X射线衍射分析(XRD)
- 格式:ppt
- 大小:2.30 MB
- 文档页数:151
XRD分析方法介绍X射线衍射(X-ray diffraction,简称XRD)是一种非常重要的物质结构表征技术,广泛应用于材料科学、化学、地球科学、生命科学等领域。
它通过将X射线射向样品,然后测量和分析X射线经过样品后的衍射图样,从而得到样品的结构信息。
1.非破坏性:XRD是一种非破坏性分析方法,样品在接受X射线照射后不会发生永久性损伤,可以反复使用。
2.不受样品形态限制:XRD适用于固体、液体、薄膜和粉末等形态的样品,对样品的晶型、晶体结构和晶粒尺寸等信息进行分析。
3.高分辨率:XRD可以提供较高的分辨率,可以检测出样品中微小的结构变化,如晶格畸变、相变等。
4.定量分析:XRD可以进行定量分析,通过衍射峰的强度和位置,可以获取样品中不同晶相的含量,并计算晶格参数、物相纯度等信息。
5.多功能性:除了结构表征外,XRD还可以用于拟合数据、表面分析、粒度分析等应用。
1.菲涅尔衍射法:菲涅尔衍射法是一种传统的XRD方法,主要用于粉末样品的结构分析。
它是通过测量样品晶粒间隔的变化,然后将这些信息转换为衍射图样,从而得到样品的结构信息。
2. Laue衍射法:Laue衍射法是一种快速的结构分析方法,主要用于晶体表面和薄膜样品的分析。
它通过将样品放在X射线束下,然后测量并分析样品中衍射出的X射线图样,从而得到样品的结构信息。
3.粉末衍射法:粉末衍射法是一种广泛应用的XRD方法,主要用于粉末样品的结构分析。
它是通过将样品制成细粉,然后进行衍射测量,并根据布拉格方程计算晶格参数和相量等信息。
4.单晶衍射法:单晶衍射法是一种高精度的XRD方法,主要用于单晶样品的结构分析。
它是通过将样品制成单晶,然后测量和分析样品中衍射出的X射线图样,从而得到样品的三维晶体结构信息。
5.傅立叶变换衍射法:傅立叶变换衍射法是一种用于薄膜和多晶样品的XRD方法,主要用于分析样品中的表面形貌、界面反应等信息。
它是通过将样品经过傅立叶变换,将时域中的信号转换为频域中的信号,然后提取相应的结构信息。
一站式的材料检测、分析与技术咨询服务X射线衍射仪技术(XRD)1、X 射线衍射仪技术(XRD)X射线衍射仪技术(X-ray diffraction,XRD)。
通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。
X射线衍射分析法是研究物质的物相和晶体结构的主要方法。
当某物质(晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。
X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
因此,X射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。
2. X射线衍射仪技术(XRD)可为客户解决的问题(1)当材料由多种结晶成分组成,需区分各成分所占比例,可使用XRD物相鉴定功能,分析各结晶相的比例。
(2)很多材料的性能由结晶程度决定,可使用XRD 结晶度分析,确定材料的结晶程度。
(3)新材料开发需要充分了解材料的晶格参数,使用XRD可快捷测试出点阵参数,为新材料开发应用提供性能验证指标。
(4)产品在使用过程中出现断裂、变形等失效现象,可能涉及微观应力方面影响,使一站式的材料检测、分析与技术咨询服务用XRD可以快捷测定微观应力。
(5)纳米材料由于颗粒细小,极易形成团粒,采用通常的粒度分析仪往往会给出错误的数据。
采用X射线衍射线线宽法(谢乐法)可以测定纳米粒子的平均粒径。
3. X射线衍射仪技术(XRD)注意事项(1)固体样品表面>10×10mm,厚度在5μm以上,表面必须平整,可以用几块粘贴一起。
(2)对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常,需提供测试方向。
(3)对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等。
X射线衍射分析-样品要求1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。
因此要求测试时合理选择响应的方向平面。
3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
4、粉末样品要求磨成320目的粒度,约40微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
5、粉末样品要求在3克左右,如果太少也需5毫克。
6、样品可以是金属、非金属、有机、无机材料粉末。
用途1、物相分析衍射图晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。
制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。
鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。
目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。
xrd的工作原理及使用方法
