平行四边形的判定第2课时1
- 格式:ppt
- 大小:760.00 KB
- 文档页数:11
人教版八下18.1.1平行四边形的性质(第2课时)教学设计教学内容解析教学流程图地位与作用本节课是在前一节课研究平行四边形边、角性质的基础上,进一步从平行四边形对角线的角度来探究平行四边形的性质.对角线互相平分是平行四边形的重要性质,在“旋转”一章,学习中心对称及中心对称图形时,会有进一步的体会.平行四边形的学习综合了平行线与三角形的相关知识,突出演绎推理,是训练学生思维的良好平台,而平行四边形的性质又是猜想平行四边形判定的起点,是后续学习矩形、菱形、正方形的基础,所以它在教材中处于非常重要的位置.概念解析平行四边形的性质:平行四边形的对角线互相平分.即在□ABCD中,对角线AC,BD 相交于点O,则OA=OC,OB=OD.平行四边形对角线的性质揭示了平行四边形对角线特殊的位置关系,揭示了对角线交点是平行四边形的对称中心.在具体几何证明应用中,此性质提供了证明线段相等的一种方法,也为已知一条对角线时添加另一条对角线作为辅助线提供了依据.思想方法平行四边形性质的研究从上一课时的边、角分析,再到本节课对对角线关系的分析,展示了研究几何图形性质的一般思路.平行四边形性质3的证明,要转化为三角形全等进行解决,渗透着转化的数学思想.知识类型平行四边形的性质属于原理和规则的知识.在性质的获得与理解层面,需要学生经历“观察、猜想、证明”的过程,在性质的运用层面,需要经过知识由简单到综合,思维由浅入深的层次训练,使学生形成条件化、策略化的知识.基于以上分析,本课的教学重点是:平行四边形性质3的探究与应用.教学目标解析教学目标1.探索并证明平行四边形的性质3.2.会利用平行四边形的性质进行简单的计算和推理.目标解析目标1的具体要求是:明确图形性质的探究就是从构成图形的边、角、对角线等基本要素着手,猜想它们之间的关系,并从定义出发结合已有定理进行逻辑证明. 在证明“平行四边形对角线互相平分”这一性质时,能利用“三角形全等是证明线段相等的重要方法”这个经验想到证明思路并完成证明;目标2的具体要求是:能分清性质3的条件与结论,在题目中涉及平行四边形的对角线时能主动联想到对角线互相平分,进行简单的计算和推理.教学问题诊断分析具备的基础学生在八上已经学习了全等三角形,对利用全等证明线段相等有了比较丰富的经验.在第1课时又已学了平行四边形性质:对边平行且相等,这些是为平行四边形性质3的证明提供了知识基础. 同时,通过前面的学习也初步体会几何图形性质研究的一般思路,这为本节继续研究平行四边形的性质提供了思路与方法.与本课目标的差距分析由于八年级学生处在形象思维与抽象思维的过渡时期,而这个过渡的过程中需要在不断丰富经验和反思体会中顺利跨越,很多学生容易通过观察直接猜想得出平行四边形对角线互相平分,而忽略对此猜想的证明.存在的问题在证“平行四边形对角线互相平分”时,要结合图形写出已知,求证,再进行证明,从文字表述到几何证明是学生感到困难的;同时,随着平行四边形性质的进一步学习,应用性质进行推理计算的要求越来越高,知识综合与复杂程度的提升也会造成学习的困难.应对策略在学生原有的经验中,已经具备利用三角形全等证明线段或角相等的方法,在证明平行四边形性质时,教师应通过目标(证线段相等)分析和方法(证全等三角形)引导,让学生自然合理地想到利用全等三角形证明线段相等的方法.在习题训练中,坚持顺序渐进的原则逐步巩固知识,发展能力.基于以上分析,本课的教学难点是:构建平行四边形性质的研究路径,发现平行四边形的性质3.教学支持条件分析可用ppt自定义动画等技术显示图片动画,体验平行四边形对角线的性质,可用实物投影或西沃授课助手等软件展示学生思考和讨论的成果;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析教学过程设计课前检测1.在□ABCD中∠A=50 o,则∠B=_______,∠C=_______,∠D=_______.2.在□ABCD中,AB=5,BC=3,则它的周长是_______.3.在□ABCD中,AB=4cm,BC=5cm,∠B=30o,则□ABCD的面积为_______.设计意图:检查学生对平行四边形边、角性质及平行线之间的距离的掌握程度,如果学生对于前两个问题回答不好,则需要在课前增加平行四边形性质的复习.新课学习1.创设情境引出课题情境:一位饱经沧桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,分法如图.问题1:如何判断如图的三角形面积是否相等?师生活动设计:先请一位同学回答,如有不足,其他同学补充.预设有两种可能答案:1.可通过证明相对的两对三角形全等,(说明不了相邻两三角形面积相等);2.三角形在等高的情况下,可通过判断底边是否相等即可.设计意图:1.由身边事物来创设情景,虽普通,但蕴含数学来源于生活的道理,容易让学生较快进入所需的数学状态;2.回顾平行四边形边、角两个基本要素的性质,带出对角线这一研究对象;3.引出教师追问.追问:平行四边形除了边、角这两个基本要素的性质外,对角线有什么关系?设计意图:引导学生深入探究平行四边形的性质,明确新课核心内容.2.方法类比提出猜想问题2:如图1,在□ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB 与OD有什么关系?师生活动设计:先引导学生合作探究,可用几何图形性质探究的常用方法:度量法或叠合法来猜想对角线具有什么关系.猜想:平行四边形对角线互相平分.设计意图:经历数学猜想的过程,体验图形性质探究的方法.3.演绎推理形成定理问题3:你能证明上述猜想吗?师生活动设计:对于猜想,要求经历完整的证明过程.教师引导学生画出图形,写出已知,求证.本环节注重化四边形为三角形的思想.如图2,在□ABCD中,连接AC,BD,并设它们相交于点O,求证:OA=OC,OB=OD.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠1=∠2,∠3=∠4.∴△COD ≌△AOB.∴OA=OC,OB=OD.小结:通过推理论证正确的猜想可以成为性质定理,这样我们得到了平行四边形关于对角线的性质:平行四边形的对角线互相平分.设计意图:初步掌握证明猜想的基本步骤:画图,写出已知,求证,证明.经历命题的证明过程,体验化四边形为三角形的思想.