【中考模拟】2019年海南省中考数学模拟试卷(一)含答案解析
- 格式:doc
- 大小:384.00 KB
- 文档页数:21
海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB 是解题关键.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k 最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x >﹣1, 系数化1得, x >﹣.故本题的解集为x >﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 < y 2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x ﹣1为单调递增函数,再根据x 1<x 2即可得出y 1<y 2,此题得解.【解答】解:∵一次函数y=x ﹣1中k=1, ∴y 随x 值的增大而增大. ∵x 1<x 2, ∴y 1<y 2. 故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y 随x 的增大而增大,函数从左到右上升.”是解题的关键.17.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN=.最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t, t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t, t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD =S△PCN+S△PDN=PNCE+PNDF=PN= [﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t, t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t, t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2019年海南省中考数学模拟试卷(一)一.选择题(满分42分,每小题3分)1.﹣2018的绝对值的倒数是()A.﹣B.2018 C.D.﹣20182.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(2a2)3=6a6 D.a6÷a2=a33.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,57.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .8.一个两位数,个位上的数字是a ,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A .a (a ﹣1)B .(a+1)aC .10(a ﹣1)+aD .10a+(a ﹣1)9.已知点(3,﹣4)在反比例函数y =的图象上,则下列各点也在该反比例函数图象上的是( )A .(3,4)B .(﹣3,﹣4)C .(﹣2,6)D .(2,6)10.如图,已知AB ∥DE ,∠AB C =75°,∠CDE =145°,则∠BCD 的值为( )A .20°B .30°C .40°D .70°11.如图,把一张长方形的纸片沿着EF 折叠,点C.D 分别落在M 、N 的位置,且∠MFB =∠MFE .则∠MFB =( )A .30°B .36°C .45°D .72°12.在平面直角坐标系中,点P (﹣2,﹣3)向右移动3个单位长度后的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(1,0)D .(﹣2,0)13.如图,BM 与⊙O 相切于点B ,若∠MBA =140°,则∠ACB 的度数为( )A .40°B .50°C .60°D .70°14.如图,正方形ABCD 中,AB =4cm ,点E.F 同时从C 点出发,以1cm/s 的速度分别沿CB﹣BA.CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二.填空题(满分16分,每小题4分)15.若a+b=4,ab=1,则a2b+ab2=______.16.已知关于x的方程的解大于1,则实数m的取值范围是________-.17.如图,平面直角坐标系中,⊙P与x轴分别交于A.B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为__________.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(﹣10,0),对角线AC和OB相交于点D且AC•OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE:S△OAB=_________.三.解答题(共6小题,满分62分)19.(10分)(1)计算:(﹣)0+(﹣)﹣1×+;(2)解不等式:2x﹣5≥5x﹣4.20.(8分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?21.(8分)某超市对今年“元旦”期间销售A.B.C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售______个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是_______度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)23.(13分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD.BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x (0<x<3).(1)填空:PC=_____,FC=_________;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.24.(15分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A.B.C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A.B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择题1.解:﹣2018的绝对值是2018,2018的倒数是.故选:C.2.解:A.a3+a2,无法计算,故此选项错误;B.a3•a2=a5,正确;C.(2a2)3=8a6,故此选项错误;D.a6÷a2=a4,故此选项错误;故选:B.3.解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.故选:C.4.解:∵530060是6位数,∴10的指数应是5,故选:B.5.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10.11个数据的平均数,即中位数为=6,故选:B.7.解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是=,故选:B.8.解:∵个位上的数字是a,十位上的数字比个位的数字小1,∴十位上的数字为a﹣1,∴这个两位数可表示为10(a﹣1)+a,故选:C.9.解:∵点(3,﹣4)在反比例函数y=的图象上,∴k=3×(﹣4)=﹣12,而3×4=﹣3×(﹣4)=2×6=12,﹣2×6=﹣12,∴点(﹣2,6)在该反比例函数图象上.故选:C.10.解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.11.解:由折叠的性质可得:∠MFE=∠EFC,∵∠MFB=∠MFE,设∠MFB=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠MFB=36°.故选:B.12.解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为﹣3;所以点P(﹣2,﹣3)向右平移3个单位长度后的坐标为(1,﹣3).故选:B.13.解:如图,连接OA.OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.14.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选:D.二.填空题(共4小题,满分16分,每小题4分)15.解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.16.解:方程两边乘x﹣2得:x+m=2﹣x,移项得:2x=2﹣m,系数化为1得:x=,∵方程的解大于1,∴>1,且≠2,解得m<0,且m≠﹣2.故答案为:m<0,且m≠﹣2.17.解:∵过点P作PC⊥AB于点C,连接PA,∵AB=2,∴AC=AB=,∵点P的坐标为(3,﹣1),∴PC=1,∴PA==2,∵将⊙P向上平移,且⊙P与x轴相切,∴⊙P与x轴相切时点P的坐标为:(3,2).故答案为:(3,2).18.解:作CG⊥AO于点G,作BH⊥x轴于点H,∵AC•OB=160,∴S菱形OABC=•AC•OB=80,∴S△OAC=S菱形OABC=40,即AO•CG=40,∵A(﹣10,0),即OA=10,∴CG=8,在Rt△OGC中,∵OC=OA=10,∴OG=6,则C(﹣6,8),∵△BAH≌△COG,∴BH=CG=8.AH=OG=6,∴B(﹣16,8),∵D为BO的中点,∴D(﹣8,4),∵D在反比例函数图象上,∴k=﹣8×4=﹣32,即反比例函数解析式为y=﹣,当y=8时,x=﹣4,则点E(﹣4,8),∴CE=2,∵S△OCE=•CE•CG=×2×8=8,S△AOB=•AO•BH=×10×8=40,∴S△OCE:S△OAB=1:5故答案为:1:5.三.解答题(共6小题,满分62分)19.解:(1)原式=1﹣3×+2﹣=1﹣2+2﹣=3﹣3;(2)2x﹣5x≥5﹣4,(2﹣5)x≥1,所以x≤,即x≤﹣2﹣5.20.解:设该水果店购进苹果x千克,购进提子y千克,根据题意得:,解得:.答:该水果店购进苹果50千克,购进提子10千克.21.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.22.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.23.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.24.解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+M N)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=AM×EM=.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC=.∵FG=2DQ,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).。
2019年海南省中考模拟试题数学试卷第Ⅰ卷(选择题)一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与D.+(﹣0.01)与﹣(﹣)2.(3分)若代数式2x﹣y的值是5,则代数式2y﹣4x+5的值为()A.﹣15 B.﹣5 C.5 D.153.(3分)下列计算中,正确的是()A.x3•x3=x6B.x3+x3=x6C.(x3)2=x9D.x6÷x2=x34.(3分)由4个相同的小正方体搭建了一个积木,从三个方向看积木,所得到的图形如图所示,则这个积木可能是()A .B .C .D .5.(3分)如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D.∠BOQ=30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有()A.4个 B.5个 C.6个 D.7个6.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位7.(3分)2016年3月5日,李克强总理在第十二届全国人大第四次会议上作政府工作报告,报告中谈到2015年我国GDP达到67.67万亿元,排名世界第二.数据67.67万亿用学记数法可表示为6.767×10n,则n等于()A.5 B.9 C.13 D.158.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.29.(3分)已知一组数据:12,5,9,5,14,下列说法正确的是()A.平均数是5 B.中位数是9 C.众数是14 D.以上都不对10.(3分)春节联欢会前,文艺委员征集文艺节目,有唱歌、跳舞、曲艺,连续两位同学报名表演唱歌的机会为()A .B .C .D .11.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°12.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.1213.(3分)如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个14.(3分)若,,则x的取值范围()A .B .或C .或D.以上答案都不对二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)已知关于x的不等式(2a﹣b)x≥a﹣2b的解是x ≥,则关于x的不等式ax+b<0的解为.16.