相似三角形判定定理证明课后习题
- 格式:ppt
- 大小:146.50 KB
- 文档页数:3
初中数学例题:相似三角形的三个判定定理2、如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的性质进而判断得出即可.【答案与解析】(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF.【总结升华】此题主要考查了相似三角形的两个对应角相等的判定方法以及等边三角形的性质等知识,得出对应角关系是解题关键.举一反三【变式】如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【答案】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.3、(2014秋•洪江市期中)如图所示,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以1cm/s的速度移动,点Q从点B开始沿边BC向点C以2cm/s的速度移动,如果点P、Q 同时出发,经过多长时间后,△PBQ与△ABC相似?试说明理由.【思路点拨】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=xcm,BQ=2xcm,BP=AB﹣AP=(8﹣x)cm,又由△B是公共角,分别从=或=分析,即可求得答案.【答案与解析】解:设经x秒钟△PBQ与△ABC相似,则AP=xcm,BQ=2xcm,△AB=8cm,BC=16cm,△BP=AB﹣AP=(8﹣x)cm,△△B是公共角,△①当=,即=时,△PBQ△△ABC,解得:x=4;②当=,即=时,△QBP △△ABC ,解得:x=1.6,△经4或1.6秒钟△PBQ 与△ABC 相似.【总结升华】此题考查了相似三角形的判定.属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4、网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF .【思路点拨】利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC ∽△DEF .【答案与解析】证明:∵AC=2,BC=221031=+,AB=4,DF=222222=+,EF=2202621=+,ED=8,∴12AC BC AB DF EF DE ===, ∴△ABC ∽△DEF .【总结升华】本题考查了相似三角形的判定、勾股定理.相似三角形相似的判定方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题是在网格状中的两个三角形,优先考虑三边对应成比例的方法去考虑.举一反三【变式】如图所示,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=_________;(2)判断△ABC与△DEF是否相似?并证明你的结论.【答案】(1)解:∠ABC=90°+45°=135°,(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°, ∴∠ABC=∠DEF .2BC FE===∴△ABC ∽△DEF .。
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1。
理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割.2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1。
比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03。
平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
第四章 图形的相似4.5 相似三角形判定定理的证明精选练习一、单选题1.(2022·全国·九年级课时练习)ABC V 和A B C ¢¢¢V 符合下列条件,其中使ABC V 与A B C ¢¢¢V 不相似的是( )A .45A A ¢Ð=Ð=°,26B Ð=°,109B ¢Ð=°B .1AB =, 1.5AC =,2BC =,12A B ¢¢=,8A C ¢¢=,16B C ¢¢=C .A B ¢Ð=Ð, 1.5AB =,1514AC =,32A B ¢¢=, 2.1B C ¢¢=D .BC a =,AC b =,AB c =,B C ¢¢=A C ¢¢=A B ¢¢=【点睛】本题主要考查了相似三角形的判定,三角形内角和定理,解题的关键在于能够熟练掌握相似三角形的判定条件.V斜边上的高,则图中相似三角形的对数有()2.(2022·全国·九年级课时练习)如图,CD是Rt ABCA.0对B.1对C.2对D.3对【答案】D【分析】直角三角形斜边上的高线分原三角形所得到的两个三角形与原三角形相似,由此即可解答.【详解】由题意得:△ADC∽△ACB;△ADC∽△CDB;△CDB∽△AC B.故选D.【点睛】本题解决的关键是熟知直角三角形斜边上的高线分原三角形所得到的了两个三角形与原三角形相似这一定理.3.(2022·全国·九年级课时练习)在△ABC和△A1B1C1中,下列四个命题(1)若AB=A1B2,AC=A1C1,∠A在∠A,则△ABC≌△A1B1C1;(2)若AB=A1B2,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个【答案】B【分析】分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.【详解】解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,故(1)正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能用ASS判定△ABC≌△A1B1C1,故(2)错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,故(3)正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,故(4)正确.正确的个数有3个;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.4.(2021·黑龙江·肇源县第五中学八年级期中)如图,在ABC V 中,点P 在边AB 上,则在下列四个条件中:ACP B Ð=Ð①;APC ACB Ð=Ð②;2AC AP AB =×③;AB CP AP CB ×=×④,能满足APC V 与ACB V 相似的条件是( )A .①②④B .①③④C .②③④D .①②③【答案】D 【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当ACP B Ð=Ð,A A Ð=ÐQ ,所以APC V ∽ACB V ,故条件①能判定相似,符合题意;当APC ACB Ð=Ð,A A Ð=ÐQ ,所以APC V ∽ACB V ,故条件②能判定相似,符合题意;当2AC AP AB =×,即AC :AB AP =:AC ,因为A AÐ=Ð所以APC V ∽ACB V ,故条件③能判定相似,符合题意;当AB CP AP CB ×=×,即PC :BC AP =:AB ,而PAC CAB Ð=Ð,所以条件④不能判断APC V 和ACB V 相似,不符合题意;①②③能判定相似,故选:D .【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.5.下列各组图形必相似的是( )A .任意两个等腰三角形B .两边为1和2的直角三角形与两边为2和4的直角三角形C .有两边对应成比例,且有一个角对应相等的两三角形D .两边及其中一边上的中线对应成比例的两三角形【答案】D【分析】根据相似三角形的判定定理可分别判断各选项是否足以证明三角形相似,从而判断选项的正确性.【详解】A. 任意两个等腰三角形,各内角的值不确定,故无法证明三角形相似,故本选项错误;B.因为不能判定已知边2和4是直角边还是斜边,故无法判定三角形相似,故本选项错误;C. 两边对应成比例,必须夹角相等才能判定三角形相似,故本选项错误;D. 两边和一边的中线均对应成比例,即可以判定两三角形中对应成比例的边的夹角相等,即可判定三角形相似,故本选项正确.故本题选D.【点睛】本题考查相似三角形的判定定理.熟练掌握相似三角形的判定定理,能根据相似三角形的判定定理判断是否满足判定条件是解决本题的关键.6.(2022·河北唐山·九年级期末)图中四个阴影的三角形中与△ABC 相似的是( )A .B .C .D .二、填空题7.(ΔABC 与△DEF 中,65A Ð=°,42B Ð=°,65D Ð=°,73F Ð=°,3AB =,5AC =,6BC =,6DE =,10DF =,12EF =,则△DEF 与△ABC ________【答案】相似【分析】根据相似三角形的判定方法解答即可.【详解】∵65A Ð=°,42B Ð=°,∴∠C =180°-65°-42°=73°.∵65D Ð=°,73F Ð=°,∴∠A =∠D, ∠C =∠F,∴△DEF 与△ABC 相似.故答案为相似.【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.8.(2021·全国·九年级专题练习)如图,已知,90ACB ADC Ð=Ð=o ,3BC =,4AC =,要使ABC ACD V V ∽,只要CD =________.9.如图所示,D ,E 分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足________条件时,有△ABC ∽△AE D .10.(2022·全国·九年级课时练习)如图,8AB =,50A Ð=゜,''4A B =,''3A C =.当AC =________,'A Ð=________时,'''ABC A B C V V ∽.三、解答题11.(2022·全国·九年级课时练习)已知:如图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′.求证:△ABC ∽△A ′B ′C ′.【答案】证明见解析【分析】在△ABC 的边AB 上截取AD =A ′B ′,过点D 作BC 的平行线,交AC 于点E ,可证△ADE ∽△ABC ;再证△ADE ≌△A ′B ′C ′即可.【详解】证明:在△ABC 的边AB 上截取AD =A ′B ′,过点D 作BC 的平行线,交AC 于点E ,则∠ADE =∠B ,△ADE ∽△AB C .∵∠A =∠A ′,∠ADE =∠B =∠B ′,AD =A ′B ′,∴△ADE ≌△A ′B ′C ′,∴△ABC ∽△A ′B ′C ′【点睛】本题考查了相似三角形的判定定理的证明,解题关键是通过作辅助线,构建全等三角形进行证明.12.(2021·全国·九年级课时练习)已知:如图,在ABC V 和A B C ¢¢¢V 中,,AB AC A A A B A C Ð=Т=¢¢¢¢.求证:ABC A B C ¢¢¢∽△△.一、填空题1.(2018·上海第二工业大学附属龚路中学九年级阶段练习)ABC D 中,10AB =,6AC =,点D 在AC 上,且3AD =,若要在AB 上找一个点E ,使ADE D 与ABC D 相似,则AE =__.2.已知△ABC 和△DEF 中.点A 、B 、C 分别与点D 、E 、F 相对应.且∠A =70°时,∠B =34°,∠D =70°,则当∠F =_____时,△ABC ∽△DEF .【答案】76°【分析】利用两对角相等的三角形相似即可作出判断.【详解】∵△ABC 和△DEF 中.点A 、B 、C 分别与点D 、E 、F 相对应.且∠A =70°时,∠B =34°,∠D =70°,∴∠B =∠E =34°,∴∠C =∠F =76°,故答案为76°【点睛】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.3.(2022·山东烟台·八年级期末)如图,在ABCD Y 中,点E 在AB 上,CE BD ,交于点F ,若:4:3AE BE =,且2BF =,则DF =_________.4.如图,在△AB C中,点P在AB上,下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件有______________.【答案】①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【详解】①、当∠ACP=∠B,∵∠A=∠A,∴△APC∽△ACB,∴①符合题意;②、当∠APC=∠ACB,∵∠A=∠A,∴△APC∽△ACB,∴②符合题意;③、当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A∴△APC∽△ACB,∴③符合题意;④、∵当AB•CP=AP•CB,即PC:BC=AP:AB,而∠PAC=∠CAB,∴不能判断△APC和△ACB相似,∴④不符合题意;故答案为①②③.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5.如图所示,在△AB C中,AB=8cm,BC=16 cm.点P从点A出发沿AB向点B以2 cm/s的速度运动,点Q从点B出发沿BC向点C以4 cm/s的速度运动.如果点P,Q分别从点A,B同时出发,则_____________秒钟后△PBQ与△ABC相似?情况讨论,避免漏解而导致出错.二、解答题6.(2022·全国·九年级课时练习)如图,123Ð=Ð=Ð,求证:ABC D 与ADE D 相似.【答案】证明见解析【分析】两个三角形的若是有两组角相等,那么这两个三角形是相似三角形.根据题意可分别求出两组角相等,从而知道△ABC 与△ADE 相似.【详解】∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,即∠BAC =∠DAE ,又∵在△AHE 和△DH C 中,∠2=∠3,∠AHE =∠DHC∴∠C =∠E ,在△ABC 和△ADE 中∵∠E =∠C ,∠BAC =∠DAE ,∴△ABC ∽△ADE .【点睛】本题考查相似三角形的判定定理,两个三角形的两组角对应相等,那么这两个个三角形互为相似三角形.7.(2022·甘肃酒泉·九年级期末)如图,在△AB C 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?试说明理由.8.如图已知,在△AB C中,CD⊥AB,BE⊥AC,BE交CD于点O,求证:△ABE∽△OCE.【答案】证明见解析.【分析】要证明△ABE∽△OCE,需先找对证明两三角形相似的条件,根据已知条件找出即可证明.【详解】Q CD⊥AB,BE⊥AC,\∠AEB=∠ADC=90°.又∠A=∠A,\∠ABE=∠OCE.又Q∠AEB=∠OEC,\△ABE∽△OCE.【点睛】此题重点考察学生对证明两三角形相似的理解,熟练两三角形相似的证明方法是解题的关键.。