X射线衍射(X-ray Diffraction,XRD)是一种常用的材料分析技术,用于研究晶体结构、晶体学和非晶态材料的结构特征。
下面是XRD的工作原理和使用方法的概述:
工作原理:XRD利用入射X射线与样品中的原子发生衍射现象,通过测量衍射图样来推导出样品的晶体结构、晶格常数、晶格畸变等信息。
其基本原理可以概括为布拉格定律,即入射X射线在晶体中的衍射现象遵循2d sinθ = nλ,其中d是晶面间距,θ是衍射角度,n是整数倍数,λ是入射X射线的波长。
使用方法:
1.准备样品:需要准备一定数量的样品,可以是晶体样品或
非晶态材料样品。
晶体样品必须具有规则的晶体结构,而
非晶态材料样品则可以是无定型的或非晶结构的材料。
2.调节仪器参数:根据样品的特性和研究目的,调整XRD仪
器的参数,如X射线管的电流和电压、入射角范围、衍射
角范围等。
选择合适的参数可以获得更准确的结果。
3.扫描样品:将样品放置在XRD仪器中的样品台上,通过控
制仪器进行扫描。
仪器将采集到的衍射数据转换为衍射图
样或衍射强度图像。
4.分析数据:根据获得的衍射图样或衍射强度图像,使用专
业的XRD分析软件对数据进行处理和分析。
这可以包括通
过模拟与标准数据的比对来确定样品的晶体结构或晶格常
数,通过解析峰的位置和形状来研究晶体的畸变等。
XRD技术可应用于多个领域,如材料科学、地球科学、生物化学等。
它可以帮助研究者了解材料的结构和性质,发现新的材料性质,并优化材料的制备和加工工艺。
X 射线衍射仪(XRD )1、X 射线衍射仪(XRD )原理当一束单色 X 射线照射到晶体上时,晶体中原子周围的电子受X 射线周期变化的电场作用而振动,从而使每个电子都变为发射球面电磁波的次生波源。
所发射球面波的频率与入射的X 射线相一致。
基于晶体结构的周期性,晶体中各个原子(原子上的电子)的散射波可相互干涉而叠加,称之为相干散射或衍射。
X 射线在晶体中的衍射现象,实质上是大量原子散射波相互干涉的结果。
每种晶体所产生的衍射花样都反映出晶体内部的原子分布规律。
根据上述原理,某晶体的衍射花样的特征最主要的是两个:(1)衍射线在空间的分布规律;(2)衍射线束的强度。
其中,衍射线的分布规律由晶胞大小,形状和位向决定,衍射线强度则取决于原子的品种和它们在晶胞的位置,因此,不同晶体具备不同的衍射图谱。
在混合物中,一种物质成分的衍射图谱与其他物质成分的存在与否无关,这就是利用X 射线衍射做物相分析的基础。
X 射线衍射是晶体的“指纹”,不同的物质具有不同的X 射线衍射特征峰值(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X 射线衍射线位置与强度也就各不相同,所以通过比较X射线衍射线位置与强度可区分出不同的物质成分。
布拉格方程,其中n 为衍射级数图1.1 布拉格衍射示意图布拉格方程反映的是衍射线方向和晶体结构之间的关系。
对于某一特定的晶体而言,只有满足布拉格方程的入射线角度才能够产生干涉增强,才会出现衍射条纹,这就是XRD 谱图的根本意义所在。
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在X 射线衍射(XRD )图谱上就是具有不同的衍射强度的衍射峰。
对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的X 射线衍射(XRD )图谱为一些漫散射馒头峰。
n λ=2dsin θ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料中查出试样中所含的元素。
x射线衍射物相定量分析X射线衍射物相定量分析(XRD)是一种利用X射线技术定量分析有机物质的分析方法。
它可以准确测量有机物质中不同元素的含量,以及有机物质的物相变化。
在定量分析后,可以得出分析结果,同时也可以依据定量结果,估算出物质中各种物相的质量分数比例。
X射线衍射物相定量分析是基于X射线衍射原理进行的分析法。
当X射线照射到样品上时,样品由于具有不同的密度、厚度和晶体结构,而会产生出不同的衍射现象。
而在相同的X射线源、同一距离处,不同物相的衍射特征是不同的,它们可以被量析出来。
此外,由于各物相的晶体结构也不同,因此,其衍射带特征也不同,如果能够对晶体结构进行分析,则可以更准确地分析 X线衍射物相定量分析的结果。
X射线衍射物相定量分析技术已经广泛应用于多个领域,如生物分析、化学分析、材料科学、分子结构分析以及金属物相组成分析等。
特别是在分析多元有机物质的物相及含量时,X射线衍射物相定量分析技术能够更加准确地获取有机物质的组成结构及元素含量比例。
X射线衍射物相定量分析技术具有良好的灵敏度,可以准确测量物质中微量元素的含量,并可以精确地分析有机物质物质中多种元素的含量。
此外,X射线衍射物相定量分析技术还具有良好的适应能力,可以测量不同种类、不同形式的有机物质,从而满足不同分析要求。
X射线衍射物相定量分析技术的应用范围很广,并且在科学技术领域中发挥着重要作用,被广泛应用于药物产生、食品安全检测、精细化学品组成分析等方面。
另外,X射线衍射物相定量分析技术还可以用于工业产品的质量控制,帮助企业更好地建立质量控制体系,从而提高产品质量和生产效率。
X射线衍射物相定量分析技术可以为企业提供更为准确有效的定量分析服务,为产品的质量管理提供科学的后盾。
未来,X射线衍射物相定量分析技术将会持续被广泛应用在各个领域,以服务更多的企业及科研领域。