(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为.17.(4分)如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则sin∠AFE的值为.18.(4分)如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算(1)1002×998(2)x3y2•(xy)2÷(﹣x3y)(3)(2a+b)(2a﹣b)﹣4a(a﹣b)(4)()﹣2×(﹣2)0+|﹣5|×(﹣1)3.20.(8分)某种水果的价格如表: 购买的质量(千克) 不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?21.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a= ,b= ;并补全条形统计图; (2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数. (3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.(8分)一水库大坝的横断面为梯形ABCD ,坝顶宽6.2米,坝高23.5米,斜坡AB 的坡度i AB =1:3,斜坡CD 的坡角是21°,求: (1)斜坡AB 与坝底AD 的长度(精确到0.1米); (2)斜坡AB 的坡角α和斜坡CD 的坡度(精确到1°).23.(12分)如图1,在正方形ABCD中,AB=4,M,N分别是AD、CD上一点.(1)若DN=1,∠AMB=90°,求AM的长;(2)若N是CD的中点,且∠NMB=∠MBC,①求tan∠ABM的值;②在图2中,请仅用无刻度的直尺作出点M的位置,并说明确定M位置的理由.(要求:写出作法,并保留作图痕迹)24.(16分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与D.+(﹣0.01)与﹣(﹣)【解答】解:A、∵﹣(+7)=﹣7,+(﹣7)=﹣7∴﹣(+7)和+(﹣7)不互为相反数,故本选项错误;B、∵﹣(+0.5)=﹣0.5,∴﹣0.5和﹣(+0.5)不互为相反数,故本选项错误;C 、∵=0.8,∴﹣1.25和不互为相反数,故本选项错误;D、∵+(﹣0.01)=﹣0.01,﹣(﹣)=0.01,∴+(﹣0.01)与﹣(﹣)互为相反数,故本选项错误正确.故选:D.2.(3分)若代数式2x﹣y的值是5,则代数式2y﹣4x+5的值为()A.﹣15 B.﹣5 C.5 D.15【解答】解:由2x﹣y的值是5,得y﹣2x=﹣5.2y﹣4x+5=2(y﹣2x)+5=2×(﹣5)+5=﹣5,故选:B.3.(3分)下列计算中,正确的是()A.x3•x3=x6B.x3+x3=x6C.(x3)2=x9D.x6÷x2=x3【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、合并同类项系数相加字母及指数不变,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:A.4.(3分)由4个相同的小正方体搭建了一个积木,从三个方向看积木,所得到的图形如图所示,则这个积木可能是()A .B .C .D .【解答】解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成.故选:B.5.(3分)如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D.∠BOQ=30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有()A.4个 B.5个 C.6个 D.7个【解答】解:旋转后的图形如图,∵OA⊥OB,∠BOQ=30°,∴∠AOP=60°,∵MN∥PQ,∴∠OCD=∠AOP=60°,即∠ACM=∠OCD=60°,∵OA⊥OB,且OB逆时针旋转30°,∴∠AOB=60°,∠BOQ=60°,在△COD中,则∠ODC=60°,即∠BDN=60°.∴题中等于60°的角共有7个.故选D.6.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位【解答】解:横坐标都乘以﹣1,即横坐标变为相反数,纵坐标不变,符合关于y 轴对称,故选B.7.(3分)2016年3月5日,李克强总理在第十二届全国人大第四次会议上作政府工作报告,报告中谈到2015年我国GDP达到67.67万亿元,排名世界第二.数据67.67万亿用学记数法可表示为6.767×10n,则n等于()A.5 B.9 C.13 D.15【解答】解:∵67.67万亿=6.767×1013=6.767×10n,∴n=13,故选C.8.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.9.(3分)已知一组数据:12,5,9,5,14,下列说法正确的是()A.平均数是5 B.中位数是9 C.众数是14 D.以上都不对【解答】解:数据由小到大排列为5,5,9,12,14,它的平均数为=9,数据的中位数为9,众数为5,故选B10.(3分)春节联欢会前,文艺委员征集文艺节目,有唱歌、跳舞、曲艺,连续两位同学报名表演唱歌的机会为()A .B .C .D .【解答】解:设唱歌为A,跳舞为B,曲艺为C.列树状图得:共有9种情况,连续两位同学报名表演唱歌的情况有1种,所以概率为,故答案为D.11.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.12.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【解答】解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.13.(3分)如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5即为第三个顶点的位置,作线段AB的垂直平分线,垂直平分线所经过的格点C6、C7即第三个顶点的位置.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选(A)14.(3分)若,,则x的取值范围()A .B .或C .或D.以上答案都不对【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选C.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)已知关于x的不等式(2a﹣b)x≥a﹣2b的解是x ≥,则关于x的不等式ax+b<0的解为x>﹣8.【解答】解:不等式(2a﹣b)x≥a﹣2b系数化1得,x ≥,∵该不等式的解集为是x ≥,∴=,∴b=8a;将b=8a代入不等式ax+b<0得,ax+8a<0,移项得,ax<﹣8a,又∵(2a﹣b)x≥a﹣2b系数化1得,x ≥,∴2a﹣b>0,即2a﹣8a>0,即﹣6a>0,∴a<0;∴不等式ax+b<0的解集为:x>﹣8.16.(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为2﹣2.【解答】解:如图所示,∵∠POA+∠POB=90°,∠PBO=∠POA,∴∠PBO+∠POB=90°,∴∠BPO=90°,即BP垂直于直线y=kx(k>0),∴点P的运动轨迹为y轴右侧以BO为直径的半圆,∵一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,∴A(4,0),B(0,4),∴圆心C(0,2),即AO=4,CO=2,连接CP,AC,则CP=CO=2,AC==2,∵AP+CP≥AC,∴当点C、P、A三点共线时,AP有最小值,此时,AP=AC﹣CP=2﹣2,故答案为:2﹣2.17.(4分)如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则sin∠AFE的值为.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴sin∠AFE=sin∠DCF==.故答案为:.18.(4分)如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN 长的最大值是5.【解答】解:∵点M,N 分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图所示,∵∠ACB=∠D=45°,AB=10,∠ABD=90°,∴AD=AB=10,∴MN=AD=5,故答案为:5.三、解答题(本大题共62分)19.(10分)计算(1)1002×998(2)x3y2•(xy)2÷(﹣x3y)(3)(2a+b)(2a﹣b)﹣4a(a﹣b)(4)()﹣2×(﹣2)0+|﹣5|×(﹣1)3.【解答】解:(1)原式=(1000+2)×(1000﹣2)=1000000﹣4=999996;(2)原式=x3y2•x2y2÷(﹣x3y)=﹣x2y3;(3)原式=4a2﹣b2﹣4a2+4ab=﹣b2+4ab;(4)原式=9﹣5=4.20.(8分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?【解答】解:设张欣第一次、第二次购买了这种水果的量分别为x千克、y千克,因为第二次购买多于第一次,则x<12.5<y.①当x≤10时,,解得;②当10<x<12.5时,,此方程组无解.答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克.21.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.22.(8分)一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB的坡度i AB=1:3,斜坡CD的坡角是21°,求:(1)斜坡AB与坝底AD的长度(精确到0.1米);(2)斜坡AB的坡角α和斜坡CD的坡度(精确到1°).【解答】解:(1)∵斜坡AB的坡度i AB=1:3,BE=23.5米,∴AE=70.5米,则AB=≈74.3米,∵斜坡CD的坡角是21°,∴tan21°=,∴FD≈62.7米,∴AD=70.5+6.2+62.7=139.4米;(2)tanα=,α≈18°,斜坡CD的坡度=tan21°=1:2.7.23.(12分)如图1,在正方形ABCD中,AB=4,M,N分别是AD、CD上一点.(1)若DN=1,∠AMB=90°,求AM的长;(2)若N是CD的中点,且∠NMB=∠MBC,①求tan∠ABM的值;②在图2中,请仅用无刻度的直尺作出点M的位置,并说明确定M位置的理由.(要求:写出作法,并保留作图痕迹)【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,又∵∠AMB+∠A+∠ABM=180°,∠AMB=90°,∴∠ABM=0°,即点M与点A重合,∴AM=0;(2)①设AM=x,∵AD=4,∴DM=4﹣x,延长MN交BC于P,∵N为CD中点,∴DN=CN,在△DMN和△CPN中,∵,∴△DMN≌△CPN(ASA),∴MN=NP=,又∵BP=4+4﹣x=8﹣x,∴8﹣x=,解得:x=4或x=,∴tan ==或tan∠ABM===1;②当AM=4时,即∠ABM=45°,如图2,连接BD,则AB=AD=4,此时∠ABM=45°,AM=AD=4;当AM=时,即点M为AD的三等分点,如图3,过点N作NP⊥AB于点P,连接AC交PD于点O,过点O作OM⊥AD于点D,∵AP∥CD ,且=,∴△APO∽△CDO,∴=,又∵OM⊥AD,∴OM∥AP,∴△DMO∽△DAP,∴==,即AM=AD,故点M即为所求点.24.(16分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M(1,0),N (﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x ﹣)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
2019年海南省中考数学试题一、迭择题相反数是()A.-§B.2C. -2D.§2.下列计算正确的是()A. B. x* *x*=x,J C. <-3x)s=9^ D. 2x-t^=3x'3.据统计,中国水笑源总重约为27600亿立方米,居世界第六位,琪中数据27600亿用科学记数法表示为< >A. 2.75X10,B. 2.75X1。
"C.27. 5耳1。
“D.O. 275x IO154.为了节约水谓源,某市准飾按照居民家庭年用水里实行阶梯水伯,水伯分档递増.计划使第一档、第二档和第三档的水伯分别順盖全市居民家庭的80%,1読和6%.为合理确定各档之间的界限,随机抽查了该市6万户居民家庭上一年的年用水里〈単位:m s>.绘制了统计图,如囹所示.16W*';1.41.21.0QSQ6下面有四个推断:&年用水里不超过180 m'的该市居民家底技第一档水伯交离;②年用水更超过240 m'的该市居民家庭技第三档水伯交羞;©该市居民家庭年用水里的中位数在150-180之间;©该市居民家庭年用水里的平均数不超辿180.其中合理的是< >A•①⑤ B. C.②⑤ D. ®®5.有五个相冋的小正方体堆成的物体如囲所示,它的主視囲是()"L Hzl B R~n c tH。