问题4:你能用几何语言表述平行四边形对角线的性质吗?师生活动设计:符号语言:∵四边形ABCD是平行四边形∴OA=OC,OB=OD设计意图:强调几何的几种不同语言的转化,为性质的应用作好准备.目标1检测:回顾刚才的过程,我们是如何探索平行四边形对角线的性质的?设计意图:如果学生能大致正确回答,则表示肯定后进入下面环节的学习;如果学生不能很好组织表达,教师应和学生一起回顾学习过程,进一步明确研究图形性质的一般思路与方法,同时指出将四边形问题转化为三角形问题的证明策略.问题5:结合前一节,平行四边形有哪些性质?师生活动设计:平行四边形具有以下性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.设计意图:学生对平行四边形的性质作总结,学会对所学知识作及时整理.追问:引入情景中的老人分土地分得均匀吗?设计意图:前后呼应,体现学有所用.4.运用定理解决问题例1:如图,在□ABCD中,AB=10,AD=8,AC⊥BC.求BC,CD,AC,OA的长,以及□ABCD的面积.师生活动设计:分析思路,引导学生书写规范格式.同时引导学生用所学新知识来解决问题,以免学生跳不出三角形的圈子.设计意图:1.及时巩固平行四边形的性质;2.引出变式图.目标2检测:如图,□ABCD的对角线AC,BD交于点O,已知AC=6,BD=10,AB⊥AC,求AB的长以及□ABCD的面积.设计意图:如果大部分学生能顺利解决,则进入变式的教学,如果个别学生不会,建议进行个别辅导,如果较多学生感到困难,则应对目标2检测题进行详细讲解分析,如果有些学生没有思路,讲解后能领悟也可先进入后续的学习.其中对AB的长应当要求大部分学生能独立解决,□ABCD的面积有多种求法,应给学生表达的时间.变式:在上题中,EF过□ABCD对角线的交点O且与AB,CD分别相交于点E,F.求证:OE=OF.师生活动设计:要求学生口述证明思路,并对不同思路进行点评,突出不同思路的合理成分.设计意图:对例2进行简单变式,使图形有一种动态的感觉,在进一步巩固知识与方法的同时,有利于思维深刻性的训练与培养.追问:图中还有那些相等的量?设计意图:引导学生发散性联想,相等的量可从边、角、面积等角度思考.课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)到目前为止,我们知道了平行四边形的性质有哪些?(2)请回顾平行四边形性质3的探究过程,谈谈你的体会.设计意图:通过小结,使学生梳理平行四边形性质的有关内容,形成知识体系,通过对学习过程的回顾,进一步体会几何研究的一般思路,在这里主要是了解学生的认识情况并稍加指导,完整的教学将在下一节中进行.目标检测设计1.如图,□ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是() A.AO=OD B.AO⊥ODC.AO=OC D.AO⊥AB2.如图,在□ABCD中,BC=10cm,AC=14cm,BD=8cm,则△AOD的周长等于_______.3.如图,在□ABCD中, 对角线AC,BD相交于点O,AC=6,BD=8,则AB的取值范围是_______.4.如图,若平行四边形ABCD的周长为22cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AD=_______,AB=_______.5.如图,延长□ABCD的边BC至E,DA至F,使CE=AF,EF与BD交于O.求证:EF与BD互相平分.。
目录第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)第2课时平行四边形的性质(2)18.1.2 平行四边形的判定第1课时平行四边形的判定(1)第2课时平行四边形的判定(2)18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质第2课时矩形的判定18.2.2 菱形第1课时菱形的性质第2课时菱形的判定18.2.3 正方形第十八章平行四边形标定理,并能运用这些知识进行有关的证明和计算.(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离.探索并证明三角形中位线定理.2.过程及方法通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索和证明过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力和演绎推理能力.3.情感、态度及价值观通过分析平行四边形及各种特殊平行四边形概念之间的联系及区别,使学生认识到特殊及一般的关系,体会事物间是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观.教学重难点重点:1.平行四边形、特殊平行四边形的特征.2.平行四边形、特殊平行四边形的识别方法以及彼此之间的关系.难点:发展学生进一步推理和解决问题的能力.知识结构课题平行四边形的性质课时第1课时上课时间教学目标1.知识及技能(1)理解平行四边形的定义及有关概念.(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想:平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图▱ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.续表探索新知合作探究分析:作▱ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)探究小结平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.【例】如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.教师指导1.归纳小结:(1)平行四边形:有两组对边分别平行的四边形叫做平行四边形.平行四边形用“▱”表示.(2)平行四边形的性质:①平行四边形的对边相等.②平行四边形的对角相等.2.方法规律:(1)只有一组对边平行的四边形不一定是平行四边形.(2)相关概念给出了平行四边形的一个重要性质:两组对边分别平行.