相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
姓名:班级27.2.1 相似三角形的判定全卷共24题,满分:100分,时间:60分钟一、单选题(每题3分,共36分)1.(2021·北京·牛栏山一中实验学校九年级月考)根据下列条件,判断△ABC与△A′B′C′能相似的有()对.①∠C=∠C′=90°,∠A=25°,∠B′=65°;②∠C=90°,AC=6,BC=4,∠C′=90°,A′C′=9,B′C′=6;③AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25;④△ABC与△A′B′C′为等腰三角形,且有一个角为80°.A.1对B.2对C.3对D.4对【答案】C【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案.【详解】解:①∵∠C=∠C′=90°,∠A=25°.∴∠B=65°.∵∠C=∠C′,∠B=∠B′.∴△ABC∽△A′B′C′.②∵∠C=90°,AC=6,BC=4,∠C’=90°,A′C′=9,B′C′=6.∴AC:BC=A′C′:B′C′,∠C=∠C′.∴△ABC∽△A′B′C′.③∵AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25.∴AC:A′C′=BC:B′C′=AB:A′B′.∴△ABC∽△A′B′C′.④∵没有指明80°的角是顶角还是底角.∴无法判定两三角形相似.∴共有3对.故选:C.【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似.2.(2021·上海虹口·九年级月考)点P是△ABC中AB边上一点(不与A、B重合),过P作直线截△ABC使得截得的三角形与△ABC相似,这样的直线最多作()A.2条B.3条C.4条D.5条【答案】C【分析】根据相似三角形的判定方法分析,即可做出判断.【详解】满足条件的直线有4条,如图所示:如图1,过P作PE∥AC,则有△BPE∽△BAC;如图2,过P作PE∥BC,则有△APE∽△ABC;如图3,过P作∠AEP=∠B,又∠A=∠A,则有△APE∽△ACB;如图4,过P作∠BEP=∠A,又∠B=∠B,则有△BEP∽△BAC,故选:C.【点睛】本题考查了相似三角形的判定,解答的关键是对相似三角形的判定方法的理解与灵活运用.3.(2021·北京市古城中学九年级月考)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【答案】A【分析】利用三边对应成比例的两个三角形相似判断即可.【详解】∵AC22+AB=2,BC221310+=112A51210522:2比例,∴这两个三角形相似,A符合题意;B532B不符合题意;C51,2C不符合题意;D5213D不符合题意;故选A.【点睛】本题考查了网格中三角形相似,灵活运用勾股定理计算各边长,熟练运用三边对应成比例的两个三角形相似求解是解题的关键.4.(2021·内蒙古·包头市第二十九中学九年级月考)下列各组图形中可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形【答案】A【分析】根据判定三角形相似的方法:①有两个对应角相等的三角形相似;②有两组边对应成比例且夹角相等的两个三角形相似;③三组边对应成比例的两个三角形相似,逐项分析即可.【详解】解:A、不正确,因为没有指明这个45°的角是顶角还是底角,则无法判定其相似;B、正确,由已知我们可以得到这是两个等边三角形,从而可以根据三组边对应成比例的两个三角形相似判定这两个三角形相似;C、正确,已知一个角为105°,则我们可以判定其为顶角,这样我们就可以根据两组边对应成比例且夹角相等的两个三角形相似来判定这两个三角形相似;D、正确,因为是等腰直角三角形,则我们可以根据两组边对应成比例且夹角相等的两个三角形相似来判定这两个三角形相似.故选:A.【点睛】本题考查相似三角形的判定.熟练掌握相似三角形的判定方法是解决本题的关键.5.(2021·山东桓台·八年级期末)如图所示的4个三角形中,相似三角形有()A.1对B.2对C.3对D.4对【答案】A【分析】根据相似三角形的判定方法判断即可.【详解】解:如图:AC2=12+22=5,BC2=42+22=20,AB2=25,∵5+20=25,∴AC2+ BC2= AB2,∴△ABC是直角三角形,且∠ACB=90°,12 ACBC=;△DEF是直角三角形,且∠DEF=90°,12DEEF=;∴△ABC~△DEF;△JKL是直角三角形,且∠JKL=90°,111JKKL==;HI2=12+12=2,HG2=12+22=5,GI2=12+22=5,∵5+2≠5,∴HG 2+ HI 2= GI 2,∴△HGI 不是直角三角形,综上,只有△ABC ~△DEF ;故选:A .【点睛】本题考查了相似三角形的判定,勾股定理及逆定理的应用,解题的关键是熟练掌握相似三角形的判定方法.6.(2021·浙江温州·九年级期末)如图,下列条件不能判定ACD ∆与ABC ∆相似的是( )A .CD AC BC AB = B .AC AD AB AC= C .ADC ACB ∠=∠ D .ACD B ∠=∠ 【答案】A【分析】根据相似三角形的判定即可求出答案.【详解】A 、当CD AC BC AB =时,无法得出ACD ABC ∆∆,符合题意; B 、,AC AD A A AB AC =∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;C 、,A A ADC ACB ∠=∠∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;D 、,A A B ACD ∠=∠∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;故选:A .【点睛】本题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.7.(2021·全国·九年级专题练习)如图,在正方形ABCD 中,E 是CD 的中点,P 是BC 边上的点,下列条件中不能推出△ABP 与以点E 、C 、P 为顶点的三角形相似的是( ).A .∠APB =∠EPCB .∠APE =90°C .P 是BC 的中点D .BP ∶BC =2∶3【答案】C 【分析】利用两三角形相似的判定定理逐一判断即可.【详解】解:A. ∠APB =∠EPC ,根据正方形性质得到∠B =∠C ,可以得到ΔABP ∽ΔECP ,不合题意;B. ∠APE =90︒,根据正方形性质得到∠B =∠C ,根据同角的余角相等,得到∠APB =∠PEC ,可以得到ΔABP ∽ΔPCE ,不合题意;C. P 是BC 的中点,无法判断ΔABP 与ΔECP 相似,符合题意;D. BP :BC =2:3,根据正方形性质得到AB :BP =EC :PC =3:2,又∵∠B =∠C ,可以得到ΔABP ∽ΔECP ,不合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题关键.8.(2021·全国全国·九年级专题练习)ABC 和A B C '''中,9cm AB =,8cm BC =,5cm CA =,4.5cm A B ''=, 2.5cm B C ''=,4cm C A ''=,则下列说法不正确的有( )A .ABC 与B AC '''相似B .AB 与B A ''是对应边C .两个三角形的相似比是2:1D .BC 与B C ''是对应边 【答案】D【分析】根据相似三角形的判定定理判断即可.【详解】解:A 、2AB CA BC A B B C C A ==='''''',所以两个三角形相似,选项正确; B 、AB 与B A ''是对应边,选项正确;C 、两个三角形的相似比是2:1,选项正确; D 、BC 与C A ''是对应边,选项错误.故选:D【点睛】本题考查三角形相似的判定定理,根据定理内容解题是关键.9.(2021·浙江·诸暨市滨江初级中学九年级期中)如图,P 为线段AB 上一点,AD 与BC 交与点E ,∠CPD =∠A =∠B ,BC 交PD 与点F ,AD 交PC 于点G ,则下列结论中错误的是( )A .△CGE ∽△CBPB .△APD ∽△PGDC .△APG ∽△BFPD .△PCF ∽△BCP【答案】A【分析】根据∠CPD =∠A =∠B ,∠D =∠D ,∠C =∠C 即可得到△APD ∽△PGD ,△PCF ∽△BCP ,再根据∠APG =∠C +∠P ,∠BFP =∠C +∠CPD ,可以得到∠APG =∠BFP ,即可证明△APG ∽△BFP ,由此即可求解.【详解】解:∵∠CPD =∠A =∠B ,∠D =∠D ,∠C =∠C∴△APD ∽△PGD ,△PCF ∽△BCP 故B 、D 选项不符合题意,∵∠APG =∠C +∠P ,∠BFP =∠C +∠CPD ,∴∠APG =∠BFP ,∴△APG ∽△BFP ,故C 选项不符合题意,对于A 选项不能得到两个三角形相似,故选A .【点睛】本题主要考查了相似三角形的判定,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解.10.(2021·全国·九年级专题练习)如图,,ABC ADE BC ≌,DE 交于点O ,有下列三个结论:①12∠=∠,②BC DE =,③ABD ACE ∽.则一定成立的有( ).A .0个B .1个C .2个D .3个【答案】D 【分析】根据全等三角形的性质可判断①和②,再根据相似三角形的判定判断③即可.【详解】①∵ABC ADE △≌△,∴∠BAC =∠DAE ,∴∠1+∠DAC =∠2+∠DAC ,∴∠1=∠2,故①成立;②∵ABC ADE △≌△,∴BC=DE ,故②成立,③∵ABC ADE △≌△,∴AB=AD ,AC=AE ,∴AB AD AC AE =,又∠1=∠2,∴ABD ACE ∽,故③成立,综上,一定成立的有①②③共3个,故选:D .【点睛】本题考查全等三角形的性质、相似三角形的判定,熟练掌握全等三角形的性质和相似三角形的判定是解答的关键.11.(2021·河北海港·九年级期中)如图,己知ABC 中,D 为边AC 上一点,P 为边AB 上一点,12AB =,8AC =,6AD =,当AP 的长度为______时,ADP △和ABC 相似.( )A .9B .6C .4或9D .6或9【答案】C 【分析】分别根据当△ADP ∽△ACB 时,当△ADP ∽△ABC 时,求出AP 的长即可.【详解】解:当△ADP ∽△ACB 时,∴AP AD AB AC =,∴6128AP =,解得:AP =9, 当△ADP ∽△ABC 时,∴AD AP AB AC=,∴6128AP =,解得:AP =4, ∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故选C .【点睛】此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.x﹣1与x轴交于A,与y轴12.(2021·山东大学附属中学九年级月考)如图所示,直线y=12交于B,在第一象限内找点C,使△AOC与△AOB相似,则共能找到的点C的个数()A.1 B.2 C.3 D.4【答案】D【分析】因为点C在第一象限,所以只有点A,点C可能为直角顶点,由此讨论,可得结论.【详解】解:∵点C在第一象限,∴当点C为直角顶点时,有两种情形,当点A为直角顶点时,也有两种情形,共有4种情形.故选:D.【点睛】本题考查相似三角形的判定,一次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题.二、填空题(每题3分,共18分)13.(2021·全国·九年级专题练习)如图,△ABC与△DEF的顶点均在方格纸中的小正方形方格(边长为一个单位长)的顶点处,则△ABC__________△DEF(在横线上方填写“一定相似”或“不一定相似”或“一定不相似”).【答案】一定相似【分析】分别计算两个三角形的三边长,看三边是否成比例,即可判定这两个三角形是否相似.【详解】根据图示知:AB =2,BC =1,AC =5;DE =25,EF =5,DF =5, ∴1555AB BC AC DE EF DF ====,∴△ABC ∽△DEF .故答案为:一定相似. 【点睛】本题考查了相似三角形的判定,勾股定理,关键是熟悉相似三角形的判定. 14.(2021·山东张店·八年级期末)如图,D 是ABC 的边AB 上一点(不与点A ,B 重合),请添加一个条件后,使ACD ABC ~,则添加的这个条件可以是__________(只添加一个条件).【答案】ACD B ∠=∠(答案不唯一)【分析】根据相似三角形的判定定理:有两角对应相等的两三角形相似,添加条件ACD B ∠=∠即可.【详解】解:添加条件是:ACD B ∠=∠,理由是:A A ∠=∠,ACD B ∠=∠,ACD ABC ∴△∽△,故答案为:ACD B ∠=∠(答案不唯一).【点睛】本题考查了对相似三角形的判定定理的应用,本题是一道比较好的题目,答案不唯一,主要考查了学生对相似三角形的判定定理的运用能力.15.(2021·北京市第六十六中学九年级期中)如图,已知∠1=∠2,添加条件____后,使△ABC ∽△ADE .【答案】∠B =∠D【分析】先证出∠BAC =∠DAE ,再由∠B =∠D ,即可得出ABC ∽△ADE .【详解】解:添加条件∠B =∠D 后,△ABC ∽△ADE .理由如下:∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,即∠BAC =∠DAE ,又∵∠B =∠D ,∴ABC ∽△ADE .故答案为:∠B =∠D .【点睛】本题考查了相似三角形的判定方法;熟练掌握三角形相似的判定方法,并能进行推理论证是解决问题的关键.16.(2021·河南·郑州中原一中实验学校九年级月考)如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【答案】0.8或2【分析】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQ BA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案.【详解】解:设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQ BA BC =时,BPQ BAC ∽,即824816t t -=,解得:2t =; 当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,解得:0.8t =; 综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.17.