•土6.如图,在平面自角坐标系中,三角形AB2的顶点都在方格紙的格点上,如果将三角形心先向右平移4个单位长度,冉向下平移1个単位长度,得到三角形ABC,那么点A的对应点A,的坐标为()A. (4, 3)B. (2. 4)C. (3. 1)D. (2,5)7. 如圈AAK 中,AD 为△AB :的角平分线,BE 为△瓯 的高,ZC=70° , ZAB0480 ,那么匕3是A ±3 B. 3C. ~3D.无法确定10. 有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正 方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出 一张,抽出的卡片正面囹案既是中心对称囹形,又是轴对称囹形的概率是()11. 已知点M2, yj 、B(4,免)都在反比例函数戶兰(k<0)的囹象上,则y^y :的大小关系为|()A.y :>y :B.y^y ;C.y.=y :D.无法确定12. 如囹所示,一场暴雨过后,蚕直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经删里AB=2米,则树高为( )A.诉米B.方米C.(V5+D 米13.已知° AKD 的周长为32, AB=4,贝i]BO ()14. 如囹,在正方形AKD 中,E 、F 分别是边BC 、CD 上的点,ZEAF=45°,AECF 的周长为8, 则正方形AKD 的面积为()D.220A. 0.2B.0.4C.O. 6D.O. 8A.4B. 12C.24D.28D.3米A.9 C. 20 D.259.关于x 的方程土=牛土无解,则k 的值为(X 。
2019年海南省中考数学模拟试卷(一)一、选择题(本大题满分42分,每小题3分)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.方程x+3=2的解为()A.1 B.﹣1 C.5 D.﹣53.2018年6月3日,海南宣布设立海南自贸区海口江东新区,总面积约298000000平方米.数据298000000用科学记数法表示为()A.298×106B.29.8×107C.2.98×108D.0.298×1094.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36 B.45 C.48 D.505.如图所示的几何体的俯视图为()A.B.C.D.6.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x37.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°8.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)9.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°10.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100 B.8l(1﹣x)2=100C.81(1+x%)2=100 D.81(1+2x)=10011.要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.B.C.D.12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.πB.C.D.13.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或514.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3二、填空题(本大题满分16分,每小题4分)15.代数式中x的取值范围是.16.已知在反比例函数y=图象的任一分支上,y都随x的增大而增大,请写出一个符合条件的k的值.17.如图,AB是⊙O的直径,点P是⊙O上的一动点,当△AOP与△APB相似时,∠BAP等于.18.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.三、解答题(本大题满分62分)19.(10分)(1)计算:4×(﹣)+3﹣2(2)先化简,再求值:a(a﹣3)﹣(a﹣1)2,其中a=﹣.20.(8分)“绿水青山就是金山银山”,某省2018年新建湿地公园和森林公园共42个,其中森林公园比湿地公园多4个.问该省2018年新建湿地公园和森林公园各多少个?21.(8分)某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成A、B、C、D四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取参加测试的学生为人,扇形统计图中A等级所对的圆心角是度;(2)请补全条形统计图和扇形统计图;(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有人.22.(8分)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD 的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)23.(13分)如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.24.(15分)如图甲,抛物线y=ax2+bx﹣1经过A(﹣1,0),B(2,0)两点,交y轴于点C.(1)求抛物线的表达式和直线BC的表达式.(2)如图乙,点P为在第四象限内抛物线上的一个动点,过点P作x轴的垂线PE交直线BC于点D.①在点P运动过程中,四边形ACPB的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②是否存在点P使得以点O,C,D为顶点的三角形是等腰三角形?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2019年海南省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.方程x+3=2的解为()A.1 B.﹣1 C.5 D.﹣5【分析】依次移项,合并同类项,即可得到答案.【解答】解:移项得:x=2﹣3,合并同类项得:x=﹣1,故选:B.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.3.2018年6月3日,海南宣布设立海南自贸区海口江东新区,总面积约298000000平方米.数据298000000用科学记数法表示为()A.298×106B.29.8×107C.2.98×108D.0.298×109【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:298000000=2.98×108.故选:C.【点评】此题考查用科学记数法表示大数.用科学记数法表示数的关键是确定a与10的指数n,确定a时,要注意范围,n等于原数的整数位数减1.4.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36 B.45 C.48 D.50【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【解答】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选:D.【点评】此题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.5.如图所示的几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3【分析】根据同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法求出每个式子的值,再进行判断即可.【解答】解:A、x2•x3=x5,故本选项错误;B、(x2)3=x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6÷x3=x3,故本选项正确;故选:D.【点评】本题考查了同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法的应用,主要考查学生的计算能力和辨析能力.7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.【解答】解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质.8.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.9.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.10.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100 B.8l(1﹣x)2=100C.81(1+x%)2=100 D.81(1+2x)=100【分析】由两次涨价的百分率都为x,结合文化衫原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【解答】解:∵两次涨价的百分率都为x,∴81(1+x)2=100.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.11.要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小强和小红同时入选的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,小强和小红同时入选的有2种情况,∴小强和小红同时入选的概率是:=.故选:B.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.πB.C.D.【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【解答】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长==,故选:B.【点评】本题考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.13.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或5【分析】如图,连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7﹣x,根据等腰直角三角形的性质和折叠的性质得到:(7﹣x)2=25﹣x2,通过解方程求得x的值,易得点B′到BC的距离.【解答】解:如图,连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故选:A.【点评】本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△AMB′和等腰直角△B′DM,利用勾股定理将所求的线段与已知线段的数量关系联系起来.14.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3【分析】先把一般式配成顶点式得到抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),再利用点平移的规律得到把点(2,﹣8)平移后所得对应点的坐标为(﹣1,﹣3),然后利用顶点式写出平移后的抛物线的函数表达式.【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题(本大题满分16分,每小题4分)15.代数式中x的取值范围是x>1 .【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.16.已知在反比例函数y=图象的任一分支上,y都随x的增大而增大,请写出一个符合条件的k的值k>1 .【分析】根据“在反比例函数y=图象的任一分支上,y都随x的增大而增大”,得到关于k的一元一次不等式,解之即可.【解答】解:根据题意得:1﹣k<0,解得:k>1,故答案为:k>1.【点评】本题考查了反比例函数图象上点的坐标特征和反比例函数的性质,正确掌握反比例函数的增减性是解题的关键.17.如图,AB是⊙O的直径,点P是⊙O上的一动点,当△AOP与△APB相似时,∠BAP等于45°.【分析】需要分类讨论:△APB∽△AOP和△APB∽△APO.利用相似三角形的对应角相等和圆周角定理解答.【解答】解:如图,∵AB是⊙O的直径,∴∠APB=90°.①当△APB∽△AOP时,∠BAP=∠PAO,∠APB=∠AOP=90°,此时OP⊥AB,由垂径定理知,OP垂直平分AB,此时△AOP是等腰直角三角形,∴∠PAO=45°.②当△APB∽△APO时,需要∠APB=∠APO,很明显,不成立,舍去.故答案是:45°.【点评】考查了相似三角形的判定,圆周角定理,利用圆周角定理推知∠APB=90°是解题的关键.18.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为 2 .【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC =FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.三、解答题(本大题满分62分)19.(10分)(1)计算:4×(﹣)+3﹣2(2)先化简,再求值:a(a﹣3)﹣(a﹣1)2,其中a=﹣.【分析】(1)先计算乘法、算术平方根和负整数指数幂,再计算加减可得;(2)根据整式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)原式=﹣3﹣4+=﹣7+=﹣6;(2)原式=a2﹣3a﹣a2+2a﹣1=﹣a﹣1,当a=﹣时,原式=﹣1=﹣.【点评】本题主要考查实数的混合运算与整式的混合运算﹣化简求值,解题的关键是掌握整式的混合运算顺序和运算法则.20.(8分)“绿水青山就是金山银山”,某省2018年新建湿地公园和森林公园共42个,其中森林公园比湿地公园多4个.问该省2018年新建湿地公园和森林公园各多少个?【分析】根据两个量的比较可设新建湿地公园为x个,则森林公园为(x+4)个,再根据和的关系列出方程即可解决.【解答】解:设新建湿地公园为x个,则森林公园为(x+4)个,由题意得x+(x+4)=42解得x=19,∴x+4=23答:该省2018年新建湿地公园为19个,森林公园为23个.