9.3.1空间两条直线所成的角
- 格式:ppt
- 大小:805.50 KB
- 文档页数:12
空间两条直线及所成的角教学设计【设计理念】:中职学校立体几何课程以培养学生的逻辑思维和空间想象力为主要目标。
根据我校学生特点,坚持教学课堂的先做后学,先学后教,以教促学的“生本理念”,在处理方式上采用削干强枝,淡化形式的教学原则,通过多媒体应用,加强引导学生通过自己的观察、操作等活动获得教学结论的过程,把合情推理作为学习过程中的一个重要的推理方式。
注重对典型实例的观察、分析,给学生提供动手操作的机会,引导学生进行归纳、概括活动,在经历观察、实验,猜想等合情推理活动后,再进行演绎推理、逻辑论证。
另外,通过“观察、思考、探究”等向学生提出问题,以问题引导学生的思维活动,使学生在问题带动在进行更加主动的思维活动,经历从实际背景中抽象出数学模型,从现实生活空间中抽象出几何图形和几何问题的过程,注重探索空间图形性质的过程。
一、教学目标知识目标:(1)理解异面直线的概念,掌握空间两条直线的位置关系(2)理解异面直线夹角的定义,熟练掌握求异面直线夹角的的方法能力目标:(1)采用情景、对话、探讨等教学模式,通过动手画图,分析总结,空间想象等小结出异面直线的概念,得出空间里面两条直线的位置关系。
(2)通过平移的方法,得出夹角的定义,并熟练求异面直线的夹角(3)培养学生的空间想象能力和数学思维能力.情感目标:(1)培养学生善于提出问题、分析问题的思维品质,理解事物之间相互关系、相互转化的辩证唯物主义思想。
(2)努力创造一种和谐、平等、宽松的课堂氛围,让学生乐于学习,敢于表达、交流自己的看法和想法。
二、教学重点和难点:教学重点: (1)异面直线概念的定义,判断异面直线所成的角。
(2)如何求异面直线的夹角。
教学难点:异面直线所成的角【教法分析】在教学内容的处理上,按照“直观感知—操作确认—思辨应用”的认识过程展开。
采用合作讨论法,实践学习法等教学方法,先通过直观感知和操作确认的方法,概括出异面直线的概念。
采用多媒体教学等有效手段,通过对图形的观察、实验和画图,使学生进一步了解空间的直线与直线夹角,学会准确的运用异面直线夹角知识解决一些简单的推理应用问题。
两条直线所成的角一、教学目标(一)知识教学点一条直线与另一条直线所成角的概念及其公式;两直线的夹角公式;能熟练运用公式解题.(二)能力训练点通过课题的引入;训练学生由特殊到一般;定性、定量逐层深入研究问题的思想方法;通过公式的推导;培养学生综合运用知识解决问题的能力.(三)学科渗透点训练学生由特殊到一般;定性、定量逐步深入地研究问题的习惯.二、教材分析1.重点:前面研究了两条直线平行与垂直;本课时是对两直线相交的情况作定量的研究.两直线所成的角公式可由一条直线到另一条直线的角公式直接得到;教学时要讲请l1、l2的公式的推导方法及这一公式的应用.2;难点:公式的记忆与应用.3.疑点:推导l1、l2的角公式时的构图的分类依据.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课我们已经研究了直角坐标平面两条直线平行与垂直的情况;对于两条相交直线;怎样根据它们的直线方程求它们所成的角是我们下面要解决的问题.(二)l1到l2的角正切两条直线l1和l2相交构成四个角;它们是两对对顶角.为了区别这些角;我们把直线l1依逆时针方向旋转到与l2重合时所转的角;叫做l1到l2的角.图1-27中;直线l1到l2的角是θ1;l2到l1的角是θ2(θ1+θ2=180°).l1到l2的角有三个要点:始边、终边和旋转方向.现在我们来求斜率分别为k1、k2的两条直线l1到l2的角;设已知直线的方程分别是l1∶y=k1x+b1 l2∶y=k2x+b2如果1+k1k2=0;那么θ=90°;下面研究1+k1k2≠0的情形.由于直线的方向是由直线的倾角决定的;所以我们从研究θ与l1和l2的倾角的关系入手考虑问题.设l1、l2的倾斜角分别是α1和α2(图1-32);甲图的特征是l1到l2的角是l1、l2和x轴围成的三角形的内角;乙图的特征是l1到l2的角是l1、l2与x 轴围成的三角形的外角.tgα1=k1; tgα2=k2.∵θ=α2-α1(图1-32);或θ=π-(α1-α2)=π+(α2-α1);∴tgθ=tg(α2-α1).或tgθ=tg[π(α2-α1)]=tg(α2-α1).