(2020·江苏·南通市跃龙中学九年级月考)如图,D 、E 是以AB 为直径的半圆O 上任意两点,连接AD 、AE 、DE ,AE 与BD 相交于点C ,要使ADC 与ABD △相似,可以添加的一个条件是___________(填正确结论的序号).①ACD DAB ∠=∠;②AD DE =;③2AD BD CD =⋅;④CD AB AC BD ⋅=⋅.【答案】①②③【分析】由两角法可得①正确;由等弦对等弧、等弧所对圆周角相等及两角法可知②正确;由两边夹一角法可以判断③正确,④错误.【详解】解:如图,∠ADC=∠ADB ,①、∵∠ACD=∠DAB ,∴△ADC ∽△BDA ,故①选项正确;②、∵AD=DE ,∴AD DE =,∴∠DAE=∠B ,∴△ADC ∽△BDA ,故②选项正确; ③、∵2AD =BD•CD ,∴AD :BD=CD :AD ,∴△ADC ∽△BDA ,故③选项正确;④、∵CD•AB=AC•BD ,∴CD :BD=AC :AB ,但∠ADC=∠ADB 不是对应夹角,故④选项错误.故答案为①②③.【点睛】本题考查了相似三角形的判定以及圆周角定理.熟练掌握三角形相似的判定方法及圆周角定理是解题关键.18.(2021·黑龙江集贤·九年级期中)已知在Rt ABC ∆中,90,3,4C BC cm AC cm ︒∠===,点,M N 分别在边AC AB 、上,将ABC ∆沿直线MN 对折后,点A 正好落在对边BC 上,且折痕MN 截ABC ∆所成的小三角形(即对折后的重叠部分)与ABC ∆相似,则折折痕MN =__________cm 【答案】32或158. 【分析】先画草图借草图分析.如图重叠的小三角形为'AMN △,由对折知'A MA N ∠=∠,所以要使△ABC 和'AMN △相似,只需'A90NM ANM ACB∠=∠=∠=︒,此时'A和C重合,N为AC中点,由三角形中位线定理易得MN的值;或只需'A90MN AMN ACB∠=∠=∠=︒,此时'A与B点重合,'A M=BM=AM=12AB,再由相似的知识算得MN的值.【详解】由AC=4,BC=3,∠ACB=90°据勾股定理得AB=5.下面分情况讨论:第一种情况如图1当∠MNC=90°时,折叠后A点落在C点.∵∠BCA=90°∴∠MNC=∠BCA又由对折知:∠MCN=∠A∴△MCN∽△ABC由对折知N为AC的中点,据三角形中位线定理得1133222MN BC==⨯=(㎝);第二种情况如图2当∠NMB=90°时,折叠后A点落在B点.∵∠C=90°∴∠C=∠NMB又由对折知∠A=∠NBM∴△ABC∽△BNM∴B MN M BC AC=又由对折知115B5222M AB==⨯=∴52B15348MMN BCAC==⨯=(㎝).综上分析得MN=32㎝或158㎝.故答案为:32或158.【点睛】本题是折叠类问题,考查相似三角形的判定,兼考查分类讨论的数学方法.关键之处在于紧抓折叠的图形成轴对称及全等解决之.三、解答题(19-20题每题7分,其他每题8分,共46分)19.(2021·浙江·杭州市十三中教育集团(总校)三模)如图,在5×6的方格中,点A、B 是两个格点,请按要求作图.(1)在图1中,以AB 为边作矩形ABEF (要求E 、F 两点均是格点);(2)在图2中,点C 、D 是两个格点,请在图中找出一个格点P ,使△P AB 和△PCD 相似(找出一个即可).【答案】(1)见解析;(2)见解析【分析】(1)根据矩形的定义作出图形即可.(2)连接BD ,AC ,延长BD 交AC 的延长线于点P ,点P 即为所求.【详解】解:(1)如图,四边形ABEF 即为所求.(2)如图,点P 即为所求.【点睛】本题考查作图−应用与设计作图,矩形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握相似三角形的判定方法.20.(2021·辽宁·大连市第三十七中学九年级月考)如图,在ABC 中,AD 平分BAC ∠,E 是AD 上一点,且BE BD =.求证:ABE ACD ∽△△.【答案】见解析【分析】根据角平分线的定义得到∠BAD =∠CAD ,根据等腰三角形的性质得到∠BED =∠BDE ,由等角的补角相等得到∠AEB =∠ADC ,根据相似三角形的判定定理即可得到结论【详解】证明:∵AD 平分BAC ∠,∴BAD CAD ∠=∠.∵BE BD =,∴BED BDE ∠=∠.∴AEB ADC ∠=∠.∴ABE ACD ∽△△. 【点睛】本题考查了相似三角形的判定,(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A ”型和“X ”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.21.(2021·全国·九年级课时练习)如图,Rt ABC ∆中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△;(2)CBD ABC ∽△△. 【答案】(1)见解析;(2)见解析【分析】(1)根据有两组角对应相等的两个三角形相似进行证明即可.(2)根据有两组角对应相等的两个三角形相似进行证明即可.【详解】证明:(1)∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A ,∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高,∴∠BDC =90°,∴∠BDC =∠ACB =90°,∵∠B =∠B ,∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.22.(2021·上海市实验学校九年级月考)已知抛物线y 32433x 轴交于A 、B 两点(A 在B 的右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标.(2)试判断AOC 与BOC 是否相似,并说明理由.【答案】(1)(1,0),(3,0)A B --,3)C ;(2)相似,理由见解析【分析】(1)根据抛物线与坐标轴有交点,分别令,0x y =解方程即可求得,,A B C 的坐标;(2)根据(1)的结论,求得,,OA OB OC 的长,根据两边成比例夹角相等,证明三角形相似即可.【详解】(1)抛物线y 32433x 轴交于A 、B 两点,A 在B 的右侧,与y轴交于点C ,令0x =,解得3y =,(0,3)C ∴,令0y =,即23433033x x ++=, 解得121,3x x =-=-,∴(1,0),(3,0)A B --;(2)AOC COB △∽△,理由如下,如图,(1,0),(3,0)A B --,(0,3)C ;,1,3,3AO BO CO ∴===,133,333AO CO CO BO ===,AO CO CO BO ∴=, 又AOC COB ∠=∠,AOC COB ∴△∽△.【点睛】本题考查了二次函数与坐标轴的交点问题,相似三角形的判定,根据题意求得,,A B C 的坐标是解题的关键.23.(2021·内蒙古北方重工业集团有限公司第一中学九年级月考)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE .且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =6,当点D 在BC 上运动时(点D 不与B 、C 重合).且△ADE 是等腰三角形,求此时BD 的长.【答案】()见解析;(2)632-或3.【分析】(1)根据题目已知条件可知180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,即可得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:①AD =AE ,②AD =DE ,③AE =DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.【详解】(1)180ADE ADB EDC ∠+∠+∠=︒在ABD △中,180B ADB DAB ∠+∠+∠=︒B ADE ∠=∠∴EDC DAB ∠=∠又B C ∠=∠ ∴BDA CED △∽△;(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒BC =6,∴AB =AC =22BC =32 ①当AD =AE 时,则ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上 ∴此情况不符合题意. ②当AD =DE 时,如图,∴DAE DEA ∠=∠∴由(1)可知EDC DAB ∠=∠又B C ∠=∠:BDA CED ≌ ∴AB =DC =32632BD =-③当AE =DE 时,如图45B ∠=︒,∴==45B C DAE ADE ∠∠∠=∠=︒∴AD 平分BAC ∠,AD BC ⊥∴1=32BD BC =.综上所述:BD =632-3. 【点睛】本题主要考查相似三角形的判定及等腰三角形的存在性问题,解题的关键是利用“K ”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.24.(2021·浙江衢江·九年级期末)如图①,在矩形ABCD 中,AB =4,BC =m (m >1),点E 、F 分别在边AD 、AB 上,且AE =1.(1)当m =3,AF :FB =1:3时,求证:AEF ∽BFC ;(2)当m =3.5时,用直尺和圆规在图②的线段AB 上确定所有使AEF 与以点B 、F 、C 为项点的三角形相似的点F (请保留画图痕迹);(3)探究:对于每一个确定的m 的值,线段AB 上存在几个点F ,使得AEF 与以点B 、F 、C 为顶点的三角形相似?(直接写出结论即可)【答案】(1)见解析;(2)见解析;(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.【分析】(1)根据矩形的性质可得∠A=∠B=90°,再由已知可推出13AE AFBC FB==,即可利用相似三角形的判定得出结论;(2)利用对称性或辅助圆解决问题即可;(3)根据交点个数分类讨论即可解决问题;【详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AE=1,BC=m=3,AF:FB=1:3,∴13AE AFBC FB==,∴AEF∽BFC;解:(2)如图,延长DA,作点E关于AB的对称点E′,连接CE′,交AB于点F1;连接CE,以CE为直径作圆交AB于点F2、F3.点F1、F2、F3即为所求;(3)如(2)中所作图形,当m=4时,由已知条件可得DE=3,则CE=5,即圆的直径为5,由梯形中位线定理可得此时圆心到AB的距离为2.5,等于半径,点F2、F3重合,符合条件的点F有2个;当m>4时,圆和AB相离,此时点F2、F3不存在,即符合条件的点F只有1个;当1<m<4且m≠3时,符合条件的点F有3个;综上所述,可得:当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.【点睛】本题考查了作图-相似变换,矩形的性质,圆的有关知识等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
【巩固练习】一、选择题1. (2015•深圳校级模拟)若△ABC ∽△DEF ,且AB :DE=1:3,则S △ABC :S △DEF =( )A .1:3B .1:9C .1:D .1:1.52.已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于0点,对于各图中的两个三角形而言,下列说法正确的是()A .都相似B .都不相似C .只有(1)相似D .只有(2)相似3.如图,G 是平行四边形ABCD 的边CD 延长线上一点,BG 交AC 于E ,交AD 于F ,则图中与△FGD 相似的三角形有( )A .0对B .1对C .2对D .3对4.如图,分别以下列选项作为一个已知条件,其中不一定能得到△AOB∽△COD 的是( )A .∠BAC=∠BDCB .∠ABD=∠ACDCD AO DO CO BO =AO OD OB CO=5.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是( )A .不存在B .等腰三角形C .直角三角形D .等腰三角形或直角三角形6.在△ABC与△A′B′C′中,有下列条件:(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组( ) A.1B.2C.3D.4二、填空题7.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件 (只需写一个).8.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相似比为1除外)有 .9.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似,写出所有符合条件的三角形 .10.如图,∠1=∠2=∠3,有几对三角形相似,请写出其中的两对 .11.如图,在3×4的方格上,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置.若点D在格点位置上(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D共有 个.12.(2015•六合区一模)如图,在Rt△ABC中,AC=8,BC=6,直线l经过C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC= .三、解答题13. 如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.14.(2015春•成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.15.如图,在△ABC和△ADE中,==,点B、D、E在一条直线上,求证:△ABD∽△ACE.【答案与解析】一、选择题1.【答案】B.【解析】∵△ABC∽△DEF,且AB:DE=1:3,∴S△ABC:S△DEF=1:9.故选B.2.【答案】A;【解析】如图(1)∵∠A=35°,∠B=75°,∴∠C=180°-∠A-∠B=70°,∵∠E=75°,∠F=70°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF;3.【答案】C;【解析】∵ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△GFD∽△GBC,△GFD∽△BFA,∴图中与△FGD相似的三角形有2对,故选C.4.