【点评】本题考查的是一元一次方程的应用,理清题意是重点,能根据题意列出等量关系是关键.21.(8分)某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成A、B、C、D四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取参加测试的学生为50 人,扇形统计图中A等级所对的圆心角是72 度;(2)请补全条形统计图和扇形统计图;(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有60 人.【分析】(1)由A类别的人数及其所占百分比可得总人数,用360°乘以A类别的百分比即可得;(2)由各类别人数之和等于总人数求得C的人数,再求出C和D类别对应百分比可补全图形;(3)用总人数乘以样本中C等级的百分比即可.【解答】解:(1)本次抽取参加测试的学生为15÷30%=50(人),A类所对的圆心角是360×20%=72°,故答案为:50,72;(2)C类的人数为50﹣(15+22+3)=10,C类的百分比为×100%=20%,D类的百分比为×100%=6%,(3)300×20%=60(名),答:估计该校九年级学生物理实验操作成绩为C等级的有60名.故答案为:60.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD 的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)【分析】过点D作DE⊥AB于点E,设塔高AB=x,则AE=(x﹣10)m,在Rt△ADE中表示出DE,在Rt△ABC中表示出BC,再由DE=BC可建立方程,解出即可得出答案.【解答】解:过点D作DE⊥AB于点E,得矩形DEBC,设塔高AB=xm,则AE=(x﹣10)m,在Rt△ADE中,∠ADE=30°,则DE=(x﹣10)米,在Rt△ABC中,∠ACB=45°,则BC=AB=x,由题意得,(x﹣10)=x,解得:x=15+5≈23.7.即AB≈23.7米.答:塔的高度约为23.7米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段,注意方程思想的运用.23.(13分)如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.【分析】(1)根据平行四边形的性质可得AB∥CN,由此可知∠B=∠ECN,再根据全等三角形的判定方法ASA即可证明△ABE≌△NCE;(2)因为AB∥CN,所以△AFG∽△CNG,利用相似三角形的性质和已知条件即可得到含n的式子表示线段AN的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CN,∴∠B=∠ECN,∵E是BC中点,∴BE=CE,在△ABE和△NCE中,,∴△ABE≌△NCE(ASA).(2)∵AB∥CN,∴△AFG∽△CNG,∴AF:CN=AG:GN,∵AB=CN,∴AF:AB=AG:GN,∵AB=3n,F为AB中点∴FB=GE,∴GE=n,∴=,解得AE=3n,∴AN=2AE=6n.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及相似三角形的平和性质,题目的综合性较强,难度中等.24.(15分)如图甲,抛物线y=ax2+bx﹣1经过A(﹣1,0),B(2,0)两点,交y轴于点C.(1)求抛物线的表达式和直线BC的表达式.(2)如图乙,点P为在第四象限内抛物线上的一个动点,过点P作x轴的垂线PE交直线BC于点D.①在点P运动过程中,四边形ACPB的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②是否存在点P使得以点O,C,D为顶点的三角形是等腰三角形?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)设:二次函数的表达式为:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,即:﹣2a =﹣1,解得:a=,即可求解;(2)①S四边形ACPB =S△ABC+S△BCP=×AB×OC+×PD×OB,即可求解;②分CD=OC、CD=OD、OC=OD三种情况分别求解即可.【解答】解:(1)二次函数的表达式为:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,即:﹣2a=﹣1,解得:a=,故抛物线的表达式为:y=x2﹣x﹣1,点C(0,﹣1),则直线BC的表达式为:y=kx﹣1,将点B的坐标代入上式得:0=2k﹣1,解得:k=,故直线BC的表达式为:y=x﹣1;(2)①设点P(x, x2﹣x﹣1),则点D(x, x﹣1),S四边形ACPB =S△ABC+S△BCP=×AB×OC+×PD×OB=×3×1+×2(x﹣1﹣x2+x+1)=﹣x2+x+,∵﹣0,故S有最大值,当x=1时,S最大值为2;②设点D坐标为(m, m﹣1),则CD2=m2+m2,OC2=1,DO2=m2+(m﹣1)2=m2﹣m+1,当CD=OC时,m2+m2=1,解得:m=,同理可得:当CD=OD时,m=1,当OC=OD时,m=,则点P坐标为(,)或(1,﹣1)或(,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019年海南省中考数学模拟试卷一.选择题(每题3分,满分42分)1.0.5的相反数是()A.﹣0.5 B.0.5 C.2 D.﹣22.将方程=1﹣去分母,得()A.2(x﹣1)=1﹣3(5x+2)B.4x﹣1=6﹣15x+2C.4x﹣1=6﹣15x﹣2 D.2(2x﹣1)=6﹣3(5x+2)3.据调查,某班30位同学所穿鞋子的尺码如下表所示:则该班这30位同学所穿鞋子尺码的众数是()码号/码33 34 35 36 37人数 3 6 8 8 5 A.8 B.35 C.36 D.35和364.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A. 5.5×105B.55×104C.5.5×104D.5.5×1065.下列运算正确的是()A.x2+x2=x4B.a2•a3=a5C.(3x)2 =6x2D.(mn)5÷(mn)=mn46.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.77.如图所示几何体的左视图正确的是()A.B.C.D.8.分式的值为2时,x的值是()A.﹣2 B.1 C.2 D.39.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强P(kPa)的关系可以用如图所示的函数图象进行表示,下列说法正确的是()A.气压P与体积V的关系式为P=kV(k>0)B.当气压P=70时,体积V的取值范围为70<V<80C.当体积V变为原来的一半时,对应的气压P也变为原来的一半D.当60≤V≤100时,气压P随着体积V的增大而减小10.如图,⊙O以AB为直径,PB切⊙O于B,连接AP,交⊙O于C,若∠PBC=50°,∠ABC=()A.30°B.40°C.50°D.60°11.在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)12.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.1213.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为14.如图,在等边△ABC中,点D、E分别在边BC、AC上,且∠ADE=60°,BD=1,CE=,则△ABC的边长为()A.3 B.4 C.5 D.6二.填空题(满分12分,每小题3分)15.因式分解:x2﹣5x=.16.小强购买绿、橙两种颜色的珠子串成一条手链,若购买绿色珠子a个,每个2元,购买橙色珠子b个,每个5元,则小强购买珠子共需花费元.(用含a、b的代数式表示)17.如图,矩形ABCD、半圆O与直角三角形EOF分别是学生常用的直尺、量角器与三角板的示意图.已知图中点M处的读数是145°,则∠FND的读数为.18.如图,在等腰△ABC中,AB=AC,∠A=20°.AB上一点D,使AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE=°.三.解答题19.(1)计算:﹣|﹣5|+4×2﹣1(2)解不等式组:20.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.21.雾霾天气严重影响人民的生活质量.在今年“元旦”期间,某校九(1)班的综合实践小组同学对“雾霾天气的主要成因”随机调查了本地部分市民,并对调查结果进行了整理,绘制了如图不完整的统计图表,观察分析并回答下列问题.组别雾霾天气的主要成因A工业污染B汽车尾气排放C炉烟气排放D其他(滥砍滥伐等)(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图;(3)若该地区有100万人口,请估计持有A、B两组主要成因的市民有多少人?22.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)23.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.24.如图,抛物线y=ax2﹣3ax+c(a≠0)与x轴交于A,B两点,交y轴于点C,其中A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)点P是线段BC上方抛物线上一动点(不与B,C重合),过点P作PD⊥x轴,垂足为D,交BC 于点E,作PF⊥直线BC于点F,设点P的横坐标为x,△PEF的周长记为l,求l关于x的函数关系式,并求出l的最大值及此时点P的坐标;(3)点H是直线AC上一点,该抛物线的对称轴上一动点G,连接OG,GH,则两线段OG,GH的长度之和的最小值等于,此时点G的坐标为(直接写出答案.)。
海南海口市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 2的绝对值是()A. 2B. ﹣2C.D. ﹣二、选择题2. 下列方程的变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程,未知数系数化为1,得x=1D.方程化成5(x-1)-2x=10三、单选题3. 如图是用七颗相同骰子叠成的造型,骰子的六面分别标有1至6点.从正上方俯视,看到的点数和是()A. 16B. 17C. 19D. 52四、选择题4. 某班有 30 名男生和 20 名女生,60%的男生和 30%的女生参加了天文小组,该班参加天文小组的人数占全班人数的()A. 60%B. 48%C. 45%D. 30%五、单选题5. 下列计算正确的是()A. a2+b3=2a5B. a4÷a=a4C. a2•a3=a6D. (-a2)3=﹣a66. 已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A. 3.61×106B. 3.61×107C. 3.61×108D. 3.61×1097. 下列算式中,你认为正确的是()A. B.C. D.六、选择题8. 实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是().A.﹣b﹣cB.c﹣bC.2(a﹣b+c)D.2a+b+c七、单选题9. 下列函数中,是反比例函数的为()A. y=B.C. y=2x+1D. 2y=x10. 如图,四边形ABCD的顶点坐标A(﹣3,6)、B(﹣1,4)、C(﹣1,3)、D(﹣5,3).若四边形ABCD绕点C按顺时针方向旋转90°,再向左平移2个单位,得到四边形A′B′C′D′,则点A的对应点A′的坐标是()A. (0,5)B. (4,3)C. (2,5)D. (4,5)11. 从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是()A. 标号小于6B. 标号大于6C. 标号是奇数D. 标号是312. 如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A. 40°B. 35°C. 30°D. 25°13. 如图,AB∥CD,∠2=2∠1,则∠3=()A. 50°B. 60°C. 65°D. 70°14. 将一副三角板按如图①的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,得到如图②,测得CG=6,则AC长是()A. 6+2B. 9C. 10D. 6+6八、填空题15. 因式分【解析】 x2(x-2)-16(x-2)=_______.九、解答题16. 如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为___________________.十、填空题17. 用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为__________.十一、解答题18. 如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(3,4),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点C的坐标为_______.19.20. 解不等式组:,并把解集在数轴上表示出来.21. 甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?22. 一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.23. 在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B 处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:≈1.414,≈1.132)24. 如图,已知▱ABCD中,BC=8cm,CD=4cm,∠B=60°,点E从点A出发,沿BA方向匀速运动,速度为1cm/s.过点E作EF⊥CD,垂足是F,连接EF交AD于点M,过M作MN∥AB,MN与BC交于点N,设运动时间为t(s)(0<t<4)(1)用含t的代数式表示线段AM的长:AM= ;(2)是否存在某一时刻t,使EN⊥BC,求出相应的t值,若不存在,说明理由;(3)设四边形AEFN的面积为y(cm2),求y与t之间的函数关系式;(4)点P是AC与NF的交点,在点E的运动过程中,是否存在某一时刻t,使∠MNP=45°?若存在,求出相应的t值,若不存在,说明理由.25. 如图,在平面直角坐标系中,二次函数的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
