第五章-活塞式压缩机动力计算3
- 格式:ppt
- 大小:232.00 KB
- 文档页数:14
活塞式压缩机设计手册前言活塞式压缩机是一种常见的机械设备,广泛应用于各个行业中。
它的设计与性能对于设备的工作效率和稳定性具有重要影响。
本手册将介绍活塞式压缩机的设计原理、结构及其应用,帮助读者更好地了解和应用活塞式压缩机。
一、活塞式压缩机的原理活塞式压缩机是一种通过活塞在缸体内往复运动实现气体的吸入和压缩的装置。
其工作原理主要包括吸入、压缩、排气三个过程。
活塞在缸体内往复运动时,通过活塞和活塞杆的连接作用,实现了气体的吸入和压缩。
这种运动方式使得活塞式压缩机具有高效、可靠的特点。
二、活塞式压缩机的结构活塞式压缩机由缸体、活塞、活塞杆、连杆、曲轴等组成。
其中,活塞和活塞杆在缸体内往复运动,完成气体的吸入和压缩;连杆将活塞的直线运动转换为曲轴的旋转运动,以便实现更高效的压缩。
活塞式压缩机的结构设计对于其性能和寿命有着重要的影响。
三、活塞式压缩机的应用活塞式压缩机广泛应用于空气压缩机、制冷设备、液压机械及工业设备中。
以空气压缩机为例,活塞式压缩机通过将空气吸入缸体并压缩,使得压缩空气达到所需的工作压力。
制冷设备中,活塞式压缩机则通过压缩制冷剂,实现制冷循环过程。
在液压机械及其他工业设备中,活塞式压缩机则用于提供压力和动力。
四、活塞式压缩机设计要点活塞式压缩机的设计要点包括以下几个方面:1. 缸体与活塞的匹配在活塞式压缩机的设计中,缸体和活塞的匹配是一个关键环节。
合理的缸体和活塞匹配可以减小摩擦损失和泄漏,提高工作效率。
因此,在设计过程中需要进行充分的计算和测试,并选择合适的材料。
2. 活塞杆的设计活塞杆是将活塞与连杆连接的重要部件。
在活塞式压缩机的设计中,活塞杆的刚性和强度对于设备的安全运行和寿命至关重要。
设计时需要保证活塞杆的强度满足工作条件,并通过适当的润滑和冷却措施减小摩擦损失。
3. 连杆设计连杆是活塞与曲轴连接的关键部件。
在活塞式压缩机的设计中,连杆的设计要考虑到力学特性和可靠性。
合理的连杆设计可以减小振动和冲击,降低设备失效的风险。
活塞式压缩机基础设计计算作者:李莹来源:《山东工业技术》2017年第05期摘要:根据相关设计规范以及工程设计经验,介绍了活塞式压缩机基础的设计原则,计算方法,并以具体项目进行阐述。
关键词:压缩机基础;振动;共振;计算方法DOI:10.16640/ki.37-1222/t.2017.05.2251 引言在石化企业装置中,压缩厂房是较为重要的工段之一,其中经常遇到动力基础的设计问题。
往复活塞式压缩机属于动力机械中振动问题比较特殊的一类。
一般来说,严重的振动问题发生在共振的时候,剧烈振动能引起连接螺栓断裂、管道开裂、主轴承破坏,甚至压缩机基础振裂等较为严重的工程事故。
对活塞式压缩机基础进行设计及计算,就是要把基础的振动控制在允许范围内,使基础的振动不影响机器的正常工作。
2 压缩机基础设计原则活塞压缩机基础的设计主要应满足下列要求:(1)基底静压力小于地基土的容许承载力,沉降均匀,基础具有足够的强度和刚度。
(2)尽可能避开共振区工作,控制基础的振幅(或速度),以便保证机器正常运转。
3 压缩机基础计算3.1 压缩机基础静力计算(1)基础静力计算包括机组重心的核算,地基承载力验算和局部构件的承载力验算。
(2)基础上的静荷载应包括机器及附属设备重、基础自重、基础板上的土重、支承在基础上的其他荷重。
(3)基础设计时应力求使基组重心与基础底面形心位于同一垂直线上。
(4)地基承载力:基础底面平均静压力标准值小于等于修正后的地基承载力特征值。
3.2 压缩机基础动力计算3.2.1 压缩机基础的振动控制指标压缩机基础的振动应同时控制顶面的最大振动线位移和最大振动速度。
基础顶面控制点的最大振动线位移不应大于0.20mm,最大振动速度不应大于6.30mm/s。
3.2.2 压缩机基础的动力计算方法活塞式压缩机基础的动力计算方法主要有两种,即共振法和振幅法。
我国设计规范是以振幅法来进行计算的。
振幅法的设计要求基础的振幅值不许超过允许值。
