B =30°.在Rt △ACBA 中,∵cos ∠CAB =AC AD, ∴AB =8512=165. ∵tan ∠CAB =CB AC, ∴CB =815.例2 在△ABC 中,已知D 为AB 中点,∠ACB =135°,AC ⊥CD ,求sin A 的值.A B CD图25.3.1解:过点D 作DE ∥BC ,交AC 于E . ∵AD =DB ,∴AE =CE .∵∠ACB =135°,∠ACD =90°,∴∠DCB =∠CDE =45°.∴∠CED =45°,CD =CE .设CD =a ,则AC =2a .在Rt △ACD 中,AD =22AC CD +=5a ,∴sin A =CD AD =5a a=55.例3 在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且∠NMB =∠MBC ,求tan ∠ABM 的值.解:如图25.3.3,延长BC 、MN 交于T ,过T 作TO ⊥BM ,设正方形的边长为1.∵AD ∥BC ,∴∠AMB =∠OBT .∵在Rt △ABM 中,cos ∠AMB =AM MB, 在Rt △QBT 中,cos ∠OBT =OB BT, ∴AM MB =OB BT, 又OB =12BM , ∴MB 2=2AM •BT .设AM =x ,则MB =22AM AB +=221x +,BT =BC +CT =1+(1-x )=2-x ,∴x 2+1=2(2—x )x :.解得x =13或x =1(舍). ∴tan ∠ABM =13.B A CD图25.3.2 EAD B图25.3.3 M O NC T练习25.3(1) 1.如图,在等腰△ABC 中,底边BC 的中点是点D ,底角的正切值是13,将该等腰三角形绕其腰AC 上的中点M 旋转,使旋转后的D 与点A 重合,得到△A ′B ′C ′,如果旋转后的成边B ′C ′与BC 交子点N .求∠ANB 的正切值.2.若等腰三角形两腰上的高的和等于底边上的高,求底角的余切值.3.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,∠BCD =120°,AD =2,AB =1+3,求CD 的长度.4.在Rt △ABC 中,∠C =90°,AC =BC ,AD 是BC 上的中线,参cos ∠BAD 与sin ∠BAD 的值.例4 在△ABC 中,BC 菇15,AB ︰AC =7︰8,cos C =12,求BC 边上的高.分析:由于三角形的高有可能在三角形的内部或外部,因此需要分类讨论.解:如图25.3.4,过点A 作AH ⊥BC ,设AB =7k ,AC =8k .①当∠ABC 为锐角时.在Rt △ACH 中,∵cos C =12, ∴sin C =AH AC=32, ∴AH =43k .∴cos C =HC AC, ∴HC =4k .在Rt △ABH 中,BH =22AB AH -=k .又BC =BH +HC ,∴5k =15,即k =3,∴AH =123. CB AD(第1题) MA CDB(第3题) C B A H图25.3.4 CB A H②当∠ABC 为钝角时. 在Rt △ACH 中,∵cos C =12, ∴sin C =AH AC =32, ∴AH =43k∵cos C =HC AC, ∴HC =4k . 在Rt △ABH 中,BH =22AB AH -=k .又BC =CH -HB ,3k =15,即k =5,∴AH =203综上所述,AH =123或AH =203.例5 如图25.3.5,在△ABC 中,∠B =120°,D 、E 分别是AC 、AB 上的点,AC =7,∠EDC =60°,AE =BC ,sin A =3314,求S 四边形DEBC .解:延长AB ,过点C 作CH ⊥AB ,交AB 适长线于点H .在Rt △ACH 中,∵sin A =3314, ∴设CH =33k .,AC =14k ,则AH =22AC CH -=13k .∵AC =14k =7,∴k =12,则CH =332,AH =132.在Rt △BCH 中,sin ∠CBH =sin60°=CH CB, ∴CB =3,即AE =3.又∠ADE =180°—∠EDC =120°=∠B ,∴△ADE ∽△ABC .∴2949ADE ACB S AE S AC ⎛⎫== ⎪⎝⎭△△,4049DEBC ACB S S =四边形△. ∵AB =AH -BH =132-22BC CH -=132-2794-=5, ∴S △ACB =1534, S 四边形DEBC =150349. E D图25.3.5 CBA H练习25.3(2) 1.在△ABC 中,BC =6,AC =63,∠A =30°,求AB 的长.2.在△ABC 中,∠C =45°,D 是AC 边上的一点,且∠ADB =60°,当AD 与CD 满足什么条件时,能使△ABD ∽△ACB ?3.三角形的两埠长分别为4、5,第三边上的高为3,求这个三角形的面积.4.在△ABC 中,cos A =0.8,∠B =45°,三角形一边上的高是3,求BC 的长.练习25.3(1)1.342.15 3.CD =2 提示:延长BC 、AD 交于点E .4.cos ∠BAD =310,sin ∠MD =10, 提示:过点D 作DE ⊥AB 于点E练习25.3(2)1.AB =12或62.AD =2DC 提示:若相似,则∠ABC =∠ADB =60°,∠ABD =∠C =45°.过点A 作AE ⊥BD ,AF ⊥BC ,则AC =2AF =32AB ,AB =2AE =32AD ,∴AC =32AD 3.()3472+或()3472-4.32,187或152第二节解直角三角形25.3解直角三角形练习25.3(1)1.在△ABC 中,∠A =30°,∠C —∠B =60°,若BC =a ,求AB 的长.2.已知在△ABC 中,AB =23,AC =2,BC 边上的高为3,求BC 的长.3.如图,在△ABC 中,高CH 是边AB 的一半,且∠B =75°,求∠A 的度数.BACH (第3题)。