绝密★启用前8.如在此卷上答题无效2019海南省初中学业水平考试数学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题满分36分,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果收入100元记作100 元,那么支出100元记作()))AA .100元B .100元C .200元D .200元9.如2.当m 1时,代数式2m 3的值是((A . 1 B.0 C.1 D.23.下列运算正确的是A.a a2a3B.a 6 a2a3D .3a226a4C.2a 2 a2 214.分式方程1的解是()x 2A.x 1B.x -1C.x 2D.x -25.海口市首条越江隧道——文明东越江通道项目将于2020 年4月份完工,该项目总投A10.资3 710 000 000元,数据3 710 000 000用科学户数法表示为A.371107B.37.1108C.3.711086.图1是由5个大小相同的小正方体摆成的几何体,它的俯视图是()D.3.71109()11.A B C Da 27.如果反比例函数y (a是常数)的图象在第一、三象限,那么a的取值范围是x()A.a<0B.a>0C.a<2D.a>2数学试卷第1页(共6页)12.如图5,在Rt △ABC 中,C =90 ,AB 5,BC 4,点P 是边AC 上一动点,过三、解答题(本点P 作P Q ∥AB,交BC 于点 , 为线段 的中点.当 平分 时,AP 的 Q D P Q B D ABC 步骤)长度为()17.(本小题满分(1)计算:(2)解不等8 B .1525 1332 A . C .D .13131318.(本小题满分第Ⅱ卷(非选择题 共 84 分)时下正是海购买2 千克土”百香果和少元?二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.请把答案填在题中的横线上) 13.因式分解: ab a .14.如图 6, O与正五边形ABC D E 的边AB 、DE 分别相切于点B 、D ,则劣弧B D 所对 的圆心角BO D 的大小为度.19.(本小题满分为宣传6 月生物多样性情况,随机和统计图((1)本次调(2)表1 中(3)所抽取(4)请你估15.如图7,将Rt △ABC 的斜边AB 绕点A 顺时针旋转(0<a <90)得到AE ,直角边A C 绕点 A 逆时针旋转 β(0 <<90 )得到 AF ,连接 EF .若AB 3,AC 2 .且 a B,则EF .16.有 2019 个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和, 如果第一个数是0,第二个数是1,那么前6 个数的和是 ,这2019 个数的和是.数学试卷 第 3 页(共 6 页)20.(本小题满分10分)22.如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60方向上有一小岛C,小岛C在观察站B的北偏西15方向上,码头A到小岛C的距在此卷上答题无效离AC为10 海里.(1)填空:BAC 度,C 度;(2)求观测站B到AC的距离BP(结果保留根号).21.(本小题满分13分)如图,在边长为1的正方形AB C D中,E是边C D的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△P DE C≌△Q C E;(2)过点E作EF∥BC交PB于点F,连接AF,当PB P Q时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.数学试卷第5页(共6页)2019 海南省初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】如果收入 100 元记为 100 元 ,那么支出 100 元记为-100 元,故选 A 。
2019年海南省侨中三亚学校中考数学模拟试卷(1)一、选择题(本题有14个小题,每小题3分,共42分)1.﹣2的相反数是()A.﹣B.C.2 D.±22.下列运算正确的是()A.x4•x3=x12 B.(x3)4=x81C.x4÷x3=x(x≠0)D.x4+x3=x73.如下左图所示的几何体的主视图是()A.B.C.D.4.某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为()A.0.56×10﹣3B.5.6×10﹣4C.5.6×10﹣5D.56×10﹣55.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B. C.D.6.分式的值为0时,x的值是()A.0 B.1 C.﹣1 D.﹣27.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.58.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁9.函数y=中,自变量x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠010.抛物线y=x2向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式为()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣311.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为()A.2.5 B.5 C.10 D.1512.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A.B.C.D.13.如图,A、B、C是⊙O上的三点,已知∠O=60°,则∠C=()A.20°B.25°C.30°D.45°14.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题:(本大题共4个小题,每小题4分,共16分)15.16的算术平方根是.16.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.18.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C 落在BA上的点C′,折痕为BE,则EC的长度是.三、解答题:(本大题共62分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)计算:﹣2sin30°•tan45°(2)解不等式组.20.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?21.东方山是鄂东南地区的佛教胜地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔453.20米,月亮山海拔442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图.已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)22.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,第一天和第二天行军的平均速度各是多少?23.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.24.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.2019年海南省侨中三亚学校中考数学模拟试卷(1)参考答案与试题解析一、选择题(本题有14个小题,每小题3分,共42分)1.﹣2的相反数是()A.﹣B.C.2 D.±2【考点】相反数.【专题】存在型.【分析】根据相反数的定义进行解答即可.【解答】解:∵﹣2<0,∴﹣2相反数是2.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.下列运算正确的是()A.x4•x3=x12 B.(x3)4=x81C.x4÷x3=x(x≠0)D.x4+x3=x7【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减,及幂的乘方与积的乘方的法则,结合选项即可作出判断.【解答】解:A、x4•x3=x7,故本选项错误;B、(x3)4=x12,故本选项错误;C、x4÷x3=x(x≠0),故本选项正确;D、x4+x3≠x7,故本选项错误;故选C.【点评】此题考查了同底数幂的除法、幂的乘方与积的乘方及合并同类项的知识,关键是掌握各部分的运算法则,要求我们熟练基本知识.3.如下左图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】依题意,可知该几何体是由五个小正方形组成,底面有4个小正方体,可利用排除法解答.【解答】解:如图可知该几何体是由5个小正方体组成,底面有4个小正方体,而第二层只有1个小正方体,故选B.【点评】本题考查的是学生对三视图的理解与对该考点的巩固,难度属简单,培养空间想象力是学习这部分内容的重点.4.某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为()A.0.56×10﹣3B.5.6×10﹣4C.5.6×10﹣5D.56×10﹣5【考点】科学记数法—表示较小的数.【专题】计算题.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00056用科学记数法表示为5.6×10﹣4.故选B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B. C.D.【考点】解直角三角形.【分析】首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.【解答】解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.【点评】此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.6.分式的值为0时,x的值是()A.0 B.1 C.﹣1 D.﹣2【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣1=0,x+2≠0,解可得答案.【解答】解:由题意得:x﹣1=0,x+2≠0,解得:x=1,故选:B.【点评】此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.5【考点】众数;条形统计图;中位数.【专题】图表型.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).故选C.【点评】本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.8.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.【点评】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.9.函数y=中,自变量x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x+1≠0,解得x≠﹣1.故选C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.抛物线y=x2向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式为()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【解答】解:函数y=x2向右平移2个单位,得:y=(x﹣2)2;再向上平移3个单位,得:y=(x﹣2)2+3;故选B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.11.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为()A.2.5 B.5 C.10 D.15【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【点评】本题的关键是明白侧面展开后得到一个半圆就是底面圆的周长.12.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+5x+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,得b>0,由直线可知,a<0,b>0,故本选项正确;B、由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故本选项错误;C、由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,且交y轴同一点,故本选项正确;D、由抛物线可知,a<0,b>0,由直线可知,a>0,b<0故本选项错误.