2.4X射线衍射分析方法
- 格式:ppt
- 大小:7.51 MB
- 文档页数:44
X射线衍射分析方法X射线衍射分析是一种常用的材料结构分析方法,通过探测和分析样品对入射的X射线的散射方向和强度,来确定样品中原子的排列方式和晶体结构。
X射线衍射分析方法基于X射线作为电磁波的性质,具有较高的分辨率和广泛的应用领域。
nλ = 2d sinθ其中,n为衍射的阶数,λ为X射线的波长,d为晶格的晶面间距,θ为入射射线与晶面的夹角。
X射线衍射的实验装置通常由一个X射线源、一个单色器(用于选择特定波长的X射线)、一个样品台和一个衍射探测器组成。
实验过程中,样品被放置在样品台上,入射射线照射到样品上后产生散射射线,散射射线被探测器接收,并转化成电信号进行记录和分析。
1. 粉末X射线衍射(Powder X-Ray Diffraction,PXRD):粉末X射线衍射是最常用的X射线衍射分析方法,适用于晶体和非晶态样品。
通过测量样品中X射线的衍射图样,可以确定晶体的结构、晶胞参数和晶格的对称性。
粉末X射线衍射还可以用于定量分析样品中各种组分的含量。
2. 单晶X射线衍射(Single Crystal X-Ray Diffraction,SCXRD):单晶X射线衍射是研究晶体结构最直接、最准确的方法。
通过测量特定晶面上的衍射强度和散射角度,可以获得晶体的精确结构和原子的位置信息。
这种方法对于研究有机小分子、无机晶体和金属晶体的结构非常有价值。
3. 催化剂的X射线衍射(Catalytic X-Ray Diffraction):催化剂的X射线衍射用于研究催化剂的晶体结构和相组成,从而了解催化剂在反应中的性能和活性。
这种分析方法对于设计和优化催化剂非常重要。
4.衍射峰位置和衍射峰宽度分析:X射线衍射分析中,可以通过测量衍射峰在散射角度上的位置和宽度来研究样品的晶体结构和缺陷情况。
衍射峰的位置与晶胞参数相关,而衍射峰的宽度与晶体的结构缺陷和晶体的有序程度有关。
总结起来,X射线衍射分析方法是一种非常重要的材料结构分析方法,通过测量样品对入射X射线的衍射方向和强度,可以确定样品中原子的排列方式和晶体结构。
X射线衍射分析百科内容来自于:《近代X射线多晶衍射》X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
简介X射线衍射X射线满足布拉格方程:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。
波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。
将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。
从衍射X 射线强度的比较,可进行定量分析。
本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。
X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。
如铜靶材对应的X射线的波长大约为1.5406埃。
考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
这一预见随即为实验所验证。
1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础。
X射线衍射分析原理及其应用X射线及XRD1.1 X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁辐射。
X射线的波长在10-6~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。
1.2 X射线的产生途径有四种1)高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2)将物质用初级X射线照射以产生二级射线—X射线荧光;3)利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源;4)从同步加速器辐射源获得。
1.3 X射线的吸收当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。
物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1] 。
1.4 XRDX射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。
在实际的应用中将该分析方法分3为多晶粉末法和单晶衍射法。
多晶粉末法常用来测定立方晶系的晶体结构点阵形式、晶胞参数及简单结构的原子坐标,还可以对固体式样进行物相分析等。
衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的长;θ是衍射角;d是结晶面间隔;n是整数。
X射线束入射到样品表面后产生衍射,检测器收集衍射X射线信息。
当入射波长λ、样品与X射线束夹角θ及样品晶面间距d满足布拉格公式时,检测器可以检测到最强的信息。
因此采集入射和衍射X射线的角度信息及强度分布,可以获得晶面点阵类型、点阵常数、晶体取向、缺陷和应力等一系列有关材料结构信息[2],确定点阵参数的主要方法是多晶X射线衍射法[3]。
X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。
关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。
1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。
物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。
实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。
在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。
就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。