(3)平行四边形具有四边形的一切性质.当堂训练1.在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360°2.在▱ABCD中,如果EF∥AD,GH∥CD,EF及GH相交于点O,那么图中的平行四边形一共有( )(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.板书设计平行四边形的性质(1)1.平行四边形的定义2.平行四边形的性质3.应用平行四边形的性质解决线段或角的问题教学反思课题平行四边形的性质课时第2课时上课时间教学目标1.知识及技能(1)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入复习提问:1.什么样的四边形是平行四边形?四边形及平行四边形的关系是:2.平行四边形的性质:(1)具有一般四边形的性质(内角和是360°).(2)角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究请学生在纸上画两个全等的▱ABCD和▱EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将▱ABCD绕点O旋转180°,观察它还和▱EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O及AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.续表探索新知合作探究【例2】已知四边形ABCD是平行四边形,AB=10 cm,AD=8 cm,AC⊥BC,求BC,CD,AC,OA的长以及▱ABCD的面积.分析:由平行四边形的对边相等,可得BC,CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积公式计算.教师指导1.易错点:平行四边形的对角线互相平分,但不一定相等.2.归纳小结:平行四边形的对角线互相平分.3.方法规律:(1)利用平行四边形的对角线互相平分可以解决对角线或边的取值范围问题;(2)平行四边形被对角线分成的四个小三角形,相邻的两个小三角形周长之差等于邻边之差.当堂训练1.在四边形ABCD中,AC=6,BD=4,则AB的范围是.2.在平行四边形ABCD中,已知AB,BC,CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 cm,AD=12 cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计平行四边形的性质(2)1.平行四边形对角线互相平分探究小结:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形判定方法3 对角线互相平分的四边形是平行四边形.2.取两根等长的木条AB,CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.续表探索新知合作探究【例1】已知:如图,A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C';(2)△ABC的顶点分别是△B'C'A'各边的中点.【例2】已知:如图,▱ABCD中,E,F分别是AD,BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.教师指导1.归纳小结:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.(4)两组对边分别相等的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.方法规律:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.当堂训练1.下列条件中能判断四边形是平行四边形的是( )(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等 (D)对角线互相平分2.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.已知:如图,△ABC中,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF.板书设计平行四边形的判定(1)1.平行四边形的判定方法2.平行四边形性质和判定的应用教学反思课题平行四边形的判定课时第2课时上课时间教学目标1.知识及技能理解三角形中位线的概念,掌握它的性质定理;会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算.2.过程及方法经过探索三角形中位线定理的过程,理解它及平行四边形的内在联系,感悟几何学的推理方法.3.情感、态度及价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点重点:三角形的中位线定理.难点:(1)作出简单平面图形关于直线的轴对称图形. (2)三角形的中位线定理的证明中添加辅助线的思想方法.教学活动设计二次设计课堂导入如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?探索新知合作探究自学指导实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?合作探究【例1】如图,点D,E分别为△ABC的边AB,AC的中点,求证:DE∥BC且DE=BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.定义:连接三角形两边中点的线段叫做三角形的中位线.探究讨论:(1)一个三角形的中位线共有几条?(2)三角形的中位线及中线有什么区别?(3)三角形的中位线及第三边有怎样的关系?【拓展】利用这一定理,你能证明在自学指导所设情境中分割出来的四个小三角形全等吗?续表探索【例2】新知合作探究已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.教师指导1.归纳小结:三角形的中位线(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.2.