1.2 第2课时 矩形的判定
- 格式:ppt
- 大小:2.49 MB
- 文档页数:21
第一章特殊的平行四边形1.2 矩形的性质与判定第2课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=.∴□ABCD是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°.∴AD∥BC.∵∠B+∠C=180°,∴AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴.∴S□ABCD=AB·BC=4×=.设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案C2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.参考答案12.3.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC.求证:四边形ABCD是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD是平行四边形,∴AB=DC.∵M是AD边的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS).∴∠A=∠D.又∵AB∥DC,∴∠A+∠D=180°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD中,对角线AC,BD相交于点O,点E是□ABCD外一点,且∠AEC=∠BED=90°.求证:□ABCD是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠AEC=∠BED=90°,∴OE=AC=BD.∴AC=BD.∴□ABCD是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
第2课时矩形的判定1.理解并掌握矩形的判定方法;(重点)2.能熟练掌握矩形的判定及性质的综合应用.(难点)一、情景导入小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!二、合作探究探究点一:对角线相等的平行四边形是矩形如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AM=BP=CN=DQ,∴OM=OP=ON=OQ.∴四边形MPNQ是平行四边形.又∵OM+ON=OQ+OP,∴MN=PQ.∴平行四边形MPNQ是矩形(对角线相等的平行四边形是矩形).方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.探究点二:有三个角是直角的四边形是矩形如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线,求证:四边形ADBC是矩形.解析:利用已知条件,证明四边形ADBC有三个角是直角.证明:∵GE∥HF,∴∠GAB+∠ABH=180°.∵AD、BD分别是∠GAB、∠ABH的平分线,∴∠1=12∠GAB,∠4=12∠ABH,∴∠1+∠4=12(∠GAB+∠ABH)=12×180°=90°,∴∠ADB=180°-(∠1+∠4)=90°.同理可得∠ACB=90°.又∵∠ABH+∠FBA=180°,∠4=12∠ABH,∠2=12∠FBA,∴∠2+∠4=12(∠ABH+∠FBA)=12×180°=90°,即∠DBC=90°.∴四边形ADBC是矩形.方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.探究点三:有一个角是直角的平行四边形是矩形如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.(1)BD与DC有什么数量关系?请说明理由;(2)当△ABC满足什么条件时,四边形AFBD 是矩形?并说明理由.解析:(1)根据“两直线平行,内错角相等”得出∠AFE =∠DCE ,然后利用“AAS ”证明△AEF 和△DEC 全等,根据“全等三角形对应边相等”可得AF =CD ,再利用等量代换即可得BD =CD ;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD 是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB =90°.由等腰三角形三线合一的性质可知△ABC 满足的条件必须是AB =AC .解:(1)BD =CD .理由如下: ∵AF ∥BC ,∴∠AFE =∠DCE . ∵E 是AD 的中点, ∴AE =DE . 