高温X射线衍射分析
- 格式:ppt
- 大小:2.87 MB
- 文档页数:13
in718合金 laves 相衍射峰718合金是一种高温合金,其主要成分为铁、镍和铬。
它具有优异的耐氧化、高温强度和抗蠕变能力,广泛应用于航空、航天、能源等领域。
718合金中的laves相是一种具有特殊结构和特殊性质的相。
下面我将详细介绍718合金中的laves相的特点和衍射峰。
laves相是指一类具有Cd2Re2S6结构的化合物,这种结构由CdS、ReS2和CdS2分子共同组成。
laves相的空间群为F-43m,具有无中心点的立方晶体结构。
它的晶格参数为a=8.17Å。
laves相的晶胞中含有两种原子,分别为Cd和Re。
Cd位于(0.25, 0.25, 0.25)和(0.75,0.75,0.75)位置,Re位于(0.5, 0.5, 0.5)位置。
与其他合金相比,laves相具有一些独特的性质。
首先,laves相具有很高的热稳定性。
在高温环境下,laves相不容易发生相变或分解。
这使得laves相具有良好的高温强度和抗蠕变能力。
其次,laves相具有较高的硬度和耐腐蚀性。
这使得laves相在一些特殊环境下具有出色的性能,比如在高温、高压和腐蚀性气体等复杂环境下的应用。
在X射线衍射分析中,laves相的存在通常通过其特征的衍射峰来确定。
laves相的衍射峰主要集中在低角度区域。
这是因为laves相的晶胞相对较大,原子间距较远,导致衍射峰角度较小。
在718合金中,laves相的主要衍射峰有(101)、(002)和(211)。
其中,(101)衍射峰的角度最小,对应的d值最大,表示原子间距最大,这是laves 相的特征之一。
除了laves相的衍射峰,718合金中还存在其他相的衍射峰。
这些衍射峰可以通过X射线衍射分析技术来确定718合金中的相组成。
常见的其他相包括γ相和γ'相。
γ相为面心立方结构,具有良好的高温强度和塑性。
γ'相为体心立方结构,具有优异的抗蠕变和抗热劈裂性能。
718合金的性能主要受到γ相和γ'相的相对含量和分布的影响。
二氧化钛X射线粉末衍射分析参数设置二氧化钛 X 射线粉末衍射分析参数设置二氧化钛的物理性质比较稳定,但其易溶于酸中,受热时表面形成一层致密的氧化膜。
经过空气中长期的自然腐蚀会导致晶格结构破坏,导致分解产生三氧化二钛,并且呈现黄色。
二氧化钛具有强烈的紫外吸收,使它特别适宜用作紫外光吸收剂和光屏蔽材料。
其他信息二氧化钛常温下为白色粉末状固体,熔点2550℃,相对密度3.46。
熔融态为无色透明的玻璃状物。
二氧化钛的化学性质极为稳定,在一般情况下不与任何物质起反应。
因此可以将它溶解于氢氟酸及硝酸中而提纯。
高温煅烧时可以得到偏钛酸钠、四氧化三铁和金属钛。
经过洗涤后所残留的水溶性杂质包括氧和氢,都可被其完全吸收掉。
实验室一般从钛铁矿(主要含钛50%左右)精炼出来的海绵钛经氧化熔炼获得。
通常采用两种方式进行二氧化钛的制备:(1)将三氧化二铝( Al2O3)加热到1600℃脱水;(2)将五氧化二磷( P2O5)与二氧化钛混合后加热至1200~1300℃,也可制得二氧化钛。
二氧化钛化学性质稳定,易溶于氢氟酸,对碱、盐、有机酸、无机酸以及大部分金属和大部分非金属材料都显惰性。
除强还原剂外,它几乎可耐所有化学药品。
化学活性低,与许多物质都不起反应。
物理性质稳定,在自然界中容易获取。
但价格昂贵,故主要用于国防尖端技术。
可作催化剂和紫外光屏,又是良好的压电陶瓷和人造金刚石、耐火材料和立德粉的原料。
用途二氧化钛有着广泛的用途,用于建筑涂料、粘接剂、纸张涂层、油墨、橡胶、塑料、皮革、化妆品、食品、药物以及彩色电影等。
它可制成乳白色,也可做成棕色、蓝色、绿色和黑色,但最常见的颜色为白色。
白色粉末二氧化钛( TiO2)具有如下独特的性质:(1)超亲水性和高分散性:由于二氧化钛纳米粒子表面具有极高的亲水性,粒子尺寸小且有序排列,故表面自由能大,对水有极强的吸附力。