方法规律:(1)中位线不是中线.(2)三角形中位线定理的特点:在同一题设下,有两个结论,一个结论表示位置关系,另一个结论表示数量关系.(3)三角形中位线定理的作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍数关系.当堂训练1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点的距离是 m,理由是.2.已知:三角形的各边分别为8 cm,10 cm和12 cm,求连接各边中点所成三角形的周长.3.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB= cm;若BC=9 cm,则DE= cm;(2)中线AF及DE中位线有什么特殊的关系?证明你的猜想.板书设计平行四边形的判定(2)1.平行四边形的判定方法2.平行四边形判定方法的选择3.中位线以及中位线定理教学反思课题矩形课时第1课时上课时间教学目标1.知识及技能(1)掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系.(2)会初步运用矩形的概念和性质来解决有关问题.2.过程及方法经历探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法.3.情感、态度及价值在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的性质.难点:矩形的性质的灵活应用.教学活动设计二次设计课堂导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何动,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形.探索新知合作探究自学指导1.请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?2.试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?3.观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角;矩形的对角线;矩形是轴对称图形,它的对称轴是.合作探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?【例1】已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:△AOB是等边三角形.(注意表达格式完整性及逻辑性)续表探索新知合作探究拓展及延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?【例2】在矩形ABCD中,两条对角线AC,BD相交于O,∠ACD=30°,AB=4.(1)判断△AOD的形状;(2)求对角线AC,BD的长.教师指导1.归纳小结:(1)矩形的概念有一个角是直角的平行四边形叫做矩形,也就是长方形.(2)矩形的性质①矩形的四个角都是直角.②矩形的对角线相等.③直角三角形斜边上的中线等于斜边的一半.(推论)2.方法规律:(1)矩形的概念是研究矩形的基础,既可以看做是矩形的性质,又可以视为矩形的判别方法.(2)矩形具有平行四边形的一切性质.(3)矩形既是中心对称图形,又是轴对称图形.对称中心为对角线的交点,对称轴为对边中点所在的直线.当堂1.下列说法错误的是( )(A)矩形的对角线互相平分训练(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形2.已知矩形的一条对角线长为10 cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm,cm, cm.3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.板书设计矩形的性质1.矩形的定义2.矩形的性质及推理教学反思课题矩形课时第2课时上课时间教学目标1.知识及技能理解并掌握矩形的判定方法.2.过程及方法使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学活动设计二次设计课堂导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?探索新知合作探究1.矩形是轴对称图形,它有条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10 cm,边BC=8 cm,则△ABO的周长为.3.想一想:矩形有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线思考:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?(得到矩形的一个判定)做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由.(探索得到矩形的另一个判定)合作探究下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角是直角的四边形是矩形.( )(3)四个角都相等的四边形是矩形.( )续表探索新知合作探究(4)对角线相等的四边形是矩形.( )(5)对角线相等且互相垂直的四边形是矩形.( )(6)对角线互相平分且相等的四边形是矩形.( )(7)对角线相等,且有一个角是直角的四边形是矩形.( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形.( )(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【例1】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.【例2】已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.学重难点难点:菱形的性质及菱形知识的综合应用.