在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =DC . ∵AF =BD , ∴BD =DC ;(2)当△ABC 满足AB =AC 时,四边形AFBD 是矩形.理由如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形. ∴AB =AC ,BD =DC , ∴∠ADB =90°.∴四边形AFBD 是矩形. 方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定错误!通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.。
第2课时矩形的判定教学目标1.理解并掌握矩形的判定定理,能有理有据的推理证明,精练准确地书写表达。
2. 能熟练应用矩形的性质、判定等知识进行有关证明和计算.重点掌握并会运用矩形的判定难点运用矩形的判定进行简单的推理与计算。
一、旧知回顾1、想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.平行四边形矩形边对边平行且相等对边平行且相等角对角相等,邻角互补四个角都是直角对角线对角线互相平分对角线相等且互相平分2、矩形对称性:二、合作探究仿照平行四边形的判定猜想,你能猜出矩形的判定有哪些吗?(分别从边、角、对角线几个方面考虑。
)1、定义可以作为判定2、四个角都是直角的四边形3、对角线相等的平行四边形或对角线互相平分且相等的四边形。
你能证明所写出的判定命题吗?备注(教师复备栏)三、应用例1. 如图,□ ABCD 的对角线AC 、BD 交于点O ,△AOB 是正三角形,AB=4cm.(1) 求证□ ABCD 是矩形. (2) 求□ ABCD 的面积.2.已知:如图 ,在△ABC 中,∠C =90°, CD 为中线,延长CD 到点E ,使得 DE =CD .连结AE ,BE ,则四边形ACBE 为矩形吗?说明理由。
答案:四边形ACBE 是矩形.因为CD 是Rt △ACB 斜边上的中线,所以DA=DC=DB,又因为DE=CD ,所以DA=DC=DB=DE,所以四边形ABCD 是矩形(对角线相等且互相平分的四边形是矩形)。
四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形备注(教师复备栏)ODC BA2. 矩形各角平分线围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形()(2)四个角都是直角的四边形是矩形()(3)四个角都相等的四边形是矩形()(4)对角线相等的四边形是矩形()(5)对角线相等且互相垂直的四边形是矩形()(6)对角线相等且互相平分的四边形是矩形()4.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)。
第2课时矩形的判定教学目标1.理解并掌握矩形的判定定理,能有理有据的推理证明,精练准确地书写表达。
2. 能熟练应用矩形的性质、判定等知识进行有关证明和计算.重点掌握并会运用矩形的判定难点运用矩形的判定进行简单的推理与计算。
一、旧知回顾1、想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.平行四边形矩形边对边平行且相等对边平行且相等角对角相等,邻角互补四个角都是直角对角线对角线互相平分对角线相等且互相平分2、矩形对称性:二、合作探究仿照平行四边形的判定猜想,你能猜出矩形的判定有哪些吗?(分别从边、角、对角线几个方面考虑。
)1、定义可以作为判定2、四个角都是直角的四边形3、对角线相等的平行四边形或对角线互相平分且相等的四边形。
你能证明所写出的判定命题吗?备注(教师复备栏)三、应用例1. 如图,□ ABCD 的对角线AC 、BD 交于点O ,△AOB 是正三角形,AB=4cm.(1) 求证□ ABCD 是矩形. (2) 求□ ABCD 的面积.2.已知:如图 ,在△ABC 中,∠C =90°, CD 为中线,延长CD 到点E ,使得 DE =CD .连结AE ,BE ,则四边形ACBE 为矩形吗?说明理由。
答案:四边形ACBE 是矩形.因为CD 是Rt △ACB 斜边上的中线,所以DA=DC=DB,又因为DE=CD ,所以DA=DC=DB=DE,所以四边形ABCD 是矩形(对角线相等且互相平分的四边形是矩形)。