【答案】C;【解析】A、若∠BAC=∠BDC,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项错误;B、若∠ABD=∠ACD,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项错误;C、若=,因为只知道∠AOB=∠COD,不符合两边及其夹角的判定,不一定能得到△AOB∽△COD,故本选项正确.D、若=,结合∠AOB=∠COD,根据两边及其夹角的方法可得△AOB∽△COD,故本选项错误;故选C.5.【答案】C;【解析】∵△ABD∽△CBD,∴∠ADB=∠BDC又∵∠ADB+∠BDC=180°,∴∠ADB=∠BDC=×180°=90°,∵△ADB∽△ABC,ABC△∽△BDC,∴∠ABC=∠ADB=∠BDC=90°,∴△ABC为直角三角形.故选:C.6.【答案】C;【解析】能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),∴能判断△ABC∽△A′B′C′的共有3组.故选C.二、填空题7.【答案】如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等;【解析】∵∠A是公共角,∴当∠ADE=∠C或∠AED=∠B时,△ADE∽△ACB(有两角对应相等的三角形相似),当AD:AC=AE:AB或AD•AB=AE•AC时,△ADE∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似),∴要使△ADE∽△ACB,还需添加一个条件:答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.故答案为:此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.8.【答案】△PCQ∽△RDQ∽△PAB;【解析】∵CP∥ER,∴△BCP∽△BER;∵CP∥DR,∴△PCQ∽△RDQ;∵CQ∥AB,∴△PCQ∽△PAB;∴△PCQ∽△RDQ∽△PAB.9.【答案】△DP2P5、△DP2P4、△DP4P5;【解析】设网格的边长为1.则AC=,AB=,BC=.连接DP2P5,DP5=,DP2=,P2P5=.∵==,∴△ACB∽△DP5P2.同理可找到△DP2P4,DP4P5和△ACB相似.故答案为:△DP2P5,DP2P4,DP4P5.10.【答案】△CDE∽△CAB;△EDA∽△AEB;【解析】∵∠2=∠3,∠C=∠C,∴△CDE∽△CAB,∵∠2=∠3,∴∠DEA=∠EAB,∵∠1=∠3,∴△EDA∽△AEB,故答案为:△CDE∽△CAB;△EDA∽△AEB.11.【答案】4;【解析】∵方格中小正方形的边长为1,∴AB=1、BC=、AC=,∵△DBC与△ABC相似,∴BC=、CD=2、BD=,如图可知这样的点D如图:故答案为:4.12.【答案】4.8或.【解析】∵在Rt△ABC中,AC=8,BC=6,∴AB==10,当△ABC∽△PCA时,则AB:PC=BC:AC,即10:PC=6:8,解得:PC=,当△ABC∽△ACP时,则AB:AC=BC:PC,即10:8=6:PC,解得:PC=4.8.综上可知若△ABC与△PAC相似,则PC=4.8或.三、解答题13.【解析】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2由S=S梯形GCBE﹣S△EBF﹣S△FCG=×﹣=×(10+2)×8﹣×10×4﹣=24.(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2tS=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48.②如图2,当点F追上点G时,4t=2t+8,解得t=4当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2tFG=CG﹣CF=2t﹣(4t﹣8)=8﹣2tS=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(3)如图1,当点F在矩形的边BC上的边移动时,0≤t≤2在△EBF和△FCG中,∠B=∠C=90°1若=,即=,解得t=.又t=满足0≤t≤2,所以当t=时,△EBF∽△FCG2若=即=,解得t=.又t=满足0≤t≤2,所以当t=时,△EBF∽△GCF综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.14.【解析】解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.15.【解析】证明:∵在△ABC和△ADE中,==,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△ABD∽△ACE.。
知识点:相似三角形1、相似三角形1)概念:若是两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形必然相似。
两个等腰直角三角形必然相似。
两个等边三角形必然相似。
两个直角三角形和两个等腰三角形不必然相似。
补充:关于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);2)性质:两个相似三角形中,对应角相等、对应边成比例。
3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC ∽△DEF。
相似比为k。
4)判定:①概念法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所组成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:若是一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:若是一个三角形的两条边和另一个三角形的两条边对应成比例,而且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:若是一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,而且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有普遍的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
相似三角形判定定理的证明一、选择题1.如图,在?ABCD中,AE⊥BC于E,AF⊥DC交DC的延长线于点F,且∠EAF=60°,则∠B等于( ).A .60°B .50°C .70°D .65°2.如图,在矩形AOBC中,点A的坐标(-2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )?A .(,)、(-,4)B .(,3)、(-,4)C .(,3)、(-,4)D .(,)、(-,4)是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条()A.1条B.2条C.3条D.4条4.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )A .B .C .1D .5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)6.下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm,那么这两个三角形一定相似.A.1个B.2个C.3个D.4个7.如图,AB是⊙O的直径,AM和BN是它的两条切线,DC切⊙O于E,交AM于D,交BN于C.若AD?BC=9,则直径AB的长为()A.3B.6C.9D.8.如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有(?)A.8对;B.6对;C.4对;D.2对.9.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为()A.B.C.D.210.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=3,DC=5,则△ABC与△DCA的面积比为()A.2:3B.3:5C.9:25D.:11.如图,在矩形AOBC中,点A的坐标是(-2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(-,4)B.(,3)、(-,4)C.(,)、(-,4)D.(,)、(-,4)12.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG?MH=,其中正确结论为()A.①②③B.①③④C.①②④D.①②③④13.如图,点D、E、F、G为△ABC两边上的点,且DE∥FG∥BC,若DE、FG将△ABC的面积三等分,那么下列结论正确的是()A.=B.==1C.=+D.=14.已知点A、B分别在反比例函数(x>0),(x>0)的图象上,且OA⊥OB,则的值为()A.B.2C.D.315.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1?S3=S2?S416.如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止,记PA=x,点D到直线PA的距离为y,则y关于x的函数解析式是( )A .y=12xB .y=C .y=xD .y=x17.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为( )A .B .C .D .118.如图,已知:△ABC、△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,两条直角边AB、AD重合,把AD绕点A逆时针旋转α角(0°<α<90°),到如图所示的位置时,BC分别与AD、AE相交于点F、G,则图中共有()对相似三角形.A.1B.2C.3D.419.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是()A.2B.C.D.20.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列给出的结论中,正确的有()①△ADE∽△ACD;???②当BD=6时,△ABC与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤.A.1个B.2个C.3个D.4个21.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.22.如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM的和最小时,ME的长度为()A.B.C.D.23.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A.B.C.D.24.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB边上,OM、ON分别交边AC、BC于点P、Q,∠MON 绕点O 任意旋转.当时,的值为 ______;当时,的值为 ______(用含n的式子表示).其中正确的选项是()A.B.C.D .;25.如图,直线l与反比例函数y=在第一象限内的图象交于A、B两点,且与x轴的正半轴交于C点.若AB=2BC,△OAB的面积为8,则k的值为()A.6B.9C.12D.1826.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为时△ABE与以D、M、N为顶点的三角形相似( )A .B .C .或D .或27.在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα= .有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④≤AE<10.其中正确的结论是( )A .①③B .①④C .①②④D .①②③28.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于( )A .B .C .D .29.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则:为( )A .3:4B .4:3C .7:9D .9:730.如图,?ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为( ).A .2cmB .cmC .1cmD .cm二、填空题31.如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=,则EG=__________.32.如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为__________.33.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为__________.34.在△ABC中,AB=9,AC=5,AD是∠BAC的平分线交BC于点D(如图),△ABD沿直线AD翻折后,点B落到点B1处,如果∠B1DC=∠BAC,那么BD=__________.35.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为__________.36.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE 上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为__________.37.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰好垂直,则旗杆的高度是 __________ 米.38.如图所示,若四边形ABCD、四边形GFED都是正方形,当AD=4,DG=时,则CH的长为 __________ .39.如图,在直角三角形ABC中,点E在线段AB上,过点E作EH⊥AC交AC于点H,点F在BC的延长线上,连结EF交AC于点O.若AB=2,BC=1,且,则=__________ ,OH= __________ .40.如图,在△PMN中,点A、B分别在MP和NP的延长线上,==,则=__________ .41.如图,正方形ABCD的边长为3,E为AD的中点,连接BE、BD、CE,则图中阴影部分的面积是__________.42.如图,矩形ABCD的对角线AC、BD交于点O.若AD=6,AB=8,E、F分别是OD、CD 的中点,则△DEF的面积为 __________ .43.