故选C.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.13.如图,A、B、C是⊙O上的三点,已知∠O=60°,则∠C=()A.20°B.25°C.30°D.45°【考点】圆周角定理.【分析】欲求∠C,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠C和∠O是同弧所对的圆周角和圆心角;∴∠C=∠O=30°;故选C.【点评】此题主要考查的圆周角定理:同弧所对的圆周角是圆心角的一半.14.如图,抛物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2﹣y 1=4;④2AB=3AC ;其中正确结论是( )A .①②B .②③C .③④D .①④【考点】二次函数的性质.【专题】压轴题;探究型.【分析】根据与y 2=(x ﹣3)2+1的图象在x 轴上方即可得出y 2的取值范围;把A (1,3)代入抛物线y 1=a (x+2)2﹣3即可得出a 的值;由抛物线与y 轴的交点求出,y 2﹣y 1的值;根据两函数的解析式直接得出AB 与AC 的关系即可.【解答】解:①∵抛物线y 2=(x ﹣3)2+1开口向上,顶点坐标在x 轴的上方,∴无论x 取何值,y 2的值总是正数,故本小题正确;②把A (1,3)代入,抛物线y 1=a (x+2)2﹣3得,3=a (1+2)2﹣3,解得a=,故本小题错误; ③由两函数图象可知,抛物线y 1=a (x+2)2﹣3解析式为y 1=(x+2)2﹣3,当x=0时,y 1=(0+2)2﹣3=﹣,y 2=(0﹣3)2+1=,故y 2﹣y 1=+=,故本小题错误;④∵物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),∴y 1的对称轴为x=﹣2,y 2的对称轴为x=3,∴B (﹣5,3),C (5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.【点评】本题考查的是二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键.二、填空题:(本大题共4个小题,每小题4分,共16分)15.16的算术平方根是4.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.16.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.【考点】概率公式.【专题】常规题型.【分析】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【解答】解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:=.故答案为:.【点评】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【考点】垂径定理;勾股定理;三角形中位线定理;圆周角定理.【专题】计算题.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC 中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理.18.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是.【考点】翻折变换(折叠问题).【分析】作ED⊥BC于D,可得含30°的Rt△CED及含45°的直角三角形BED,设所求的EC为x,则CD=x,BD=ED=x,根据BC=5列式求值即可.【解答】解:作ED⊥BC于D,由折叠的性质可知∠DBE=∠ABE=45°,设所求的EC为x,则CD=x,BD=ED=x,∵∠ABC=90°,∠C=60°,AC=10,∴BC=AC×cosC=5,∵CD+BD=5,∴CE=5﹣5.故答案是:5﹣5.【点评】考查翻折变换问题;构造出含30°及含45°的直角三角形是解决本题的突破点.三、解答题:(本大题共62分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)计算:﹣2sin30°•tan45°(2)解不等式组.【考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂、负整数指数幂法则计算,第三项利用算术平方根定义计算,第四项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=2+3×1﹣3+1﹣2××1=2+3﹣3+1﹣1=2;(2),由①得:x>﹣3,由②得:x≤3,则不等式组的解集为﹣3<x≤3.【点评】此题考查了实数的运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢B粽的人数是60人,所占的比例是10%,据此即可求得调查的总人数;(2)利用总人数减去其它组的人数即可求得喜欢C种粽子的人数,从而补全直方图;(3)利用总人数8000乘以对应的百分比即可求得.【解答】解:(1)本次参加抽样调查的居民数是60÷10%=600(人);(2)C组的人数是:600﹣180﹣60﹣240=120(人).;(3)估计爱吃D粽的人数是:8000×40%=3200(人).答:爱吃D粽的人数是3200人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.东方山是鄂东南地区的佛教胜地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔453.20米,月亮山海拔442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图.已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据tanα=,tanβ=,求出AB=8000米,进而求出该飞机从A到B 处需要时间.【解答】解:过D点作DM⊥BC,垂足为M,则BM=AD,∵东方山海拔453.20米,月亮山海拔442.00米,∴CM=BC﹣AD=453.20﹣442.00=11.2(米),tanα=,则AB=,tanβ=,则AB=,∴=,∵tanα=0.15987,tanβ=0.15847,AD=BM,AD=11.2×1584.7÷14=1267.76(米),AB==8000米,∴该飞机从A到B处需8000÷180≈44.4s,答:该飞机从A到B处需44.4s.【点评】此题主要考查了解直角三角形的应用,根据已知得出tanα=,tanβ=是解决问题的关键.22.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,第一天和第二天行军的平均速度各是多少?【考点】二元一次方程组的应用.【分析】设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h,根据两天共行军98km,第一天比第二天少走2km,列方程组求解.【解答】解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h,由题意得,,解得:,答:第一天行军为平均速度为12km/h,第二天行军为平均速度为10km/h.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)由于∠AEF是直角,则∠BAE和∠FEC同为∠AEB的余角,由此得证;(2)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等;(3)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解.【解答】(1)证明:∵∠AEF=90°,∴∠FEC+∠AEB=90°;在Rt△ABE中,∠AEB+∠BAE=90°,∴∠BAE=∠FEC;(2)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;又∵CF是∠DCH的平分线,∠ECF=90°+45°=135°;在△AGE和△ECF中,;∴△AGE≌△ECF;(3)解:由△AGE ≌△ECF ,得AE=EF ;又∵∠AEF=90°,∴△AEF 是等腰直角三角形;∵AB=a ,E 为BC 中点,∴BE=BC=AB=a ,根据勾股定理得:AE==a ,∴S △AEF =a 2. 【点评】此题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等;综合性较强,难度适中.24.已知抛物线y=ax 2+bx+c 经过A (﹣1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;压轴题;分类讨论.【分析】方法一:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.方法二:(1)略.(2)找出A点的对称点点B,根据C,P,B三点共线求出BC与对称轴的交点P.(3)用参数表示的点M坐标,分类讨论三种情况,利用两点间距离公式就可求解.(4)先求出AC的直线方程,利用斜率垂直公式求出OO’斜率及其直线方程,并求出H点坐标,进而求出O’坐标,求出DO’直线方程后再与AC的直线方程联立,求出Q点坐标.【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,1)(1,0).方法二:(1)∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG ⊥AO ,垂足为G ,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH ,∴△GHO ∽△GAH ,∴HG 2=GO •GA ,∵A (﹣1,0),C (0,3),∴l AC :y=3x+3,H (﹣,),∵H 为OO ′的中点,∴O ′(﹣,),∵D (1,4),∴l O ′D :y=x+,l AC :y=3x+3,∴x=﹣,y=,∴Q (﹣,).【点评】该二次函数综合题涉及了抛物线的性质及解析式的确定、等腰三角形的判定等知识,在判定等腰三角形时,一定要根据不同的腰和底分类进行讨论,以免漏解.。
海南省2020年中考数学模拟试题【1】及答案注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号、考试号填涂在答题卡相应的位置上;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;23.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题 (本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有一个选项正确的,请将正确答案填涂在答题卡相应的位置上.) 1.23的倒数是( ▲ ) A .23- B .32-C .23D .32份,某市经济开发区完成出口000美元,将这个数据000用科学记数法表示应为( ▲ ). A .316×106B .31.6×107C .3.16×108D .0.316×1093.学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表: 成绩(分) 9.40 9.50 9.60 9.70 9.80 9.90 人数235431则入围同学决赛成绩的中位数和众数分别是( ▲ )A .9.70,9.60B .9.60,9.60C .9.60,9.70D .9.65,9.604.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为( ▲ ) A .12B .15C .18D .215.不等式组211841x x x x -+⎧⎨+-⎩≥≤的解集是( ▲ )A .3x ≥B .2x ≥C .23x ≤≤D .无解6.点A(-1,y 1),B(-2,y 2)在反比例函数y =2x的图象上,则y 1,y 2的大小关系是( ▲ )A . y 1>y 2B . y 1=y 2C . y 1<y 2D . 不能确定7.如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC =4, BD 为⊙O 的直径,则BD 等于( ▲ )A .4B .6C .8D .12CDOABECFABD8.平行四边形ABCD 与等边△AEF 如图放置,如果∠B =45°,则∠BAE 的大小是( ▲ )A .75°B .70°C .65°D .60°9.如图1,在平行四边形ABCD 中,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP ,AD 与平行四边形的边所围成的图形面积为y ,表示y 与x 的函数关系的图像大致如图2,则AB 边上的高是( ▲ ) A .3 B .4 C .5 D .610.如图,菱形ABCD 放置在直线l 上(AB 与直线l 重合),AB =4,∠DAB =60°,将菱形ABCD 沿直线l 向右无滑动地在直线l 上滚动,从点A 离开出发点到点A 第一次落在直线l 上为止,点A 运动经过的路径总长度为( ▲ )A .1633π B .163πC .44333ππ+ D .88333ππ+ 二、填空题 (本大题共8小题,每小题3分,共24分,把答案填在答题卡相应位置上.) 11.13-的绝对值等于 ▲ 。