四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形备注(教师复备栏)ODC BA2. 矩形各角平分线围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形()(2)四个角都是直角的四边形是矩形()(3)四个角都相等的四边形是矩形()(4)对角线相等的四边形是矩形()(5)对角线相等且互相垂直的四边形是矩形()(6)对角线相等且互相平分的四边形是矩形()4.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)。
上埠二中《乡村中小学信息技术与数学教课有效整合的实践研究》课题组等的平行四边形是矩形).第 2 课时矩形的判断方法总结:在判断四边形的形状时,若已知条件中有对角线,可第一考虑可否用对1.理解并掌握矩形的判断方法;(要点 )2.能娴熟掌握矩形的判断及性质的综合应用. (难点 )一、情形导入小明想要做一个矩形相框送给妈妈做诞辰礼品,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么方法能够检测他做的是矩形相框?看看谁的方法可行!二、合作研究研究点一:对角线相等的平行四边形是矩形以下图,外面的四边形ABCD 是矩形,对角线AC,BD 订交于点O,里面的四边形 MPNQ 的四个极点都在矩形ABCD 的对角线上,且AM = BP= CN=DQ .求证:四边形MPNQ 是矩形.分析:要证明四边形MPNQ 是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.证明:∵四边形ABCD 是矩形,∴ OA =OB= OC= OD.∵AM= BP= CN= DQ,∴OM= OP= ON=OQ.∴四边形 MPNQ 是平行四边形.又∵ OM + ON= OQ+ OP,∴MN= PQ.∴平行四边形MPNQ 是矩形 (对角线相角线的条件证明矩形.研究点二:有三个角是直角的四边形是矩形如图, GE∥ HF ,直线 AB 与 GE 交于点 A,与 HF 交于点 B,AC 、BC、 BD、AD 分别是∠ EAB、∠ FBA、∠ ABH 、∠GAB的均分线,求证:四边形 ADBC 是矩形.分析:利用已知条件,证明四边形ADBC 有三个角是直角.证明:∵ GE∥HF ,∴∠ GAB+∠ ABH = 180°.∵AD、BD 分别是∠ GAB、∠ ABH 的平分线,∴∠ 1=1∠GAB,∠ 4=1∠ ABH,22∴∠ 1+∠4=12(∠GAB +∠ABH) =12×180°= 90°,∴∠ ADB =180°- (∠ 1+∠ 4)= 90°.同理可得∠ ACB= 90°.又∵∠ ABH+∠ FBA = 180°,∠4=12∠ ABH,∠ 2=12∠ FBA,∴∠ 2+∠4=112(∠ABH +∠FBA) =2×180°= 90°,即∠ DBC= 90°.∴四边形 ADBC 是矩形.方法总结:矩形的判断方法和矩形的性质是相辅相成的,注意它们的差别和联系,此判断方法只需说明一个四边形有三个角上埠二中《乡村中小学信息技术与数学教课有效整合的实践研究》课题组是直角,则这个四边形就是矩形.研究点三:有一个角是直角的平行四边形是矩形以下图,在△ ABC 中,D 为 BC 边上的一点, E 是 AD 的中点,过 A 点作 BC 的平行线交 CE 的延伸线于点 F,且 AF = BD . 连结 BF.(1)BD 与 DC 有什么数目关系?请说明原因;(2)当△ ABC 知足什么条件时,四边形AFBD 是矩形?并说明原因.分析: (1)依据“两直线平行,内错角相等”得出∠ AFE =∠ DCE ,而后利用“AAS ”证明△ AEF 和△DEC 全等,依据“全等三角形对应边相等” 可得AF=CD,再利用等量代换即可得BD = CD ;(2) 先利用“一组对边平行且相等的四边形是平行四边形” 证明四边形AFBD 是平行四边形,再依据“有一个角是直角的平行四边形是矩形” 可知∠ ADB = 90°.由等腰三角形三线合一的性质可知△ ABC 知足的条件一定是AB=AC .解: (1)BD = CD .原因以下:∵AF∥ BC,∴∠ AFE =∠ DCE .∵E 是 AD 的中点,∴AE=DE.在△AEF和△DEC中,∠AFE=∠ DCE ,∠AEF =∠ DEC ,AE= DE ,∴△ AEF ≌△ DEC(AAS) ,∴AF=DC .∵AF=BD ,∴BD=DC;(2)当△ ABC 知足 AB=AC 时,四边形AFBD 是矩形.原因以下:∵AF∥BD , AF= BD ,∴四边形 AFBD 是平行四边形.∴ AB=AC, BD= DC ,∴∠ ADB =90°.∴四边形 AFBD 是矩形.方法总结:此题综合考察了矩形和全等三角形的判断方法,明确有一个角是直角的平行四边形是矩形是解此题的要点.三、板书设计矩形的判断错误 !经过研究与沟通,得出矩形的判断定理,使学生亲自经历知识的发生过程,并会运用定理解决有关问题.经过开放式命题,试试从不一样角度追求解决问题的方法.经过着手实践、合作研究、小组沟通,培育学生的逻辑推理能力 .。