往复压缩机活塞杆反向角计算及分析往复活塞式压缩机是社会中各行的大型工业都不可或缺的设备。
尤其在石油相关行业中大量使用该种压缩机,成为了该行业的核心设备。
本文首先进行往复式活塞压缩机反向角以及其在变工况环境下的基于热力学、动力学计算,在计算的基础上得到了不同工况下的综合活塞力图,根据综合活塞力图分析分析了工况变化对反向角的影响规律。
标签:往复压缩机;动力计算;变工况;反向角1引言反向角的反向程度大小与十字头销、铜套的损坏程度以及压缩机工作正常与否有着密不可分的关系。
铜套和十字头销工作中紧紧贴合且受到加速度大的改变冲击,因此一个足够的反向角用来让他们得到充分的润滑、冷却。
倘若十字头在十字头销所受到的合力作用下贴紧于活塞侧,这时相对的一侧会出现一个缝隙。
在重力、压力相关因素作用下,润滑油流入该缝隙,润滑和冷却该侧的零部件[1]。
若十字头销所受合力仅指向一个方向,并且十字头销自始至终压紧在铜套的一侧,那么受压的另一侧始终没有间隙,冷却和润滑状况十分恶劣,十字头销和铜套便会迅速损坏,影响往复式压缩机正常的工作。
2 反向角的定义当曲轴旋转360度过程中,作用在十字头销和铜套而且和气缸中心线方向一致的总负载分量,角度产生180度变化,这个负向载荷连续作用的时间段内表征的曲柄转角,叫做反向角。
其中API618准则确定反向角不得低于15度,ARIAL 公司规定最小反向角不得低于25度,COOPER公司制定准则其反向角不得小于30度[2]3 往复式活塞压缩机的动力计算在这里把L型往复式活塞压缩机动力计算程序作为引例,其具备如下功能:(1)初始数据部分:根据任务书得到原始数据。
(2)热力计算部分:根据初始数据计算有关热力参数,为后续的动力计算部分做一个铺垫。
(3)动力计算部分:计算各级活塞压缩机的往复惯性力、气体力和摩擦力,进而计算得到综合活塞力和总切向力[3]。
往复式活塞压缩机动力计算初始数据截图如图1所示:在第1列单元数据表中键入曲柄转角α的数值,每隔5°进行一次取点分析计算,从0°到360°共取73个点。
活塞式压缩机设计电子版机械工业出版社活塞式压缩机作为一种重要的机械设备,在工业生产中发挥着不可替代的作用。
它以其高效率、可靠性和稳定运行的特点,广泛应用于空气压缩、制冷、液压传动等领域。
本文将介绍活塞式压缩机的设计原理和关键技术要点,以期为工程师们提供参考和指导。
一、活塞式压缩机的工作原理活塞式压缩机利用活塞在气缸内做从复进动作,将气体吸入气缸并进行压缩,然后将压缩气体排出。
其工作原理可以简单概括为以下几个步骤:1.吸气过程:活塞从上死点位置运动至下死点位置,气缸内形成一个低压区,气体通过吸入阀门进入气缸。
2.压缩过程:活塞向上运动,将气体压缩,压力逐渐升高。
3.排气过程:当气体压力达到设计值时,排气阀门打开,将压缩气体排出气缸。
4.启动过程:以上三个过程循环进行,直到达到要求的工作压力。
二、活塞式压缩机的设计要点活塞式压缩机的设计涉及到多个关键要点,以下列举几个重要的方面:1. 活塞和气缸的设计合理的活塞和气缸设计是活塞式压缩机能够高效运行的关键。
活塞和气缸的尺寸、形状、材料选择等都会直接影响到压缩机的性能。
应根据具体工作条件和要求,对活塞和气缸进行严格的计算和选型。
2. 阀门系统的设计活塞式压缩机的阀门系统起到控制气体流动的作用,决定了压缩机的吸气和排气过程。
阀门的开合时间、阀门面积、阀门材料等都需要进行综合考虑和设计。
合理设计阀门系统可以提高压缩机的工作效率和可靠性。
3. 曲柄连杆机构的设计曲柄连杆机构是活塞式压缩机的重要传动装置,将活塞的往复直线运动转化为旋转运动。
合理的曲柄连杆机构设计可以确保活塞运动平稳、稳定。
要考虑曲柄连杆机构在高速运动下的动力学特性,进行结构优化,提高传动效率和稳定性。
4. 冷却系统的设计活塞式压缩机在运行过程中会产生大量的热量,需要通过冷却系统进行散热。
冷却系统的设计要考虑到压缩机的散热需求和环境条件,选择合适的冷却介质、冷却方式,并进行合理布局和结构设计,保证压缩机的正常运行温度。