如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF=__________44.如图,在正方形ABCD中,E是BC边的中点,把△ABE沿直线AE折叠,点B的对应点为B′,AB′的延长线交DC于点F,若FC=2,则正方形的边长为__________45.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,AD是BC上的高,另有一Rt△DEF (其直角顶点在D点)绕D点旋转,在旋转过程中,DE,DF分别与边AB,AC交于M、N点,则线段MN的最小值为 __________ .46.如图,在△ABC中,AB=AC=2,∠A=90°,点P为BC的中点,点E、F分别为边AB、AC上的点,若∠EPF=45°,∠FEP=60°,则CF=__________.47.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为 __________ .48.如图,已知在矩形ABCD中,AB=2,BC=3,M是边BC的中点,则点D到AM的距离DE等于 __________ .49.如图,在?ABCD中,点E在边BC上,BE:EC=1:2,连接AE交BD于点F,则△BFE 的面积与△DFA的面积之比为 __________ .50.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是 __________ .51.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则等于__________52.已知如图:正方形ABCD中,E为CD上一点,延长BC至点F,使CF=CE,BE交DF 于点G,若GF=2,DG=3,则BG=__________.53.如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=AB,则图中阴影部分的面积与正方形ABCD的面积之比为__________.54.如图,已知∠ACB=∠CBD=90°,AC=8,CB=2,当BD=__________时,△ACB∽△CBD.55.如图,在矩形ABCD中,E是BC边上的点,且CE=2BE,△DEF的面积等于2,则此矩形的面积等于 __________ .56.如图,边长为20的正方形ABCD截去一角成为五边形ABCEF,其中DE=10,DF=5,若点P在线段EF上使矩形PMBN有最大面积时,则PE的长度为 __________ .57.如图,在矩形ABCD中,AB=6,BC=8,动点M在边上,过点M作MN⊥AM交边CD于点N,连接AN.若△ADN的面积等于14,则BM的长等于 __________ .58.如图,正方形ABCD的边长为1,E是CD边外的一点,满足:CE∥BD,BE=BD,则CE=__________.59.如图,AB⊥BD,CD⊥BD,AB=6,CD=16,BD=20,一动点P从点B向点D运动,当BP 的值是__________时,△PAB与△PCD是相似三角形.60.如图,∠ABC=∠ACD,AD=6,BD=2,则AC=__________.三、解答题61.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BFBA,CF与DE相交于点G.(1)求证:DFAB=BCDG;(2)当点E为AC的中点时,求证:.62.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积。
一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。
菁优网版权所有专题:几何综合题。
分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。
学科:数学专题:相似三角形的判定重难点易错点解析题一:题面:如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正..确.的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=金题精讲题一:题面:如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=2,BD=4,则CD为.题二:题面:如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF 的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=B C;③PB=PF;④AD2=4AB•DC.其中正确的是()满分冲刺题一:题面:如图,在△ABC中,BC=10,高AD=8,矩形EFPQ的一边QP在边BC上,E、F两点分别在AB、AC上,AD交EF于点H.设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值.题二:=()题面:如图,在△ABC中,AD,BE是两条中线,则S:SEDC ABC∆∆A.1∶2 B.2∶3 C.1∶3 D.1∶4题三:题面:如图,已知E是边长为4cm的正方形ABCD内一点,且DE=3cm,∠AED=90°,DF⊥DE于D,在射线DF上是否存在这样的M,使得以C、D、M为顶点的三角形与△ADE相似?若存在,请求出满足条件的DM长;若不存在,请说明理由.课后练习详解重难点易错点解析题一:答案:C.详解:选项A或B由∠ABD=∠C或∠ADB=∠ABC,加上∠A是公共角,根据两组对应角相等的两三角形相似的判定,可得△ADB∽△ABC;选项D由AD ABAB AC=,加上∠A是公共角,根据两组对应边的比相等,且相应的夹角相等的两三角形相似的判定,可得△ADB∽△ABC;但AB CBBD CD=,相应的夹角不知相等,故不能判定△ADB与△ABC相似.故选C.金题精讲题一:答案:2详解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°-∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=8,即CD=22.题二:答案:①②④.详解:连接AE,∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径.∴DE⊥AE∴DE∥OF故①正确;∵CD=CE,AB=BE∴AB+CD=BC故②正确;∵OD=OF∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了.故③不正确;连接OC.可以证明△OAB∽△CDO∴OA AB CD OD=即OA•OD=AB•CD∴AD2=4AB•DC故④正确.故正确的是:①②④.满分冲刺题一:答案:当x=5时,S矩形EFPQ有最大值,最大值为20.详解:∵四边形EFPQ是矩形,∴EF∥QP∴△AEF∽△ABC又∵AD⊥BC,∴AH⊥EF;∴AH:AD=EF:BC;∵BC=10,高AD=8,∴AH:8=x:10,∴AH=4 5 x∴EQ=HD=AD-AH=8-45 x,∴S矩形EFPQ=EF•EQ=x(8-45x)= -45x2+8x= -45(x-5)2+20,∵-45<0,∴当x=5时,S矩形EFPQ有最大值,最大值为20.题二: 答案:D .详解:∵△ABC 中,AD 、BE 是两条中线,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB . ∴△EDC ∽△ABC .∴()2EDC ABC S :S ED :AB =1:4∆∆=.故选D . 题三:答案:当DM =3cm 或163cm 时,△CDM 与△ADE 相似. 详解:∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, ∵∠AED =90°,所以使得△CDM 中有一个直角即可, ①∠DMC =90°,DM =DE =3cm , ②∠DCM ′=90°,DM DA DCDE '=,163DM '=cm ,故存在M 点,当DM =3cm 或163cm 时,△CDM 与△ADE 相似.第七章 平行线的证明周周测3一、单选题1、如图,△ABC 中,∠ACB=90°, ∠A=30°,AC 的中垂线交AC 于E.交AB 于D ,则图中60°的角共有 ( )A 、6个B 、5个C 、4个D 、3个2、下列说法中正确的是( )A、原命题是真命题,则它的逆命题不一定是真命题B、原命题是真命题,则它的逆命题不是命题C、每个定理都有逆定理D、只有真命题才有逆命题3、下列命题是假命题的是( )A、如果a∥b,b∥c,那么a∥cB、锐角三角形中最大的角一定大于或等于60°C、两条直线被第三条直线所截,内错角相等D、矩形的对角线相等且互相平分4、如图,在梯形ABCD中,AB∥CD,AD=DC=CB,若,则A、130°B、125°C、115°D、50°5、如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A、60°B、65°C、70°D、75°6、下列条件中,能判定△ABC为直角三角形的是()A、∠A=2∠B=3∠CB、∠A+∠B=2∠CC、∠A=∠B=30°D、∠A=∠B=∠C7、下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A、1个B、2个C、3个D、4个8、下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A、1个B、2个C、3个D、4个9、下列命题中,真命题是()A、周长相等的锐角三角形都全等B、周长相等的直角三角形都全等C、周长相等的钝角三角形都全等D、周长相等的等腰直角三角形都全等10、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A、80B、50C、30D、20二、填空题11、命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是________,结论________.12、如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于________.13、已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 ________,该逆命题是 ________命题(填“真”或“假”).14、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.15、写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:________.16、已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为________.17、一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.18、如图,在ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果,,那么________三、解答题(共5题;共29分)19、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.20、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.21、已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.22、如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23、已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
北师大版数学九年级上册第4章第5节相似三角形判定定理的证明同步检测一、选择题1.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.答案:B解析:解答:已知给出的三角形的各边AB、CB、AC分别为2、2、10,只有选项B的各边为1、2、5与它的各边对应成比例.故选:B.分析:首先求得△ABC三边的长,然后分别求得选项A,B,C,D各三角形的三边的长,最后根据三组对应边的比相等的两个三角形相似,即可求得答案.熟悉三组对应边的比相等的两个三角形相似定理是解答此题的关键.2.如图,点P是ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对答案:D解析:解答:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.分析:利用相似三角形的判定方法以及平行四边形的性质得出即可.熟练掌握相似三角形的判定方法是解答此题的关键.3.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.2AB AD AC=D.AD AB AB BC=答案:D解析:解答:A.∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,所以此选项不合题意;B.∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,所以此选项不合题意;C.∵2AB AD AC=,∴AD ABAB BC=,∠A=∠A,△ABC∽△ADB,所以此选项不合题意;D.AD ABAB BC=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出正确答案.此题考查了相似三角形的判定.4.下列条件中,能判定两个等腰三角形相似的是()A.都含有一个30︒的内角B.都含有一个45︒的内角C.都含有一个60︒的内角D.都含有一个80︒的内角答案:C解析:解答:因为选项A、B、D给出的角30︒,45︒,80︒可能是顶角也可能是底角,不对应,则不能判定两个等腰三角形相似;所以选项A,B,D错误;因为有一个60°的内角的等腰三角形是等边三角形,所有的等边三角形相似,所以选项C正确.故选:C.分析:若要判定两三角形相似,最常用的方法是找两对对应相等的角,而选项A、选项B、选项D都只能找到一对相等的角,只有选项C可以找出两对对应相等的角.5.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组答案:A解析:解答:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等,四条边都相等,符合相似的条件;④不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;⑤不相似,因为菱形的角不一定对应相等,不符合相似的条件;⑥相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有③⑥.