高温X射线衍射法鉴别珍珠粉及贝壳粉邱永鑫;廖杰【摘要】用高温 X 射线衍射法(XRD)研究了珍珠粉及贝壳粉中碳酸钙的相变过程。
结果表明:随着试验温度的升高,上述2种样品均发生文石型向方解石型的相变,但相变程序不同;当温度从室温升至330℃,贝壳粉中方解石的质量分数由0.5%增至25.5%,而珍珠粉中方解石的质量分数则由5.0%增至8.1%。
根据测定温度条件试验并综合考虑其它因素选择测定温度为330℃。
试验了珍珠粉和贝壳粉混合样品中碳酸钙的上述2种晶体的相变情况,结果发现:样品中方解石的含量与其混入的贝壳粉含量呈线性关系,表明两者的混合并不影响其相变机制。
在相同试验温度条件下,珍珠粉的相变程度明显低于贝壳粉。
利用这一现象,可以用高温 XRD 快速而准确地对珍珠粉和贝壳粉进行鉴别。
%Thermal phase-transformation of calcium carbonate in samples of pearl powder and conch powder was studied by high-temperature X-ray diffraction (XRD).It was shown that different rate of phase-transformation from aragonite to calcite was observed with both the two samples as the testing temperature was raised;and the content of calcite (w%)in conch powder was increased from 0.5% to 25.5%,while the content of calcite (w%)in pearl powder was increased from 5.0% to 8.1%,under testing temperature of330 ℃.Considering the result of testing for the temperature and various other factors influential to the analytical result,the temperature of330 ℃was chosen in XRD analysis.The phase transformation of the 2 crystalline structures mentioned above in several samples of mixtures of pearl powder and conch powder in various mixing ratios was alsostudied,and it was found that,linear relationship was kept between the contents (w%)of calcite in the samples and the amount (w%)of conch powder present in the samples,showing that the mechanism of phase transformation was not changed in the mixed powder samples.Under the same experimental condition,rate of the phase-transformation for pearl powder sample was significantly lower than that for conch powder sample.Based on these facts,by application of high-temperatureXRD,samples of pearl powder and conch powder can be discriminated accurately and rapidly.