两边成比例且夹角相等的判定方法
- 格式:ppt
- 大小:353.50 KB
- 文档页数:11
三角形相似的判定定理及性质
判定定理
1、平行于三角形一-边的直线和其他两边所构成的三角形与原三角形相似。
2、两边对应成比例且夹角相等,两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。
性质
1、相似三角形对应角相等,对应边成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
判定直角三角形相似的方法
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相近。
4、一条直角边与斜边成比例的两个直角三角形相似。
5、用一个三角形的两边回去比另一个三角形与之相对应当的两边,分别对应成比例,如果三组对应边较之都相同,则三角形相近。
相似三角形介绍:
三角分别成正比,三边成比例的两个三角形叫作相近三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被
理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相
似三角形是几何中两个三角形中,边、角的关系。
相近三角形的性质
1、相似三角形的对应角相等,对应边成比例。
2、相近三角形任一对应线段的比等同于相近比。
3、相似三角形的面积比等于相似比的平方。
投影全系列等三角形的认定定理,可以得出结论以下结论:
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角成正比的两个三角形相近。
3、三边成比例的两个三角形相似。
4、一条直角边与斜边成比例的两个直角三角形相近。
根据以上判定定理,可以推出下列结论:
1、三边对应平行的两个三角形相近。
2、一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的判定公式
相似三角形的判定公式为:AA(角角)、SAS(边角边)、SSS(边边边)、HL等等。
相似三角形是指对应角相等,对应边成比例的两个三角形。
相似三角形判定定理
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)(AA)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(SAS)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)(SSS)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)(HL)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。
相似的判定条件
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
相似的判定条件 1
(1)平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(简叙为:两边对应成比例且夹角相等,两个三角形相似.);
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似
(简叙为:三边对应成比例,两个三角形相似.);
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似
(简叙为:两角对应相等,两个三角形相似.).
相似的判定条件 2
1.相似三角形对应的角相等,对应的边成比例。
2.相似三角形所有对应线段的比值(对应高度、对应中线、对应平分线、外接圆半径、内切圆半径等。
)等于相似比。
3.相似三角形的周长之比等于相似比。
4.相似三角形面积之比等于相似比的平方。
5.相似三角形中内切圆和外接圆的直径比和周长比与相似比相同,内切圆和外接圆的面积比是相似比的平方。
相似三角形两边对应成比例且夹角相等证明过程首先,我们先给出一个定义和两个相似三角形的性质:定义:相似三角形是指两个三角形的对应角相等,而且对应边成比例。
性质1:如果两个三角形相似,则它们的对应角相等。
性质2:如果两个三角形的对应角相等,则它们的对应边成比例。
现在,我们假设有两个相似三角形ABC和A'B'C',我们要证明两个性质:1.证明两个三角形的对应边成比例。
2.证明两个三角形的对应角相等。
首先,我们来证明性质1假设在三角形ABC和A'B'C'中,有三条对应边AB和A'B'、AC和A'C'、BC和B'C',我们要证明它们成比例。
由于三角形ABC和A'B'C'相似,根据性质2可知,∠B=∠B',∠C=∠C'。
我们先来考虑对应边AB和A'B':假设AB的长度为a,A'B'的长度为a',我们要证明a/a'=AB/A'B'。
根据三角形的相似性条件,我们有∠B = ∠B',所以根据正弦定理,我们可以得到以下关系式:a/sin∠B = a'/sin∠B'。
进一步整理可得:a/a' = sin∠B/sin∠B'。
由于∠B = ∠B',所以sin∠B = sin∠B',所以这个关系式可以变为:a/a' = sin∠B/sin∠B' = 1/1 = 1所以,我们证明了对应边AB和A'B'成比例。
类似地,我们可以分别证明对应边AC和A'C'、BC和B'C'也成比例。
接下来,我们来证明性质2假设∠B=∠B',∠C=∠C',我们要证明这意味着三角形ABC和A'B'C'相似。