海南省海口市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°2.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC 的周长为()A.16 B.14 C.12 D.103.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C.7D.34.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.355.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()6.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c 7.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( ) A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α10.如图所示的几何体,它的左视图是( )A .B .C .D .11.下列命题是真命题的是( )A .如实数a ,b 满足a 2=b 2,则a =bB .若实数a ,b 满足a <0,b <0,则ab <0C .“购买1张彩票就中奖”是不可能事件D .三角形的三个内角中最多有一个钝角123,0.21,2π ,180.001,0.20202中,无理数的个数为( )二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数kyx(x<0)的图象上,则k= .14.如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B,点B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.15.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.16.二次函数y=x2-2x+1的对称轴方程是x=_______.17.用一条长60 cm 的绳子围成一个面积为2162cm的矩形.设矩形的一边长为x cm,则可列方程为______.18.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AC 是⊙O 的直径,PA 切⊙O 于点A ,点B 是⊙O 上的一点,且∠BAC =30°,∠APB =60°.(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为2,求弦AB 及PA ,PB 的长.20.(6分)已知关于x 的方程x 1+(1k ﹣1)x+k 1﹣1=0有两个实数根x 1,x 1.求实数k 的取值范围; 若x 1,x 1满足x 11+x 11=16+x 1x 1,求实数k 的值.21.(6分)已知抛物线23y ax bx =++的开口向上顶点为P(1)若P 点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y 的取值范围(用含a 的代数式表示)(3)若a =1,且当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,求b 的值22.(8分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B Ð为多少度时,AP 平分CAB ∠.23.(8分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A :大雁塔 B :兵马俑 C :陕西历史博物馆 D :秦岭野生动物园 E :曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.24.(10分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?25.(10分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.26.(12分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.27.(12分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.2.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.3.B【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.B【解析】【分析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是2 5 .故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.5.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y 轴的右侧,∴ab <0,∵与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x=﹣2b a<1, ∴﹣b <2a ,∴2a+b >0,故②正确;③∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故③正确;④当x=﹣1时,y >0,∴a ﹣b+c >0,故④正确.故选D .【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.6.C【解析】【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|,∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c ,故答案为a+c .故选A .7.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.8.C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.9.D【解析】【分析】利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.10.A【解析】【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.11.D【解析】【分析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a ,b 满足a 2=b 2,则a =±b ,A 是假命题; 数a ,b 满足a <0,b <0,则ab >0,B 是假命题;若实“购买1张彩票就中奖”是随机事件,C 是假命题;三角形的三个内角中最多有一个钝角,D 是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键12.C【解析】 在实数﹣3,0.21,2π ,18 ,0.001 ,0.20202中, 根据无理数的定义可得其中无理数有﹣3,2π,0.001,共三个. 故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-43.【解析】【分析】过点B 作BD ⊥x 轴于点D ,因为△AOB 是等边三角形,点A 的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD 及OD 的长,可得出B 点坐标,进而得出反比例函数的解析式.【详解】过点B 作BD ⊥x 轴于点D ,∵△AOB 是等边三角形,点A 的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×32=23,∴B(﹣2,23),∴k=﹣2×23=﹣43.【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.14.(32,12)【解析】【分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;【详解】连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(30),∴3在Rt△COD中.CD=OD•tan30°=12,∴C(312),故答案为C (-2,12). 【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键. 15.2或2. 【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC ,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2. 故答案为2或2. 考点:勾股定理 16.1 【解析】 【分析】利用公式法可求二次函数y=x 2-2x+1的对称轴.也可用配方法. 【详解】 ∵-2b a =-22-=1,∴x=1. 故答案为:1 【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决. 17.(30)216x x -= 【解析】 【分析】根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程. 【详解】解:由题意可知,矩形的周长为60cm , ∴矩形的另一边为:(30)x cm -, ∵面积为 2162cm , ∴(30)216x x -=故答案为:(30)216x x -=.【点睛】本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.18.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt △OAP 中,∠OAP=90°,∠OPA=30°, ∴OP=2OA=2×2=1. ∴PA=OP 2-OA 2=2 ∵PA=PB ,∠APB=60°, ∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 20. (2) k≤54;(2)-2. 【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x 2+x 2=2﹣2k 、x 2x 2=k 2﹣2,将其代入x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2中,解之即可得出k 的值.试题解析:(2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2, ∴△=(2k ﹣2)2﹣4(k 2﹣2)=﹣4k+5≥0,解得:k≤,∴实数k 的取值范围为k≤.(2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2, ∴x 2+x 2=2﹣2k ,x 2x 2=k 2﹣2.∵x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2, ∴(2﹣2k )2﹣2×(k 2﹣2)=26+(k 2﹣2),即k 2﹣4k ﹣22=0, 解得:k=﹣2或k=6(不符合题意,舍去).∴实数k 的值为﹣2. 考点:一元二次方程根与系数的关系,根的判别式. 21.(1)21234y x x =-+;(2)1-4a≤y≤4+5a ;(3)b =2或-10. 【解析】 【分析】(1)将P (4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线2bx a =-中,可判断22b x a=->,且开口向上,所以y 随x 的增大而减小,再把x=-1,x=2代入即可求得.(3)观察图象可得,当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,这些点可能为x=0,x=1,2bx =-三种情况,再根据对称轴2bx =-在不同位置进行讨论即可. 【详解】解:(1)由此抛物线顶点为P (4,-1),所以y =a (x-4)2-1=ax 2-8ax +16a -1,即16a -1=3,解得a=14, b=-8a=-2 所以抛物线解析式为:21234y x x =-+; (2)由此抛物线经过点C (4,-1), 所以 一1=16a +4b +3,即b =-4a -1. 因为抛物线2(41)3=-++y axa x 的开口向上,则有0a >其对称轴为直线412+=a x a ,而4112222a+==+>a x a 所以当-1≤x≤2时,y 随着x 的增大而减小 当x =-1时,y=a+(4a+1)+3=4+5a 当x =2时,y=4a-2(4a+1)+3=1-4a 所以当-1≤x≤2时,1-4a≤y≤4+5a ;(3)当a =1时,抛物线的解析式为y =x 2+bx +3 ∴抛物线的对称轴为直线2bx =-由抛物线图象可知,仅当x =0,x =1或x =-2b时,抛物线上的点可能离x 轴最远 分别代入可得,当x =0时,y=3 当x=1时,y =b +4当x=-2b 时,y=-24b +3 ①当一2b<0,即b >0时,3≤y≤b+4, 由b +4=6解得b =2 ②当0≤-2b≤1时,即一2≤b≤0时,△=b 2-12<0,抛物线与x 轴无公共点 由b +4=6解得b =2(舍去); ③当b12-> ,即b <-2时,b +4≤y≤3, 由b +4=-6解得b =-10 综上,b =2或-10 【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x 轴距离的最大值的点不同. 22.(1)详见解析;(2)30°. 【解析】 【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案. 【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线, ∴PA=PB , ∴点P 即为所求.(2)如图,连接AP , ∵PA PB =, ∴PAB B ∠=∠, ∵AP 是角平分线, ∴PAB PAC ∠=∠, ∴PAB PAC B ∠=∠=∠, ∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°, ∴3∠B=90°, 解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键. 23.