【期刊名称】《理化检验-化学分册》【年(卷),期】2014(000)003【总页数】4页(P294-297)【关键词】高温X射线衍射法;珍珠粉;贝壳粉;鉴别【作者】邱永鑫;廖杰【作者单位】中国科学院苏州纳米技术与纳米仿生研究所测试平台,苏州215125;浙江长生鸟珍珠生物科技有限公司,诸暨 311800【正文语种】中文【中图分类】O657.3珍珠粉是将珍珠贝壳动物马氏珠母贝等双壳动物受刺激形成的珍珠用物理方法粉碎磨细而成的粉状物,是一种名贵中药,具有安神定惊、明目消翳、解毒生肌之功效。
x射线衍射工作原理X射线衍射是一种广泛应用于材料结构分析和晶体学研究的技术。
其工作原理基于X射线穿过晶体后的散射现象。
X射线通过晶体时,会与晶体内的原子发生作用,导致X射线的散射方向和强度发生改变。
通过测量和分析散射X射线的特性,我们可以得到关于晶体的结构信息。
X射线衍射的工作原理可以用布拉格定律来解释。
根据布拉格定律,当入射X射线的波长和晶体的晶格常数满足特定条件时,散射的X射线波面会叠加形成衍射图样。
这些衍射图样呈现出明亮的衍射斑点,每个斑点对应着晶体中特定的晶面。
为了进行X射线衍射实验,首先需要一台X射线发生器。
X射线发生器会产生高能的X射线束,该束通过使用称为X射线管的装置产生。
X射线管由阴极和阳极组成,当阴极发射电子时,经过加速和碰撞作用,产生X射线。
产生的X射线束通过调节的光学元件来聚焦,并进一步通过样品。
样品是一个晶体,在X射线束的作用下,产生散射。
散射的X射线被称为衍射光,其角度和强度可以通过衍射图样来确定。
接下来,衍射光会被收集并聚焦到一个光学探测器上,比如一个镜子或一个光电二极管。
探测器会记录下衍射光的特性,并通过电信号转换为可见的图像或者其他数据。
最后,通过分析衍射图样和探测器记录的数据,我们可以推断出晶体的结构信息,比如晶胞参数、晶面排列等。
这些结构信息对于研究材料性质和开发新材料具有重要意义。
总之,X射线衍射通过测量和分析散射的X射线来研究晶体结构。
它的工作原理基于X射线的穿透和散射现象,通过衍射图样和探测器记录的数据可以获得晶体的结构信息。
这种技术在材料科学和晶体学研究中发挥着重要作用。
高温对金属材料性能影响实验摘要:本实验旨在研究高温对金属材料性能的影响。
通过将金属样本暴露在高温环境下,测定不同温度下金属材料的力学性能、热膨胀系数以及晶体结构的变化。
实验结果表明,高温对金属材料的强度、硬度和热膨胀系数都有显著影响。
1. 引言金属是常见的工程材料,广泛应用于航天、汽车、建筑等领域。
然而,在高温环境下,金属的性能可能会受到严重的影响。
因此,研究高温对金属材料性能的影响对于材料工程的发展至关重要。
2. 实验目的本实验的目的是通过将金属样本暴露在高温环境下,研究高温对金属材料性能的影响。
具体包括力学性能(如强度和硬度)、热膨胀系数以及晶体结构的变化。
3. 实验步骤和方法(1) 准备金属样本:选择常见的金属材料样本,如铜、铁、铝等,并根据需要切割成标准尺寸的试样。
(2) 预热金属样本:将金属样本放入恒温箱中,调节温度至所需高温条件,保持一定时间使样本均匀受热。
(3) 测定力学性能:使用万能试验机对金属样本进行拉伸试验,测量其抗拉强度、屈服强度和延伸率等力学性能指标。
(4) 测定硬度:使用洛氏硬度计或维氏硬度计,对金属样本进行硬度测试,测定其硬度值。
(5) 测定热膨胀系数:使用热膨胀系数测定仪测量金属样本在高温下的长度变化,计算出其热膨胀系数。
(6) 分析晶体结构变化:使用X射线衍射仪或扫描电子显微镜(SEM)观察金属样本的晶体结构变化,分析高温对晶体结构的影响。
4. 实验结果与讨论通过对不同金属样本进行高温处理后,得到以下实验结果:(1) 力学性能:金属样本在高温下的抗拉强度、屈服强度和延伸率均呈现不同程度的下降。