故选:A.分析:根据相似多边形的判定定理对各个选项进行分析,确定最后答案.边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.6.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5B.7C.8D.10答案:D解析:解答:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=90︒∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=90︒∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选:D.分析:根据已知及相似三角形的判定方法找出存在的相似三角形即可得到答案.此题考查了相似三角形的判定:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似;平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.7.如图,在△ABC中,P为AB上一点,则下列四个条件中,(1)∠ACP=∠B(2)∠APC=∠ACB(3)2=(4)AB•CP=AP•CB,AC AP AB其中能满足△APC和△ACB相似的条件有()A.1个B.2个C.3个D.4个答案:C解析:解答:(1)中,∠ACP=∠B,又有一公共角∠A,所以相似,(1)正确;(2)∠APC=∠ACB,且有一公共角∠A,(2)正确;(3)中AC2=AP•AB,∠A为其夹角,(3)正确;(4)中不是两组对应边成比例,夹角相等,所以(4)错误.故选:C.分析:两组对应角相等的三角形是相似三角形;两组对应边成比例且夹角相等两个三角形是相似三角形.由此可求出答案.8.如图,已知点P是不等边△ABC的边BC上的一点,点D在边AB或AC上,若由点P、D截得的小三角形与△ABC相似,那么D点的位置最多有()A.2处B.3处C.4处D.5处答案:C解析:解答:①△CPD与△CBA相似;此时△CPD与△CBA共用∠C,P点的位置有两个:∠CPD=∠B或∠CPD=∠A;②△BPD与△BCA相似;此时△CPD与△CBA共用∠B,P点的位置同样有两个:∠BPD=∠C或∠BPD=∠A;所以符合条件的D点位置最多有4处.故选:C.分析:先判断由点P、D截得的小三角形与△ABC有哪些相等的条件,再根据相似三角形的判定方法来判断符合条件的D点有几个.注意不要漏解.9.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90 ,AB=8,AD=3,BC=4,点P为AB 边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个答案:C解析:解答:∵AB ⊥BC , ∴∠B =90︒. ∵AD ∥BC ,∴∠A =180°-∠B =90︒, ∴∠PAD =∠PBC =90︒.AB =8,AD =3,BC =4, 设AP 的长为x ,则BP 长为8-x .若AB 边上存在P 点,使△PAD 与△PBC 相似,那么分两种情况: ①若△APD ∽△BPC ,则AP :BP =AD :BC ,即x :(8-x )=3:4,解得x =247; ②若△APD ∽△BCP ,则AP :BC =AD :BP ,即x :4=3:(8-x ),解得x =2或x =6. ∴满足条件的点P 的个数是3个, 故选:C .分析:因为∠PAD =∠PBC =90︒,所以要使△PAD 与△PBC 相似,分两种情况讨论:①△APD ∽△BPC ,②△APD ∽△BCP ,这两种情况都可以根据相似三角形对应边的比相等求出AP 的长,从而得到P 点的个数.进行分类讨论是解答此题的关键.10.如图,在平面直角坐标系中,A (0,4),B (2,0),点C 在第一象限,若以A 、B 、C 为顶点的三角形与△AOB 相似(不包括全等),则点C 的个数是( )A .1B .2C .3D .4 答案:D解析:解答:如图①,∠OAB =∠1BAC ,∠AOB =∠1ABC 时,△AOB ∽△1ABC .如图②,AO ∥BC ,BA ⊥2AC ,则∠2ABC =∠OAB ,故△AOB ∽△2BAC ;如图③,3AC ∥OB ,∠ABC 3=90︒,则∠ABO =∠CAB ,故△AOB ∽△3C BA ;如图④,∠AOB =∠4BAC =90︒,∠ABO =∠4ABC ,则△AOB ∽△4C AB .故选:D .分析:根据题意画出图形,根据相似三角形的判定定理可得出结论.此题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.11.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( )A .1个B .2个C .3个D .4个 答案:C解析:解答:∵∠BDO =∠BEA =90︒,∠DBO =∠EBA , ∴△BDO ∽△BEA ,∵∠BOD =∠COE ,∠BDO =∠CEO =90︒, ∴△BDO ∽△CEO ,∵∠CEO =∠CDA =90︒,∠ECO =∠DCA ,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CD A.故选:C.分析:根据∠BDO=∠BEA=90︒,∠DBO=∠EBA,证得△BDO∽△BEA,同理可证△BDO∽△CEO,△CEO∽△CDA,从而可知.此题考查了相似三角形的判定,解题的关键是找出两个对应角相等.12.下列条件,不能判定△ABC与△DEF相似的是()A.∠C=∠F=90︒,∠A=55︒,∠D=35︒B.∠C=∠F=90︒,AB=10,BC=6,DE=15,EF=9C.∠C=∠F=90︒,BC AC EF DF=D.∠B=∠E=90︒,AB DF EF AC=答案:D解析:解答:A.相似:∵∠A=55︒∴∠B=90︒-55︒=35︒∵∠D=35︒∴∠B=∠D∵∠C=∠F∴△ABC∽△DEF;B.相似:∵AB=10,BC=6,DE=15,EF=9,则102153ABDE==,6293BCEF==,∴AB BCDE EF=,又∵∠C=∠F∴△ABC∽△DEF;C.相似:∵∠C=∠F=90︒,BC ACEF DF=∴△ABC∽△DEF;D.不相似:∵∠B=∠E=90︒,AB DFEF AC=,有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似.故选:D.分析:根据相似三角形的判定方法对各个选项进行分析作出正确判断.此题考查了相似三角形判定的理解及运用.13.下面两个三角形一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个钝角三角形D.两个等边三角形答案:D解析:解答:A.等腰三角形的角不一定相等,各边也不一定对应成比例,所以A不正确;B.两个直角三角形只有一个直角可以确定相等,其他两个角度未知,所以B不正确;C.两个钝角三角形的对应角不一定相等,各边也不一定对应成比例,所以C不正确;D.两个等边三角形的各角度都为60︒,各边对应相等,所以D正确.故选:D.分析:按照三角形相似的判定定理逐个分析,确定正确答案.三角形相似的判定定理有:①两角对应相等的两个三角形相似;②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似.14.已知△ABC如图所示.则与△ABC相似的是图中的()A.B.C.D.答案:C解析:解答:∵AB=AC=6,∴∠C=∠B=75︒,∴∠A=30︒,∵55 66 =,∴与△ABC相似的是选项C.故选:C.分析:由已知图形,根据等边对等角及三角形内角和定理,可得∠A=30︒,△ABC是等腰三角形;根据有两边对应成比例且夹角相等三角形相似,可求得答案.解题的关键是仔细识图和熟悉相似三角形的判定方法.15.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对答案:A解析:解答:甲:根据题意得:AB∥A B'',AC∥A C'',BC∥B C'',∴∠A=∠A',∠B=∠B',∴△ABC∽△A BC''',∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A B''=C D''=3+2=5,A D''=B C''=5+2=7,∴35AB CDA B C D''''==,57AD BCA DB C''''==,∴AB ADA B A D≠'''',∴新矩形与原矩形不相似.∴乙说法正确.故选:A.分析:甲:根据题意得:AB∥A B'',AC∥A C'',BC∥B C'',可证得∠A=∠A',∠B=∠B',由两角对应相等两三角形相似得△ABC∽△A BC''';乙:根据题意得:AB=CD=3,AD=BC=5,则A B''=C′D′=3+2=5,A′D′=B C''=5+2=7,则可得AB ADA B A D≠'''',即新矩形与原矩形不相似.此题考查了相似三角形以及相似多边形的判定.二、填空题16.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于______答案:1 2解析:解答:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴AO AEDO AD==12.故答案为:12.分析:利用两角对应相等得△AOD∽△EAD,那么AO AEDO AD=.此题考查了相似三角形的判定;把所求的线段的比进行相应的转移是解决此题的关键.17.将一副三角板按图叠放,则△AOB与△DOC的面积之比等于答案:1:3解析:解答:∵∠ABC=90︒,∠DCB=90︒∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD又∵AB:CD=BC:CD=1:3∴△AOB与△DOC的面积之比等于1:3.故答案为:1:3.分析:一副三角板按图叠放,则得到两个相似三角形,且相似比等于1:3,相似三角形的性质相似三角形面积的比等于相似比的平方得到△AOB与△DOC的面积之比等于1:3.18.如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=答案:6解析:解答:∵DE∥BC,∴△ADE ∽△ABC , ∴AD DE AB BC =, 即123BC= 解得:BC =6.故答案为:6.分析:根据DE ∥BC ,判断△ADE ∽△ABC ,利用对应边成比例的知识可得AD DE AB BC=,代入数据求出B C .19.如图,DE ∥BC ,EF ∥AB ,且S △ADE =4,S △EFC =9,则△ABC 的面积为答案:25解析:解答:∵DE ∥BC ,EF ∥AB∴∠C =∠AED ,∠FEC =∠A ,∴△EFC ∽△ADE ,而ADE S ∆=4,EFC S ∆=9, ∴294EC AE =(), ∴EC :AE =3:2,∴EC :AC =3:5, ∴EFC ABC S S ∆∆=2239()()525EC AC ==, ∴ABC S ∆=9×259=25. 故答案为25.分析:相似三角形的面积比等于相似比的平方,即对应边之比的平方,所以先利用△EFC ∽△ADE ,得出对应线段的比,从而得出面积比,再代入求出其面积.此题考查了相似三角形的判定和性质,熟练掌握平行线分线段成比例的性质.20.如图所示,△ABC 中,DE ∥BC ,AE :EB =2:3,若△AED 的面积是4m 2,则四边形DEBC 的面积为答案:21解析:解答:∵23AE EB =, ∴25AE AB =. ∵DE ∥BC ,∴△ADE ∽△ACB , ∴2()ADE ACB S AE S AB∆∆=. ∵△AED 的面积是24m , ∴242()5ACB S ∆=, ∴ACB S ∆=25,∴四边形DEBC 的面积为:25-4=21.故答案为:21.分析:根据DE ∥BC 可得出△ADE ∽△ACB ,可以得出2()ADE ACB S AE AB S ∆∆=,由23AE EB =可以得出25AE AB =,代入可以求出△ABC 的面积,从而求出四边形DEBC 的面积. 三、解答题21.已知,在△ABC 中,三条边的长分别为2,3,4,△A ′B ′C ′的两边长分别为1,1.5,要使△ABC ∽△'''A B C ,求△A BC '''中的第三边长.答案:2解析:解答:已知在△ABC 中,三条边的长分别为2,3,4,△'''A B C 的两边长分别为1,1.5,可以看出,△'''A B C 的两边分别为△ABC 的两边长的一半,因此要使△ABC ∽△'''A B C 需两三角形各边对应成比例,则第三边长就为4的一半即2. 故答案为:2.分析:此题主要应用两三角形相似的判定定理,三边对应成比例的两个三角形相似,分析作答即可.22.如图,ABCD是平行四边形,点E在边BC延长线上,连AE交CD于点F,如果∠EAC=∠D,试问:AC•BE与AE•CD是否相等?答案:相等解析:解答:∵四边形ABCD是平行四边形,∴∠D=∠B,∵∠EAC=∠D,∴∠EAC=∠B,∵∠E=∠E,∴△ACE∽△BAE,∴AC:AE=AB:BE,即AC•BE=AE•AB,∵AB=CD,∴AC•BE=AE•C D.分析:要证明AC•BE=AE•CD,只要证明这4条线段所在的三角形相似即可,但直接找不到,利用相等的线段代换后,从条件可以得出4条线段所在三角形相似从而得出结论.此题考查了相似三角形的判定和性质,利用相似三角形求出线段比,从而转化为线段的积.23.如图,正方形AEFG的顶点E在正方形ABCD的边CD上,AD的延长线交EF于H点.若E为CD的中点,正方形ABCD的边长为4,求DH的长.答案:1解析:解答:∵正方形AEFG和正方形ABCD中,∠AEH=∠ADC=∠EDH=90︒,∴∠AED+∠DEH=90︒,∠AED+∠DAE=90︒,∴∠DEH=∠DAE.∵△AED∽△EHD,AD DEDE DH=.∵正方形ABCD的边长为4,∴AD=CD=4.∵E为CD的中点,∴DE=2.∴422DH =,∴DH=1.分析:根据正方形的性质和等角的余角相等,可得两个三角形中,有两个角对应相等,证得两个三角形相似,在此基础上,根据相似三角形的性质进行求解.24.如图,在Rt△ABC中,∠C=90︒,△ACD沿AD折叠,使得点C落在斜边AB上的点E 处.(1)问:△BDE与△BAC相似吗?答案:相似(2)已知AC=6,BC=8,求线段AD的长度.答案:3解析:解答:(1)相似.理由如下:∵∠C=90︒,△ACD沿AD折叠,使得点C落在斜边AB上的点E处,∴∠C=∠AED=90︒,∴∠DEB=∠C=90︒,∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理,得AB=222268AC BC+=+=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90︒.∴BE=AB-AE=10-6=4,在Rt△BDE中,由勾股定理得,222DE BE BD+=,即22248CD CD +=-(), 解得:CD =3,在Rt △ACD 中,由勾股定理得222AC CD AD +=,即22236AD +=,解得:AD =3分析:(1)根据折叠的性质得出∠C =∠AED =90︒,利用∠DEB =∠C ,∠B =∠B 证明三角形相似;(2)先由勾股定理求出AB 的长,再由折叠的性质知DE =CD ,AE =AC ,BE =AB -AE ,在Rt △BDE 中运用勾股定理求出DE ,即CD ,最后在Rt △ACD 中运用勾股定理得出A D .25.如图,在△ABC 中,AB =8cm ,BC =16cm ,动点P 从点A 开始沿AB 边运动,速度为2cm /s ;动点Q 从点B 开始沿BC 边运动,速度为4cm /s ;如果P 、Q 两动点同时运动,那么何时△QBP 与△ABC 相似?答案:2秒|0.8秒解析:解答:设经过t 秒时,以△QBC 与△ABC 相似,则AP =2t ,BP =8-2t ,BQ =4t , ∵∠PBQ =∠ABC ,∴当BP BQ BA BC =时,△BPQ ∽△BAC , 即824816t t -=,解得t =2(s ); 当BP BQ BC BA =时,△BPQ ∽△BCA , 即824168t t -=,解得t =0.8(s ); 综合上述,经过2秒或0.8秒时,△QBC 与△ABC 相似.分析:设经过t 秒时,以△QBC 与△ABC 相似,则AP =2t ,BP =8-2t ,BQ =4t ,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:当BP BQ BA BC =时,△BPQ ∽△BAC ;当BP BQ BC BA=时,△BPQ ∽△BC A . 。