可得即eq \x( )上面的关系记忆时;可抓住分子是终边斜率减始边斜率的特征进行记忆.(三)夹角公式从一条直线到另一条直线的角;可能不大于直角;也可能大于直角;但我们常常只需要考虑不大于直角的角(就是两条直线所成的角;简称夹角)就可以了;这时可以用下面的公式(四)例题解:k1=-2;k2=1.∴θ=arctg3≈71°34′.本例题用来熟悉夹角公式.例2 已知直线l1: A1x+B1y+C1=0和l2: A2x+B2y+C2=0(B1≠0、B2≠0、A1A2+B1B2≠0);l1到l2的角是θ;求证:证明:设两条直线l1、l2的斜率分别为k1、k2;则这个例题用来熟悉直线l1到l2的角.例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0;底边所在的直线l2的方程是x+y-1=0;点(-2;0)在另一腰上;求这腰所在直线l3的方程.解:先作图演示一腰到底的角与底到另一腰的角相等;并且与两腰到底的角与底到另一腰的角相等;并且与两腰的顺序无关.设l1、l2、l3的斜率分别是k1、k2、k3;l1到l2的角是θ1;l2到l3的角是θ2;则.因为l1、l2、l3所围成的三角形是等腰三角形;所以θ1=θ2.tgθ2=tgθ1=-3.解得 k3=2.因为l3经过点(-2;0);斜率为2;写出点斜式为y=2[x-(-2)];即 2x-y+4=0.这就是直线l3的方程.讲此例题时;一定要说明:无须作图;任一腰到底的角与底到另一腰的角都相等;要为锐角都为锐角;要为钝角都为钝角.(五)课后小结(1)l1到l2的角的概念及l1与l2夹角的概念;(2)l1到l2的角的正切公式;(3)l1与l2的夹角的正切公式;(4)等腰三角形中;一腰所在直线到底面所在直线的角;等于底边所在直线到另一腰所在直线的角.五、布置作业1.(教材第32页;1.8练习第1题)求下列直线l1到l2的角与l2到l1的角:∴θ1=45°.l2到l1的角θ2=π-θ1=arctg3.2.(教材第32页;1.8练习第2题)求下列直线的夹角:∵k1·k2=-1;∴l1与l2的夹角是90°.(2)k1=1; k2=0.两直线的夹角为45°.∴l1与l2的夹角是90°.3.(习题三第10题)已知直线l经过点P(2;1);且和直线5x+2y+3=0的夹角为45o;求直线l的方程.即3x+7y-13=0或7x-3y-11=0.4.等腰三角形一腰所在的直线l1的方程是2x-y+4=0;底面所在的直线l2的方程是x+y-1=0;点(-2;0)在另一腰上;求这腰所在的直线l3的方程.解:这是本课例3将l1与l3互换的变形题;解法与例3相同;所求方程为:x-2y-2=0.六、板书设计。
第 7 章立体几何习题练习 9.1.11、判断题,下列语句说法正确的打“√”,错误的打“ Χ”(1)一个平面长是4cm,宽是 2cm();(2) 10 个平面重叠在一起比 5 个平面重叠在一起要厚();(3)一个平面将空间分成两部分()。
2、选择题(每题只有一个正确答案)(1)以下命题中,正确的个数是()①平面是没有边界且光滑的图形,②四条线段首首尾连接,所得图形一定是平面图形,③画两个相交平面时,一定要画出交线。
A . 0B. 1C. 2D. 3(2)下列说法中,正确的是()A .教室里的黑板面就是平面B.过一条直线的平面只有 1 个C.一条线段在一个平面内,这条线段的延长线可以不在这个平面内D.平面是没有厚薄之分的3、如图,在长方体ABCD — A 1B1C1D 1中,请表示出该图形的 6 个平面(要求用各面的四个顶点来表示)参考答案:1、( 1)Χ( 2)Χ(3)√2、( 1) C( 2) D3、平面 ABCD ,平面 A 1B1C1D 1,平面 ADD 1 A 1,平面 BCC 1 B1,平面 ABB 1 A1,平面 D CC 1D 1练习 9.1.21、选择题(每题只有一个正确答案)(1)下列说法中有错误的是()①三个点可以确定一个平面,②若两个平面有一个公共点,则它们有无数多个公共点,③空间任意两条直线可以确定一个平面,④直线与直线外一点可以确定一个平面。