高温使金属材料的晶粒尺寸增大,晶界迁移,导致金属变得更加脆性。
(2) 硬度:高温对金属材料的硬度也有影响,一般情况下,高温下金属的硬度会降低。
(3) 热膨胀系数:金属材料的热膨胀系数是描述其在温度变化下体积或长度变化的重要指标。
实验结果表明,高温会使金属的热膨胀系数增大。
(4) 晶体结构变化:高温下,金属的晶体结构可能发生相变或晶粒长大,导致材料的物理性能发生变化。
XRD分析方法与原理XRD(X射线衍射)是一种常用的材料表征方法,主要用于分析材料的晶体结构、晶格参数、晶体质量、相变、畸变等信息。
本文将重点介绍XRD分析方法和原理。
一、XRD分析方法1.样品制备样品制备是XRD分析的第一步,在分析前需要制备符合要求的样品。
对于晶体实验,需要制备单晶样品,通常通过溶液法、溶剂挥发法、梳子法等方法产生单晶样品。
对于非晶体实验,需要制备适当粒度的多晶粉末样品,通常通过高温煅烧、溶剂挥发、凝胶法、机械研磨等方法制备。
2.仪器调试在进行XRD分析之前,需要对X射线衍射仪进行仪器调试。
主要包括对X射线源、样品台、X射线管、光学路径、X射线探测器等进行调节和优化,以保证仪器的性能和准确性。
其中,X射线源的选择和强度的调节对实验结果有重要影响。
3.X射线衍射数据采集在XRD分析中,可以通过改变探测器固定角度和旋转样品台的方式来获取衍射强度与入射角度的关系。
常用的采集方式有传统的扫描模式(2θ扫描或θ/θ扫描)和快速模式(2D探测器或0D点探测器)。
根据样品的特征和所需分析结果选择合适的采集方式。
同时,为了提高信噪比,通常要对衍射强度进行积分或定标。
4.数据处理和解析XRD数据处理和解析是对原始数据进行整理、滤波、相峰识别、数据拟合和解析的过程。
数据处理主要包括基线校正、噪声过滤和峰识别等,以提高数据质量。
数据解析主要是通过拟合方法获得样品的晶体结构参数(晶格常数、晶胞参数)、相对晶粒尺寸、晶体缺陷等信息。
二、XRD分析原理XRD分析原理基于X射线与晶体原子间的相互作用。
当X射线通过物质时,会与物质中的原子发生散射。
其中,由于X射线与晶体中的周期性排列的原子发生构型相吻合的散射,形成相干衍射。
X射线由晶体平面散射后的干涉衍射,在探测器上形成强度峰,峰强度与晶胞架构和原子排布有关。
1.布拉格方程布拉格方程是XRD分析的基本原理之一、它描述了X射线与晶体平面的相互作用。
布拉格方程为:nλ = 2dsinθ,其中n为整数,λ为入射X射线波长,d为晶胞面间距,θ为衍射角度。
X射线衍射分析习题及参考答案一、判断题1、只要原子内层电子被打出核外即产生特征X射线(×)2、在K系辐射线中Kα2波长比Kα1旳长(√)3、管电压越高则特征X射线波长越短(×)4、X射线强度总是与管电流成正比(√)5、辐射线波长愈长则物质对X射线旳吸收系数愈小(×)6、满足布拉格方程2d sinθ=λ必然发生X射线反射(×)7、衍射强度实际是大量原子散射强度旳叠加(√)8、温度因子是由于原子热振动而偏离平衡位置所致(√)9、结构因子与晶体中原子散射因子有关(√)10、倒易矢量代表对应正空间中旳晶面(√)11、大直径德拜相机旳衍射线分辨率高但暴光时间长(√)12、标准PDF卡片中数据是绝对可靠旳(×)13、定性物相分析中旳主要依据是d值和I值(√)14、定量物相分析可以确定样品中旳元素含量(×)15、定量物相分析K法优点是不需要掺入内标样品(√)16、利用高温X射线衍射可以测量材料热膨胀系数(√)17、定量物相分析法中必须采用衍射积分强度(√)18、丝织构对称轴总是沿着试样旳法线方向(×)19、为获得更多衍射线条须利用短波长X射线进行衍射(√)20、板织构有时也具有一定旳对称性(√)21、材料中织构不会影响到各晶面旳衍射强度(×)22、粉末样品不存在择优取向即织构问题(×)23、常规衍射仪X射线穿透金属旳深度通常在微米数量级(√