教学活动设计二次设计课堂导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.探索新知合作探究自学指导我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.合作探究已知,如图:四边形ABCD是菱形.(1)AB及CD,AD及BC有怎样的关系?(2)∠ABC及∠ADC相等吗?∠BAD及∠BCD呢?菱形ABCD相邻的两个角又有怎样的关系呢?(3)OA及OC相等吗?OB及OD呢?对角线AC及BD有怎样的位置关系?(4)有人说∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,你认为正确吗?(5)菱形是轴对称图形吗?它有几条对称轴?分别是什么?通过解决以上5个问题引导学生总结出菱形的性质(学生自主推导及老师点拨相结合,先做出来的教教还没做出来的同学,增加同学之间的交流及沟通,最后由老师点评一下)续表探索新知合作探究教师指导1.归纳小结:(1)菱形:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形的四条边都相等.②菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.方法规律:①菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.②菱形是特殊的平行四边形,其面积求法及平行四边形求法相同,其面积等于底乘以相应底上的高.而且菱形的两条对角线互相垂直平分,将菱形分成4个全等的直角三角形,因此菱形面积为4×××两条对角线长之积=×两条对角线长之积.当堂训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形ABCD的周长为20 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.板书设计菱形的性质1.菱形定义2.菱形的性质3.菱形的面积计算教学反思课题菱形课时1课时上课时间教学目标1.知识及技能(1)理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.(2)在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.2.过程及方法(1)尝试从不同角度寻求菱形的判定方法,并能有效地解决问题.(2)尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.3.情感、态度及价值观启发引导学生理解探索结论和证明结论的过程,掌握合情推理及演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.教学重难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求和方法.难点:明确推理证明的条件和结论,能用数学语言正确表达.教学活动设计二次设计课堂导入什么样的四边形是平行四边形?它有哪些判定方法?边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?探索新知合作探究自学指导自学课本,回答以下问题1.有一组的平行四边形是菱形.2.对角线的平行四边形是菱形.3. 的四边形是菱形.合作探究1.由菱形的定义判定明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.2.除了运用菱形的定义,类比平行四边形的性质定理和判定定理,小组讨论能否找出判定菱形的其他方法?【做一做】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.续表探索新知(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想1:当木条互相垂直时,平行四边形的一组邻边相等,此时四边。
数学教案-平行四边形及其性质第二课时一、教学目标1.理解平行四边形的定义及其性质。
2.掌握平行四边形判定定理的应用。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重难点1.重点:平行四边形的性质及其判定定理。
2.难点:运用平行四边形的性质和判定定理解决实际问题。
三、教学过程1.导入新课师:同学们,上一节课我们学习了平行四边形的定义和性质,那么如何判定一个四边形是平行四边形呢?这节课我们就来学习平行四边形的判定定理。
2.学习平行四边形的判定定理(1)引导学生回顾平行四边形的定义和性质。
师:请同学们回忆一下,平行四边形有哪些性质?生:平行四边形的对边平行且相等,对角相等,邻角互补。
(2)讲解平行四边形的判定定理。
①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分。
(3)举例说明判定定理的应用。
师:下面我们来看几个例子,运用平行四边形的判定定理来解决问题。
例1:已知四边形ABCD中,AD∥BC,AB=CD,求证:ABCD是平行四边形。
例2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD是平行四边形。
3.练习师:同学们,下面我们来做一些练习题,巩固一下平行四边形的判定定理。
(1)练习题1:已知四边形ABCD中,AB∥CD,AD∥BC,求证:ABCD是平行四边形。
(2)练习题2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD 是平行四边形。
4.课堂小结师:通过这节课的学习,我们掌握了平行四边形的判定定理,可以运用这些定理来解决实际问题。
在今后的学习中,我们要熟练运用这些定理,提高解题能力。
5.作业布置(1)课后作业1:完成教材P页的练习题。
四、教学反思本节课通过讲解平行四边形的判定定理,让学生掌握了判定一个四边形是平行四边形的方法。
在教学过程中,注重引导学生回顾已学的知识,充分发挥学生的主体作用,让学生在练习中巩固所学知识。
但在教学过程中,发现部分学生对判定定理的应用还不够熟练,需要在今后的教学中加强训练。
人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。