第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:(2)合比定理:(3)等比定理:3.黄金分割:如图,若,则点P为线段AB的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定(1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
这个点叫做位似中心.这时的相似比又称为位似比.位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似位似比二、经典例题例1.如图在4×4的正方形方格中,△ABC和△DEF的顶点都在长为1的小正方形顶点上.(1)填空:∠ABC=______,BC=_______.(2)判定△ABC与△DEF是否相似?[考点透视]本例主要是考查相似的判定及从图中获取信息的能力.[参考答案] ①135°,2 ②能判断△ABC与△DEF相似,∵∠ABC=∠DEF=135°,=【点评】注意从图中提取有效信息,再用两对应边的比相等且它们两夹角相等来判断.例2. 如图所示,D、E两点分别在△ABC两条边上,且DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.[考点透视]本例主要是考查相似的判定[参考答案] ∠1=∠B或∠2=∠C,或点评:结合判定方法补充条件.例3. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于( )A.4.5米 B.6米 C.7.2米 D.8米[考点透视]本例主要是考查相似的应用[参考答案] B【点评】在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中“”.例4. 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?[考点透视]本例主要是考查相似的实际应用[参考答案] 48mm【点评】解决有关三角形的内接正方形(或矩形)的计算问题,一般运用相似三角形“对应高之比等于相似比”这一性质来解答.例5.如图所示,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α、β满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由.[考点透视]本例主要是考查相似与函数的综合运用.[参考答案]解:在△ABC中,AB=AC=1,∠BAC=30°,∠ABC=∠ACB=75°,∠ABD=∠ACE=105°.又∠DAE=105°,∴∠DAB+∠CAE=75°.又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴y=.当α1β满足β- =90°,y=仍成立.此时∠DAB+∠CAE=β-α,∴∠DAB+∠ADB=β-α,∴∠CAE=∠ADB.又∵∠ABD=∠ACE,∴△ADB∽△EAC,∴y=.【点评】确定两线段间的函数关系,可利用线段成比例、找相等关系转化为函数关系.例6. 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?解析:胶片上的图象和荧屏上的图象是位似的,镜头就相当于位似中心,因此本题可以转化为位似问题解答.[考点透视]本例主要是考查位似的性质.[参考答案] m【点评】位似图形是特殊位置上的相似图形,因此位似图形具有相似图形的所有性质.三.适时训练(一)精心选一选1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )(A) (B) (C) (D)2.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=BE,则( )(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD题2 题4 题53.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )(A)1条 (B)2条 (C)3条 (D)4条4.如图,∠ABD=∠ACD,图中相似三角形的对数是( )(A)2 (B)3 (C)4 (D)55.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是( )(A)∠APB=∠EPC (B)∠APE=90°(C)P是BC的中点(D)BP ︰BC=2︰36.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有( )(A)3个 (B)2个 (C)1个 (D)0个题6 题7 题87.如图,将△ADE绕正方形ABCD顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论中错误的是( )(A)AE⊥AF (B)EF︰AF=︰1(C)AF2=FH·FE (D)FB ︰FC=HB︰EC8.如图,在矩形ABCD中,点E是AD上任意一点,则有( )(A)△ABE的周长+△CDE的周长=△BCE的周长(B)△ABE的面积+△CDE的面积=△BCE的面积(C)△ABE∽△DEC(D)△ABE∽△EBC9.如图,在□ABCD中,E为AD上一点,DE︰CE=2︰3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF︰S△EBF︰S△ABF等于( )(A)4︰10︰25 (B)4︰9︰25 (C)2︰3︰5 (D)2︰5︰25题9 题10 题1110.如图,直线a∥b,AF︰FB=3︰5,BC︰CD=3︰1,则AE︰EC为( ).(A)5︰12 (B)9︰5 (C)12︰5 (D)3︰2 11.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC︰CD为( )(A)2︰1 (B)3︰2 (C)3︰1 (D)5︰212.如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为( )(A)4 cm、cm (B)5 cm、cm(C)4 cm、2 cm (D)5 cm、2 cm题12(二)细心填一填13.已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是_____cm,a+b与a-b的比例中项是_____cm.14.若===-m2,则m=______.15.如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=_______.16.如图,□ABCD中,E是AB中点,F在AD上,且AF=FD,EF交AC于G,则AG︰AC=______.题16 题17 题1817.如图,AB∥CD,图中共有____对相似三角形.18.如图,已知△ABC,P是AB上一点,连结CP,要使△ACP∽△ABC,只需添加条件______(只要写出一种合适的条件).19.如图,AD是△ABC的角平分线,DE∥AC,EF∥BC,AB=15,AF =4,则DE的长等于________.题19 题20 题2120.如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE =15,则△ABC的面积是______.21.如图,直角梯形ABCD中,AD∥BC,AC⊥AB,AD=8,BC=10,则梯形ABCD面积是_________.22.如图,已知AD∥EF∥BC,且AE=2EB,AD=8 cm,AD=8 cm,BC=14 cm,则S梯形AEFD︰S梯形BCFE=____________.(三)认真答一答23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).24.如图,△ABC中,CD⊥AB于D,E为BC中点,延长AC、DE相交于点F,求证=.25.如图,在△ABC中,AB=AC,延长BC至D,使得CD=BC,CE⊥BD交AD于E,连结BE交AC于F,求证AF=FC.26.已知:如图,F是四边形ABCD对角线AC上一点,EF∥BC,FG∥AD.求证:+=1.27.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.28.如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).29.如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设=k,是否存在这样的k值,使得△AEF∽△BFC,若存在,证明你的结论并求出k的值;若不存在,说明理由.30.如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点PC出发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使S△BCP=S△ABC31. 如图,小华家(点A处)和公路(L)之间竖立着一块35m长且平 行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路设为BC.一辆以60km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).32. 某老师上完“三角形相似的判定”后,出了如下一道思考题:如图所示,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,试问:△AOB和△DOC是否相似?某学生对上题作如下解答:答:△AOB∽△DOC.理由如下:在△AOB和△DOC中,∵AD∥BC,∴,∵∠AOB=∠DOC,∴△AOB∽△DOC.请你回答,该学生的解答是否正确?如果正确,请在每一步后面写出根据;如果不正确,请简要说明理由.33. 如图:四边形ABCD中,∠A=∠BCD=90°,①过C作对角线BD的垂线交BD、AD于点E、F,求证:;②如图:若过BD上另一点E作BD的垂线交BA、BC延长线于F、G,又有什么结论呢?你会证明吗?34.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.35. (1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。
相似三角形判定定理的证明(提高)【学习目标】1.熟记三个判定定理的内容.2.三个判定定理的证明过程.3.学选会用适当的方法证明结论的成立性. 【要点梳理】要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′.求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′D ′,过点D 作BC 的平行线,交AC 于点E,则∠ADE=∠B ,∠AED=∠C,(.AD AEAB AC=平行于三角形一边的直线与其他两边相交,截得的对应线段成比例) 过点D 作AC 的平行线,交BC 与点F,则(AD CFAB CB =平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB= ∵DE ∥BC,DF ∥AC,∴四边形DFCE 是平行四边形. ∴DE=CF. ∴AD AE DEAB AC BC==. 而∠ADE=∠B,∠DAE=∠BAC,∠AED==∠C, ∴△ADE ∽△ABC.∵∠A=∠A ′,∠ADE=∠B=∠B ′,AD=A ′B ′, ∴△ADE ∽△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时 辅助线的做法.要点二、两边成比例且夹角相等的两个三角形相似已知,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,''''AB ACA B A C =,求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′B ′,过点D 作BC 的平行线,交AC 于点E,则∠B=∠ADE,∠C=∠AED,∴△ABC ∽△ADE(两个分别相等的两个三角形相似).∴AB ACAD AE =. ∵''''AB ACA B A C = ,AD=A ′B ′, ∴''AB ACAD A C = ∴''AC ACAE A C = ∴AE=A ′C ′ 而∠A=∠A ′∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为已知两组角对应相等推得相似或已知平行推得相似的. 要点三、三边成比例的两个三角形相似已知:在在△ABC 和△A ′B ′C ′中,∠A=∠A ′, ''''''AB BC ACA B B C A C ==. 求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A ′B ′,AD=A ′B ′,连接DE.