)24、粉末样品粒度尺寸直接关系到衍射峰形质量(√)25、X射线应力测定方法对非晶材料也有效(×)26、利用谢乐公式D=λ/(βcosθ)可测得晶粒尺寸(×)27、宏观应力必然造成衍射峰位移动(√)28、微观应力有时也可造成衍射峰位移动(√)29、材料衍射峰几何宽化仅与材料组织结构有关(×)30、实测衍射线形是由几何线形与物理线形旳代数叠加(×)二、选择题1、与入射X射线相比相干散射旳波长(A)较短,(B)较长,(C)二者相等,(D)不一定2、连续X射线旳总强度正比于(A)管电压平方,(B)管电流,(C)靶原子序数,(D)以上都是3、L层电子回迁K层且多余能量将另一L层电子打出核外即产生(A)光电子,(B)二次荧光,(C)俄歇电子,(D)A和B4、多晶样品可采用旳X射线衍射方法是(A)德拜-谢乐法,(B)劳厄法,(C)周转晶体法,(D)A和B5、某晶面族X射线衍射强度正比于该晶面旳(A)结构因子,(B)多重因子,(C)晶面间距,(D) A和B6、基于X射线衍射峰位旳测量项目是(A)结晶度,(B)点阵常数,(C)织构,(D)以上都是7、基于X射线衍射强度旳测量项目是(A)定量物相分析,(B)晶块尺寸,(C)内应力,(D)以上都是8、测定钢中奥氏体含量时旳X射线定量物相分析方法是(A)外标法,(B)内标法,(C)直接比较法,(D)K值法9、X射线衍射仪旳主要部分包括(A)光源,(B)测角仪光路,(C)计数器,(D)以上都是10、Cu靶X射线管旳最佳管电压约为(A)20kV,(B) 40kV,(C)60kV,(D)80kV11、X射线衍射仪旳测量参数不包括(A)管电压,(B)管电流,(C)扫描速度,(D)暴光时间12、实现X射线单色化旳器件包括(A)单色器,(B)滤波片,(C)波高分析器,(D)以上都是13、测角仪半径增大则衍射旳(A)分辨率增大,(B)强度降低,(C)峰位移,(D) A与B14、宏观应力测定几何关系包括(A)同倾,(B)侧倾,(C) A与B,(D)劳厄背反射15、定性物相分析旳主要依据是(A)衍射峰位,(B)积分强度,(C)衍射峰宽,(D)以上都是16、定量物相分析要求采用旳扫描方式(A)连续扫描,(B)快速扫描,(C)阶梯扫描,(D)A与B17、描述织构旳方法不包括(A)极图,(B)反极图,(C)ODF函数,(D)径向分布函数18、面心立方点阵旳消光条件是晶面指数(A)全奇,(B)全偶,(C)奇偶混杂,(D)以上都是19、立方晶体(331)面旳多重因子是(A)6,(B)8,(C) 24,(D)4820、哪种靶旳临界激发电压最低(A)Cu,(B)Mo,(C) Cr,(D)Fe21、哪种靶旳K系特征X射线波长最短(A)Cu,(B) Mo,(C)Cr,(D)Fe22、X射线实测线形与几何线形及物理线形旳关系为(A)卷积,(B)代数和,(C)代数积,(D)以上都不是23、与X射线非晶衍射分析无关旳是(A)径向分布函数,(B)结晶度,(C)原子配位数,(D)点阵参数24、宏观平面应力测定实质是利用(A)不同方位衍射峰宽差,(B)不同方位衍射峰位差,(C)有无应力衍射峰宽差,(D)有无应力衍射峰位差25、计算立方晶系ODF函数时需要(A)多张极图数据,(B)一张极图数据,(C)多条衍射谱数据,(D)一条衍射谱数据26、衍射峰半高宽与积分宽之关系通常(A)近似相等,(B)半高宽更大,(C)积分宽更大,(D)不一定27、关于厄瓦尔德反射球(A)球心为倒易空间原点,(B)直径即射线波长之倒数,(C)衍射条件是倒易点与该球面相交,(D)以上都是28、Kα双线分离度随2θ增大而(A)减小,(B)增大,(C)不变,(D)不一定29、d值误差随2θ增大而(A)减小,(B)增大,(C)不变,(D)不一定30、衍射谱线物理线形宽度随 2增大而(A)减小,(B)增大,(C)不变,(D)不一定三、填空题1、管电压较低时只产生连续谱,较高时则可能产生连续和特征谱2、K系特征X射线波长λ由短至长依次β、α1 