1 引言活塞式压缩机设计是专业课程设计的主要方向之一。
活塞式压缩机的主要特点有:压力范围广,效率高,适应性强。
然主要缺点有:外形尺寸和重量较大,需要较大的基础,气流有脉动性和易损零件较多。
综合考虑我们的设计题目主要以排气量小于1m3/min 的微型或小型角度式空气压缩机为主。
用于提供压缩空气的角度式空气压缩机包括V型、W型、S型等结构型式,主要分为单级和两级压缩两大类;润滑方式分:有油润滑、无油润滑;冷却方式主要为风冷;气阀型式主要为舌簧阀。
单级和多级压缩各有优点,有油和无油各有特点,风冷是小型空气压缩机常见的冷却方式,与水冷相比也各有优点。
目前,小型空气压缩机气阀常用舌簧阀,主要是余隙小,气缸利用率高。
空气压缩机的设计原则:(1)满足用户提出的关于排气量、排气压力以及有关使用条件的要求;(2)有足够的使用寿命及使用可靠性;(3)运转的经济性;(4)动力平衡性良好;(5)维护及检修方便;(6)尽可能使用新结构、新技术及新材料;(7)制造工艺性良好;(8)机器轻巧。
以上原则往往彼此之间相矛盾,应根据压缩机的用途,在保证主要要求下,尽量满足其他要求[1]。
活塞式压缩机的发展趋势是:(1)高压、高速、大容量。
在某些化工部门,提高压力可以提高合成效率,因而压缩机的压力在逐渐提高。
高转数、短行程的结构应用降低了机器占地面积和金属消耗量。
(2)提高效率以及延长使用期限。
(3)按产品系列化、通用化、标准化进行生产,以便于产量、质量的提高,且适用于产品变型。
、MPa、MPa、MPa、,MPa、MPa两档为主。
2 总体结构方案设计总体方案设计是整个设计的关键,方案的选择一定要有充分的选择依据。
在理解的基础上,准确表达设计方案的目的。
明了该种结构方案的热力学目的和特点,动力学目的和特点,结构优化设计的目的以及其它需要完善和实现的目标。
2.1 设计参数压缩介质:空气空气相对湿度:以石家庄地区为准吸气压力:大气压排气压力:排气量:≥活塞行程:S=65mm一级进气温度:(10~45)℃2.2 设计要求选取适宜的级数、冷却方式等,确保排气量≥。
2热力学计算2.1初步确定各级排气压力和排气温度2.1.1 初步确定各级压力本课题所设计的压缩机为单级压缩贝吸气压力:P s=0.1Mpa排气压力:P d=0.8Mpa多级压缩过程中,常取各级压力比相等,这样各级消耗的功相等,而压缩机的总耗功也最小。
各级压力比按下式确定。
z T (2-1 )i式中:i —任意级的压力比;t —总压力比;z —级数。
总压力比:t = 0.8/0.仁8各级压力比:i8 2.83压缩机可能要在超过规定的排气压力值下工作,或者所用的调解方式(如余隙容积调节和部分行程调节)要引起末级压力比上升而造成末级气缸温度过高,末级压力比值取得较低,可按下式选取:i (0.9 〜0.75) —七(2-2 )则各级压力比:2=2.12〜2.55=2.51=3.2各级名义进、排气压力及压力比已经调整后列表如下表2-1 各级名义进、排气压力及压力比2.1.2 初步确定各级排气温度各级排气温度按下式计算:n 1T d T s 了(2-3)式中:T d —级的排气温度,K ;T s —级的吸气温度,K ;n —压缩过程指数。
在实际压缩机中,压缩过程指数可按以下经验数据选取。
对于大、中型压缩机:n k 对于微、小型空气压缩机:n (0.9~0.98)k 空气绝热指数 k =1.4,则 n (0.9 ~ 0.98)k (1.26 ~ 1.372),取 n =1.30各级名义排气温度计算结果列表如下。
一级的吸气温度 T s1=21°C+273=294( K )1.3 1023一级的排气温度T d1 = T s1 厂 294 3 2 382(K)二级的吸气温度 T S 2=40°C+273=313( K )1.3 1二级的排气温度:T S 2 厂 313 2 5.471(K)=386(K)2.2 确定各级的进、排气系数2.2.1 计算容积系数v占据,而对气缸容积利用率产生的影响(2-4)式中:V —容积系数;—相对余隙容积; — 压力比。