∵''''AB ACA B A C =,AD=A ′B ′,AE=A ′C ′, ∴AB ACAD AE= 而∠BAC=∠DAE,∴△ABC ∽△ADE(两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又''''AB BCA B B C =,AD= A ′B ′, ∴ ''AB BCAD B C = ∴''BC BCDE B C = ∴DE=B ′C ′,∴△ADE ≌△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′.【典型例题】类型一、两角分别相等的两个三角形相似1、(2015•合肥校级四模)如图,己知:Rt △ABC 中,∠BAC=9O °,AD ⊥BC 于D ,E 是AC 的中点,ED 交AB 延长线于F ,求证: ①△ABD ∽△CAD ; ②AB :AC=DF :AF .【思路点拨】(1)由Rt △ABC 中,∠BAC=9O °,AD ⊥BC ,易得∠BAD=∠ACD ,又由∠ADB=∠ADC ,即可证得△ABD ∽△CAD ; (2)由△ABD ∽△CAD ,即可得,易证得△AFD ∽△DFB ,可得,继而证得结论.【答案与解析】 证明:(1)∵AD ⊥BC , ∴∠ADB=∠ADC=90°,∴∠BAD+∠DAC=90°,∠DAC+∠ACD=90°, ∴∠BAD=∠ACD , ∵∠ADB=∠ADC ,∴△ABD∽△CAD;(2)∵△ABD∽△CAD,∴,∵E是AC中点,∠ADC=90°,∴ED=EC,∴∠ACD=∠EDC,∵∠EDC=∠BDF,∠ACD=∠BAD,∴∠BAD=∠BDF,∵∠AFD=∠DFB,∴△AFD∽△DFB,∴,∴,∴AB:AC=DF:AF.【总结升华】此题考查了相似三角形的判定与性质以及直角三角形的性质,难度适中.类型二、两边成比例且夹角相等的两个三角形相似2、如图,在△ABC中,M、N分别为AB、AC边上的中点.D、E为BC边上的两点,且DE=BD+EC,ME与ND交于点O,请你写出图中一对全等的三角形,并加以证明.【思路点拨】因为M、N分别为AB、AC边上的中点,∠A=∠A,可证明△AMN∽△ABC,则MN∥BC,又因为DE=BD+EC,所以有△MON≌△EOD.【答案与解析】解:△MON≌△EOD.证明:∵M、N分别为AB、AC边上的中点,∴AM:AB=1:2,AN:AC=1:2.∵∠A=∠A,∴△AMN∽△ABC.∴∠AMN=∠ABC,MN=BC.∴MN∥BC.∴∠OMN=∠OED,∠ONM=∠ODE.∵DE=BD+EC,∴DE=BC.∴MN=DE.∴△MON≌△DOE.【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.举一反三【变式】如图,点O是△ABC的垂心(垂心即三角形三条高所在直线的交点),连接AO交CB 的延长线于点D,连接CO交AB的延长线于点E,连接DE.求证:△ODE∽△OCA.【答案】证明:∵O是垂心,∴AO⊥CD,∴∠CDO=90°,同理∠AEO=90°,∴∠AEO=∠CDO,在△AEO和△CDO中,∴△AEO∽△CDO,∴,∴,在△ODE和△OCA中,∴△ODE∽△OCA.3、(2015•大庆模拟)如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE的长是多少?【答案与解析】解:∵D为AB的中点,∴BD=AB=,∵∠DBE=∠ABC,∴当∠DEB=∠ACB时,△BDE∽△BAC时,如图1,则=,即=,解得DE=2;当∠BDE=∠ACB时,如图2,DE交AC于F,∵∠DAF=∠CAB,∴△ADF∽△ACB,∴△BDE∽△BCA,∴=,即=,解得DE=,综上所述,若直线DE截△ABC所得的三角形与△ABC相似,则DE=2或.【总结升华】本题考查了相似三角形判定和性质,其次要注意分类讨论思想的运用.举一反三【变式】如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B.请在射线BF上找一点M,使以点B、M、C为顶点的三角形与△ABP相似.(请注意:全等图形是相似图形的特例)【答案】解:在射线BF上截取线段,连接M1C,⇒,⇒∠ABP=∠CBM1,∴△M1BC∽△ABP.在射线BF上截取线段BM2=BP=3,连接M2C,⇒△CBM2≌△ABP.(全等必相似)∴在射线BF 上取或BM2=3时,M1,M2都为符合条件的M.类型三、三边成比例的两个三角形相似4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【思路点拨】首先求得△ABC三边的长,然后分别求得A,B,C,D各三角形的三边的长,然后根据三组对应边的比相等的两个三角形相似,即可求得答案.【答案与解析】解:如图:AB==,AC==,BC=2,A 、∵DE==,DF==,EF=1,∴,∴△DEF∽△BAC,故A选项正确;B、∵MN==,MK==,NK=3,∴,=1,,∴△MNK与△ABC不相似,故B选项错误;C、∵PQ==2,PR==,QR=1,∴==,=,=,∴△PQR与△ABC不相似,故C选项错误;D、∵GH==,GL==,HL=2,∴=,=,=,∴△GHL与△ABC不相似,故D选项错误.故选:A.【总结升华】此题考查了相似三角形的判定.此题难度适中,三组对应边的比相等的两个三角形相似定理的应用是解此题的关键.5、如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF 相似,则点F应是甲、乙、丙、丁四点中的()【思路点拨】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【答案与解析】解:根据题意,△ABC的三边之比为 1::,要使△ABC∽△DEF,则△DEF的三边之比也应为1::,经计算只有甲点合适,故选A.【总结升华】本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.举一反三【变式】如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M【答案】C.解:设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M 或N时,其各边是6、2 13,2 10.与△ABC各边对应成比例,故选C.【巩固练习】一、选择题1. (2015•深圳校级模拟)若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()A.1:3 B.1:9 C.1:D.1:1.52.已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是()A.都相似B.都不相似 C.只有(1)相似D.只有(2)相似3.如图,G是平行四边形ABCD的边CD延长线上一点,BG交AC于E,交AD于F,则图中与△FGD相似的三角形有()A. 0对B. 1对C. 2对D. 3对4.如图,分别以下列选项作为一个已知条件,其中不一定能得到△AOB∽△COD的是()A.∠BAC=∠BDC B.∠ABD=∠ACD C AO DOCO BO= DAO ODOB CO=5.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A.不存在B.等腰三角形 C.直角三角形D.等腰三角形或直角三角形6.在△ABC与△A′B′C′中,有下列条件:(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组()A. 1 B. 2 C. 3 D. 4二、填空题7.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).8.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相似比为1除外)有.9.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似,写出所有符合条件的三角形.10.如图,∠1=∠2=∠3,有几对三角形相似,请写出其中的两对.11.如图,在3×4的方格上,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置.若点D在格点位置上(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D 共有个.12.(2015•六合区一模)如图,在Rt△ABC中,AC=8,BC=6,直线l经过C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.三、解答题13. 如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG 的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.14.(2015春•成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.15.如图,在△ABC和△ADE中,==,点B、D、E在一条直线上,求证:△ABD∽△ACE.【答案与解析】一、选择题1.【答案】B.【解析】∵△ABC∽△DEF,且AB:DE=1:3,∴S△ABC :S△DEF=1:9.故选B.2.【答案】A;【解析】如图(1)∵∠A=35°,∠B=75°,∴∠C=180°-∠A-∠B=70°,∵∠E=75°,∠F=70°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF;如图(2)∵OA=4,OD=3,OC=8,OB=6,∴OA OC OD OB,∵∠AOC=∠DOB,∴△AOC∽△DOB.故选A.3.【答案】C;【解析】∵ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△GFD∽△GBC,△GFD∽△BFA,∴图中与△FGD相似的三角形有2对,故选C.4.【答案】C;【解析】A、若∠BAC=∠BDC,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项错误;B、若∠ABD=∠ACD,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项错误;C、若=,因为只知道∠AOB=∠COD,不符合两边及其夹角的判定,不一定能得到△AOB∽△COD,故本选项正确.D、若=,结合∠AOB=∠COD,根据两边及其夹角的方法可得△AOB∽△COD,故本选项错误;故选C.5.【答案】C;【解析】∵△ABD∽△CBD,∴∠ADB=∠BDC又∵∠ADB+∠BDC=180°,∴∠ADB=∠BDC=×180°=90°,∵△ADB∽△ABC,ABC△∽△BDC,∴∠ABC=∠ADB=∠BDC=90°,∴△ABC为直角三角形.故选:C.6.【答案】C;【解析】能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),∴能判断△ABC∽△A′B′C′的共有3组.故选C.二、填空题7.【答案】如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等;【解析】∵∠A是公共角,∴当∠ADE=∠C或∠AED=∠B时,△ADE∽△ACB(有两角对应相等的三角形相似),当AD:AC=AE:AB或AD•AB=AE•AC时,△ADE∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似),∴要使△ADE∽△ACB,还需添加一个条件:答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.故答案为:此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.8.【答案】△PCQ∽△RDQ∽△PAB;【解析】∵CP∥ER,∴△BCP∽△BER;∵CP∥DR,∴△PCQ∽△RDQ;∵CQ∥AB,∴△PCQ∽△PAB;∴△PCQ∽△RDQ∽△PAB.9.【答案】△DP2P5、△DP2P4、△DP4P5;【解析】设网格的边长为1.则AC=,AB=,BC=.连接DP2P5,DP5=,DP2=,P2P5=.∵==,∴△ACB∽△DP5P2.同理可找到△DP2P4,DP4P5和△ACB相似.故答案为:△DP2P5,DP2P4,DP4P5.10.【答案】△CDE∽△CAB;△EDA∽△AEB;【解析】∵∠2=∠3,∠C=∠C,∴△CDE∽△CAB,∵∠2=∠3,∴∠DEA=∠EAB,∵∠1=∠3,∴△EDA∽△AEB,故答案为:△CDE∽△CAB;△EDA∽△AEB.11.【答案】4;【解析】∵方格中小正方形的边长为1,∴AB=1、BC=、AC=,∵△DBC与△ABC相似,∴BC=、CD=2、BD=,如图可知这样的点D如图:故答案为:4.12.【答案】4.8或.【解析】∵在Rt△ABC中,AC=8,BC=6,∴AB==10,当△ABC∽△PCA时,则AB:PC=BC:AC,即10:PC=6:8,解得:PC=,当△ABC∽△ACP时,则AB:AC=BC:PC,即10:8=6:PC,解得:PC=4.8.综上可知若△ABC与△PAC相似,则PC=4.8或.三、解答题13.【解析】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2 由S=S梯形GCBE﹣S△EBF﹣S△FCG=×﹣=×(10+2)×8﹣×10×4﹣=24.(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2tS=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48.②如图2,当点F追上点G时,4t=2t+8,解得t=4当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2t FG=CG﹣CF=2t﹣(4t﹣8)=8﹣2tS=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(3)如图1,当点F在矩形的边BC上的边移动时,0≤t≤2在△EBF和△FCG中,∠B=∠C=90°1若=,即=,解得t=.又t=满足0≤t≤2,所以当t=时,△EBF∽△FCG2若=即=,解得t=.又t=满足0≤t≤2,所以当t=时,△EBF∽△GCF综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.14.【解析】解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.15.【解析】证明:∵在△ABC和△ADE中,==,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△ABD∽△ACE.。