和α23、Cu、Mo及Cr靶特征辐射波长λ由短至长依次 Mo 、 Cu 和 Cr4、特征X射线强度与管电流、管电压及特征激发电压有关5、X射线与物质旳相互作用包括散射和真吸收,统称为衰减6、结构振幅符号F,结构因子符号∣F∣2,结构因子等零称为消光7、除结构因子外,影响衍射强度因子包括多重因子、吸收因子和温度因子8、体心立方晶系旳低指数衍射晶面为 (110) 、(200) 和 (211)9、面心立方晶系旳低指数衍射晶面为 (111) 、(200) 和 (220)10、X射线衍射方法包括劳埃法、周转晶体法和粉末法11、衍射仪旳主要组成单元包括光源、测角仪光路和计数器12、影响衍射仪精度旳因素包括仪器、样品和实验方法13、衍射仪旳主要实验参数包括狭缝宽度、扫描范围和扫描速度14、衍射谱线定峰方法包括半高宽中点、顶部抛物线和重心法15、精确测量点阵常数旳方法包括图解外推法、最小二乘法和标样校正法16、X射线定量物相分析包括直接对比、内标和K值法17、三类应力衍射效应,衍射峰位移、衍射峰宽化和衍射峰强度降低18、X射线应力常数中包括材料旳弹性模量、泊松比和布拉格角19、棒材存在丝织构,板材存在板织构,薄膜存在丝织构20、X射线衍射线形包括实测线形、物理线形和仪器即几何线形四、名词解释1、七大晶系[要点]立方晶系、正方晶系、斜方晶系、菱方晶系、六方晶系、单斜晶系及三斜晶系。
X射线衍射分析法X射线衍射分析法是一种广泛应用于材料科学领域的非破坏性分析方法,它通过对材料中X射线的衍射模式进行研究,可以得到材料的结晶结构信息、晶体学参数以及晶体缺陷等重要信息。
X射线衍射技术已经成为材料科学研究中不可或缺的重要手段,被广泛应用于金属材料、半导体材料、无机晶体、有机晶体等材料的研究和分析中。
X射线衍射的原理是利用入射X射线借助晶体的晶格结构,发生衍射现象,通过测量样品中出射X射线的衍射角度和衍射强度,可以确定晶体的晶格常数、晶体结构、晶体取向和晶体缺陷等信息。
X射线衍射仪是一种专门用于进行X射线衍射分析的仪器,根据不同的应用需求,可以选择适合的X射线衍射仪进行实验。
X射线衍射分析法主要包括粉末衍射分析法和单晶衍射分析法两种常用的方法。
粉末衍射分析法适用于多晶材料或粉末材料的结构研究,可以获得晶体的空间点群、晶胞参数、结晶度等信息;单晶衍射分析法则适用于单晶材料的结构研究,可以获得晶体的真实结构信息,包括晶体的空间对称性、原子位置等详细信息。
X射线衍射分析法具有许多优点,如非破坏性、高灵敏度、高分辨率、快速测量和可定量分析等特点,因此在材料科学研究领域得到广泛应用。
在金属材料研究中,X射线衍射分析可以用于评估金属的晶体结构和相变行为;在半导体材料研究中,X射线衍射分析可以用于研究半导体晶体的缺陷结构和掺杂效应;在生物晶体学研究中,X射线衍射分析可以用于解决生物大分子的三维结构等问题。
在进行X射线衍射分析时,需要注意一些实验参数的选择和控制,以确保实验结果的准确性和可靠性。
在进行粉末衍射实验时,需要选择合适的X射线波长、样品旋转角度、测量范围和样品制备条件等参数;在进行单晶衍射实验时,需要控制晶体的取向和衍射仪的校准等条件。
总的来说,X射线衍射分析法是一种非常有价值的材料结构分析方法,可以为材料科学研究提供重要的结晶学信息。
随着仪器技术的进步和应用领域的拓展,X射线衍射分析方法将在材料科学研究中发挥愈发重要的作用,为解决材料科学领域的难题提供宝贵的帮助。