A .①②B .①③C.②④D.③④(2)下列图形中不一定是平面图形的是()A .三角形B.平行四边形C.四条线段首尾连接而成的四边形D.梯形(3)用符号表示语句“直线a, b 相交于平面α内一点 M”,正确的是()A . a b M , a, bB . a b M , MC. a b M, a 刎 ,b D. M, M a b, a 刎 , b2、用符号表示下列语句(1)点 A 在直线 a 上,直线 a 在平面α内(2)平面β过直线 b 及 b 外一点 M ,点 N 在平面β外,直线 c 过点 M , N3、如图所示,对于长方体ABCD —A 1B 1C1D1,回答下列问题。
两条直线相交角的位置关系
两条直线相交角的位置关系是指两条直线在平面或空间中相交时,它们所形成的交角的大小和方向。
1.角度大小:两条直线相交形成的角度大小取决于它们的方向。
如果两条直线相互垂直,那么它们所形成的角度是90度或者270度。
如果两条直线相互平行,那么它们所形成的角度是0度或者360度。
2.角度方向:两条直线相交形成的角度方向取决于它们的相对位置。
如果两条直线从同一方向出发,那么它们所形成的角度方向是从大到小的。
如果两条直线从相反方向出发,那么它们所形成的角度方向是从小到大的。
3.角度变化:两条直线相交形成的角度大小和方向会随着它们的位置变化而变化。
例如,如果两条直线相互靠近,那么它们所形成的角度就会减小。
如果两条直线相互远离,那么它们所形成的角度就会增大。
总的来说,两条直线相交角的位置关系是由它们的方向、相对位置和位置变化决定的。
直线与直线所成角公式范围
直线与直线所成角公式是几何学中的一个重要概念。
在欧几里得几何中,两条直线所成的角被定义为它们的夹角,表示为∠ABC,其中A、B、C分别是两条直线的交点和两条直线上的两个点。
直线与直线所成的角的范围是0°到180°之间。
直线与直线所成角的大小取决于两条直线的相对方向。
当两条直线平行时,它们不会相交,因此它们所成的角为0°。
当两条直线相交时,它们所成的角的大小可以通过直线的斜率来计算。
然而,当两条直线互相垂直时,它们所成的角的大小需要通过直线的斜率来计算。
对于两条直线L1和L2,如果它们的斜率分别为m1和m2,那么它们所成的角的大小可以通过以下公式计算:
tan(∠L1L2) = |(m2 - m1) / (1 + m1 * m2)|
这个公式适用于所有直线的情况,包括水平和垂直的直线。
值得注意的是,在计算过程中需要注意斜率不存在的情况。
除了直线与直线所成角的计算公式,几何学中还有其他与角度相关的概念,比如线段之间的夹角、直线与平面之间的夹角等。
这些概念在实际应用中具有广泛的应用,例如建筑设计、导航系统以及机器人控
制等领域。
因此,熟练掌握直线与直线所成角的计算方法对于解决实际问题非常重要。
空间中直线与平面所成角的范围一、引言空间中直线与平面所成角的研究是几何学中的重要内容,涉及到许多实际问题的求解。
本文将对空间中直线与平面所成角的范围进行详细探讨,以期提高大家对几何知识的理解和应用能力。
二、空间中直线与平面所成角的定义与性质1.定义空间中直线与平面所成角是指直线与平面内任意一条直线所成的最小角。
这个角度可以用直线与平面内直线之间的夹角来表示。
2.性质(1)直线与平面平行时,所成角为0°。
(2)直线与平面垂直时,所成角为90°。
(3)直线与平面斜交时,所成角的范围为0°~90°。
三、空间中直线与平面所成角的变化范围1.直线与平面平行时,所成角为0°。
2.直线与平面垂直时,所成角为90°。
3.直线与平面斜交时,所成角的范围为0°~90°。
四、应用与实例1.几何问题求解在几何问题中,了解空间中直线与平面所成角的范围有助于快速判断线面关系,进而解决问题。
例如,在解决立体图形的表面积和体积问题时,可以通过计算直线与平面所成角来确定几何体的形状。
2.工程实践中的应用在工程实践中,空间中直线与平面所成角的应用也十分广泛。
例如,建筑设计师在设计建筑物的空间结构时,需要了解直线与平面所成角的大小,以确保建筑物的稳定性。
此外,机械工程师在设计机械零件时,也需要考虑直线与平面所成角的影响,以保证零件的装配精度。
五、总结与拓展本文对空间中直线与平面所成角的范围进行了详细探讨,从定义、性质、变化范围等方面进行了分析。
通过对这一知识点的掌握,大家可以在几何问题求解和工程实践中发挥重要作用。
此外,对于空间几何中的其他知识点,如直线与直线、直线与曲线、曲线与曲线之间的角度问题,也可以采用类似的方法进行研究和探讨。