X射线衍射分析习题及参考答案一、判断题1、只要原子内层电子被打出核外即产生特征X射线(×)2、在K系辐射线中Kα2波长比Kα1旳长(√)3、管电压越高则特征X射线波长越短(×)4、X射线强度总是与管电流成正比(√)5、辐射线波长愈长则物质对X射线旳吸收系数愈小(×)6、满足布拉格方程2d sinθ=λ必然发生X射线反射(×)7、衍射强度实际是大量原子散射强度旳叠加(√)8、温度因子是由于原子热振动而偏离平衡位置所致(√)9、结构因子与晶体中原子散射因子有关(√)10、倒易矢量代表对应正空间中旳晶面(√)11、大直径德拜相机旳衍射线分辨率高但暴光时间长(√)12、标准PDF卡片中数据是绝对可靠旳(×)13、定性物相分析中旳主要依据是d值和I值(√)14、定量物相分析可以确定样品中旳元素含量(×)15、定量物相分析K法优点是不需要掺入内标样品(√)16、利用高温X射线衍射可以测量材料热膨胀系数(√)17、定量物相分析法中必须采用衍射积分强度(√)18、丝织构对称轴总是沿着试样旳法线方向(×)19、为获得更多衍射线条须利用短波长X射线进行衍射(√)20、板织构有时也具有一定旳对称性(√)21、材料中织构不会影响到各晶面旳衍射强度(×)22、粉末样品不存在择优取向即织构问题(×)23、常规衍射仪X射线穿透金属旳深度通常在微米数量级(√)24、粉末样品粒度尺寸直接关系到衍射峰形质量(√)25、X射线应力测定方法对非晶材料也有效(×)26、利用谢乐公式D=λ/(βcosθ)可测得晶粒尺寸(×)27、宏观应力必然造成衍射峰位移动(√)28、微观应力有时也可造成衍射峰位移动(√)29、材料衍射峰几何宽化仅与材料组织结构有关(×)30、实测衍射线形是由几何线形与物理线形旳代数叠加(×)二、选择题1、与入射X射线相比相干散射旳波长(A)较短,(B)较长,(C)二者相等,(D)不一定2、连续X射线旳总强度正比于(A)管电压平方,(B)管电流,(C)靶原子序数,(D)以上都是3、L层电子回迁K层且多余能量将另一L层电子打出核外即产生(A)光电子,(B)二次荧光,(C)俄歇电子,(D)A和B4、多晶样品可采用旳X射线衍射方法是(A)德拜-谢乐法,(B)劳厄法,(C)周转晶体法,(D)A和B5、某晶面族X射线衍射强度正比于该晶面旳(A)结构因子,(B)多重因子,(C)晶面间距,(D)A和B6、基于X射线衍射峰位旳测量项目是(A)结晶度,(B)点阵常数,(C)织构,(D)以上都是7、基于X射线衍射强度旳测量项目是(A)定量物相分析,(B)晶块尺寸,(C)内应力,(D)以上都是8、测定钢中奥氏体含量时旳X射线定量物相分析方法是(A)外标法,(B)内标法,(C)直接比较法,(D)K值法9、X射线衍射仪旳主要部分包括(A)光源,(B)测角仪光路,(C)计数器,(D)以上都是10、Cu靶X射线管旳最佳管电压约为(A)20kV,(B)40kV,(C)60kV,(D)80kV11、X射线衍射仪旳测量参数不包括(A)管电压,(B)管电流,(C)扫描速度,(D)暴光时间12、实现X射线单色化旳器件包括(A)单色器,(B)滤波片,(C)波高分析器,(D)以上都是13、测角仪半径增大则衍射旳(A)分辨率增大,(B)强度降低,(C)峰位移,(D)A与B14、宏观应力测定几何关系包括(A)同倾,(B)侧倾,(C)A与B,(D)劳厄背反射15、定性物相分析旳主要依据是(A)衍射峰位,(B)积分强度,(C)衍射峰宽,(D)以上都是16、定量物相分析要求采用旳扫描方式(A)连续扫描,(B)快速扫描,(C)阶梯扫描,(D)A与B17、描述织构旳方法不包括(A)极图,(B)反极图,(C)ODF函数,(D)径向分布函数18、面心立方点阵旳消光条件是晶面指数(A)全奇,(B)全偶,(C)奇偶混杂,(D)以上都是19、立方晶体(331)面旳多重因子是(A)6,(B)8,(C)24,(D)4820、哪种靶旳临界激发电压最低(A)Cu,(B)Mo,(C)Cr,(D)Fe21、哪种靶旳K系特征X射线波长最短(A)Cu,(B)Mo,(C)Cr,(D)Fe22、X射线实测线形与几何线形及物理线形旳关系为(A)卷积,(B)代数和,(C)代数积,(D)以上都不是23、与X射线非晶衍射分析无关旳是(A)径向分布函数,(B)结晶度,(C)原子配位数,(D)点阵参数24、宏观平面应力测定实质是利用(A)不同方位衍射峰宽差,(B)不同方位衍射峰位差,(C)有无应力衍射峰宽差,(D)有无应力衍射峰位差25、计算立方晶系ODF函数时需要(A)多张极图数据,(B)一张极图数据,(C)多条衍射谱数据,(D)一条衍射谱数据26、衍射峰半高宽与积分宽之关系通常(A)近似相等,(B)半高宽更大,(C)积分宽更大,(D)不一定27、关于厄瓦尔德反射球(A)球心为倒易空间原点,(B)直径即射线波长之倒数,(C)衍射条件是倒易点与该球面相交,(D)以上都是28、Kα双线分离度随2θ增大而(A)减小,(B)增大,(C)不变,(D)不一定29、d值误差随2θ增大而(A)减小,(B)增大,(C)不变,(D)不一定30、衍射谱线物理线形宽度随 2增大而(A)减小,(B)增大,(C)不变,(D)不一定三、填空题1、管电压较低时只产生连续谱,较高时则可能产生连续和特征谱2、K系特征X射线波长λ由短至长依次β、α1和α23、Cu、Mo及Cr靶特征辐射波长λ由短至长依次Mo、Cu和Cr4、特征X射线强度与管电流、管电压及特征激发电压有关5、X射线与物质旳相互作用包括散射和真吸收,统称为衰减6、结构振幅符号F,结构因子符号∣F∣2,结构因子等零称为消光7、除结构因子外,影响衍射强度因子包括多重因子、吸收因子和温度因子8、体心立方晶系旳低指数衍射晶面为(110)、(200)和(211)9、面心立方晶系旳低指数衍射晶面为(111)、(200)和(220)10、X射线衍射方法包括劳埃法、周转晶体法和粉末法11、衍射仪旳主要组成单元包括光源、测角仪光路和计数器12、影响衍射仪精度旳因素包括仪器、样品和实验方法13、衍射仪旳主要实验参数包括狭缝宽度、扫描范围和扫描速度14、衍射谱线定峰方法包括半高宽中点、顶部抛物线和重心法15、精确测量点阵常数旳方法包括图解外推法、最小二乘法和标样校正法16、X射线定量物相分析包括直接对比、内标和K值法17、三类应力衍射效应,衍射峰位移、衍射峰宽化和衍射峰强度降低18、X射线应力常数中包括材料旳弹性模量、泊松比和布拉格角19、棒材存在丝织构,板材存在板织构,薄膜存在丝织构20、X射线衍射线形包括实测线形、物理线形和仪器即几何线形四、名词解释1、七大晶系[要点]立方晶系、正方晶系、斜方晶系、菱方晶系、六方晶系、单斜晶系及三斜晶系。
X射线衍射在材料分析当中的应用摘要:X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
本文主要介绍X射线衍射分析在材料科学中应用并以测量内应力为例对其进行具体分析。
关键词:材料分析,射线衍射,应用1912年劳厄衍射实验的成功,为X射线衍射分析的应用开辟了广阔的前景。
根据衍射花样可以进行晶体和非晶体的结构测定,研究与结构和结构变化相关的各种问题。
X射线衍射的应用已渗透到物理、化学、地质、天文、生命科学、材料科学、石油化工、金属冶金、医药等行业 ,成为非常重要的近代物理分析方法。
X 射线衍射分析在石油化工领域的应用包括未知物物相鉴定、催化研究、结晶性聚合物研究。
X射线衍射分析用于催化研究已经有五十余年的历史,近年来由于X射线仪的新发展以及电子计算机技术的应用,使X射线衍射成为催化研究中不可缺少的分析手段。
在催化研究中的应用包括催化剂的剖析、催化剂研制及应用过程中各阶段物相组成变化、活性组分变化状况等。
从催化剂的剖析结果可以推断催化剂载体和活性组分的类型。
通过对催化剂研制过程中各阶段的样品分析, 帮助了解工艺条件变化对各物相组成的影响。
应用过程中各阶段物相组成变化、活性组分变化状况等对于寻找改善催化剂的途径,增加其活性与选择性是十分重要的。
在催化剂的研究中,总要涉及催化剂的活性、稳定性、失活机理等问题,这些问题与催化剂的活性物相有关。
催化剂的物相组成、晶粒大小等往往是决定其活性和选择性的重要因素。
目前各衍射仪厂家都可配备各种附件装置,包括高低温衍射附件、原位样品池,可以在高、低温条件下模拟生产过程,测量出相变或反应动力学的各种信息,高温加热中样品的晶体结构变化或各种物质相互熔解的变化,晶格常数漂移,熔融样品析出晶相的识别等。