(1)40;(2)想去D 景点的人数是8,圆心角度数是72°;(3)280. 【解析】【分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数; (3)用800乘以样本中最想去B 景点的人数所占的百分比即可. 【详解】(1)被调查的学生总人数为8÷20%=40(人); (2)最想去D 景点的人数为40-8-14-4-6=8(人), 补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280, 所以估计“醉美旅游景点B“的学生人数为280人. 【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.24.(1)150人;(2)补图见解析;(3)144°;(4)300盒. 【解析】 【分析】(1)根据喜好A 口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A 、B 、D 三种喜好不同口味牛奶的人数,求出喜好C 口味牛奶的人数,补全统计图.再用360°乘以喜好C 口味的牛奶人数所占百分比求出对应中心角度数. (3)用总人数乘以A 、B 口味牛奶喜欢人数所占的百分比得出答案. 【详解】解:(1)本次调查的学生有30÷20%=150人; (2)C 类别人数为150﹣(30+45+15)=60人, 补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.25.(1)25π;(2)CD1=2,CD2=72【解析】分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵AB是⊙O的直径,∴AC=8,BC=1,∴AB=10,∴⊙O的面积=π×52=25π.(2)有两种情况:①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,∵CE=8624105 AC BCAB⋅⨯==,∴OF= CE=245, ∴1241555D F =-=, ∵2222246()5BE BC CE =-=-=185,∴187555OE =-=, ∴75CF OE ==,∴22221171()()255CD CF D F =+=+=; ②如图所示,当点D 位于下半圆中点D 2时,同理可求222222749()()255CD CF FD =+=+=∴CD 12CD 2=2点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.26.(1)见解析;(2)菱形 【解析】试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO ,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB 是⊙O 的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC ,∴∠OBC=∠OCB .∵∠POB=∠OBC+∠OCB ,∴∠OCB=30°=∠P ,∴PB=BC ; (2)连接OD 交BC 于点M .∵D 是弧BC 的中点,∴OD 垂直平分BC .在直角△OMC 中,∵∠OCM=30°,∴OC=2OM=OD ,∴OM=DM ,∴四边形BOCD 是菱形.27.(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.。
2019海南中考数学模拟试题详解一、选择题(本大题满分42分,每小题3分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】此题主要考查了相反数,根据相反数的定义分析,即可得出答案.解:2019的相反数是﹣2019.【答案】B2.方程x+3=2的解为()A.﹣1B.1C.5D.﹣5【分析】本题考查如何解一元一次方程,移项,合并同类项,即可得到答案.解:移项得:x=2﹣3,合并同类项得:x=﹣1,【答案】A3.2018年6月3日,海南宣布设立海南自贸区海口江东新区,总面积约298000000平方米.数据298000000用科学记数法表示为()A.298×106B.29.8×107C.2.98×108D.0.298×109【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解:298000000=2.98×108.【答案】C4.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36B.45C.48D.50【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,【答案】D5.如图所示的几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看外面是一个矩形,里面是一个圆形,【答案】C6.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3【分析】根据同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法求出每个式子的值,再进行判断即可.解:A、x2•x3=x5,故本选项错误;B、(x2)3=x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6÷x3=x3,故本选项正确;【答案】D7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.解:如图,∵m∥n∴∠1=∠2∵∠α=∠2+∠3而∠3=45°,∠α=120°∴∠2=120°﹣45°=75°∴∠1=75°∴∠β=75°【答案】D8.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).【答案】B9.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.【答案】C10.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.8l(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=100【分析】由两次涨价的百分率都为x,结合文化衫原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.解:∵两次涨价的百分率都为x,∴81(1+x)2=100.【答案】A11.要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小强和小红同时入选的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有6种等可能的结果,小强和小红同时入选的有2种情况,∴小强和小红同时入选的概率是:=.【答案】B12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.πB.C.D.【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.解:连接OB,OC.∵∠BOC=2∠BAC=60°∵OB=OC∴△OBC是等边三角形∴OB=OC=BC=1∴的长==【答案】B13.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或5【分析】如图,连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7﹣x,根据等腰直角三角形的性质和折叠的性质得到:(7﹣x)2=25﹣x2,通过解方程求得x的值,易得点B′到BC的距离.解:如图,连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上∴设DM=B′M=x,则AM=7﹣x又由折叠的性质知AB=AB′=5∴在直角△AMB′中,由勾股定理可得AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2解得x=3或x=4则点B′到BC的距离为2或1.【答案】A14.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3【分析】本题考查二次函数图象与几何变换:抛物线平移后形状不变,故a不变。
2019年海南省三亚市中考数学模拟试卷(一)一、选择题(每小题3分,共36分)1.(3分)|﹣3|的相反数是()A.﹣3B.C.3D.±32.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a4=a8C.a6÷a2=a3D.(﹣2a3)2=4a63.(3分)不等式组的解集为()A.﹣3<x<2B.﹣3<x<﹣2C.x<2D.x>﹣34.(3分)一次函数y=﹣2x+5不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)一组数据3,﹣3,0,2,﹣2,3的中位数和众数分别是()A.﹣1,2B.0,2C.1,2D.1,36.(3分)在1,2,3三个数中任取两个,组成一个两位数,则组成的两位数是偶数的概率为()A.B.C.D.7.(3分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<b<a D.c<a<b8.(3分)如图所示的几何体的俯视图是()A.B.C.D.9.(3分)如图,直线a∥b,直角三角板的直角顶点落在直线a上,若∠1=54°,则∠2等于()A.36°B.45°C.46°D.54°10.(3分)如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF ∥AB,则△BED与△DFC的周长的和为()A.34B.32C.22D.2011.(3分)如图,AB是⊙O的直径,弦CD垂直平分OB,P是上一点,则∠APD等于()A.30°B.45°C.60°D.70°12.(3分)在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)二、填空题(每小题4分,共16分)。
海南省琼海市2019年中考数学模拟试卷(一)(解析版)参考答案与试题解析一、选择题(本题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答題卡相应题号的表格内1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2下列运算中,正确的是()A.x3•x2=x6B.(x2)3=x6C.x2+x3=x5D.(2x2)3=6x6【分析】分别利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则化简求出答案.【解答】解:A、x3•x2=x5,故此选项错误;B、(x2)3=x6,正确;C、x2+x3,无法计算,故此选项错误;D、(2x2)3=8x6,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和积的乘方运算,正掌握运算法则是解题关键.3.移动互联网已经全面进入人们的日常生活.截止2019年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列几何体中,俯视图是矩形的是()A.B.C.D.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.【解答】解:A、俯视图为圆,故错误;B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.7.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F【分析】判定三角形全等的方法主要有SAS、ASA、AAS、SSS等,根据所添加的条件判段能否得出△EAC≌△FDB即可.【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当CE=BF时,不能判定△EAC≌△FDB;(D)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选(C)【点评】本题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解题时注意:判定两个三角形全等时,必须有边相等的条件,若有两边一角对应相等时,角必须是两边的夹角.8.若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A.甲B.乙C.丙D.丁【分析】首先比较出S甲2,S乙2,S丙2,S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断出成绩最稳定的同学是谁即可.【解答】解:∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的同学是丁.故选:D.【点评】此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该反比例函数的图象在()A.第一、二象限B.笫一、三象限C.笫二、三象限D.第二、四象限【分析】先把点(2,﹣1)代入反比例函数求出k的值,再由反比例函数的图象与系数的关系即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣1),∴k=2×(﹣1)=﹣2<0,∴该反比例函数的图象的两个分支分别位于二四象限.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.10.不等式组的解集是()A.x≤2 B.x>﹣1 C.﹣1<x≤2 D.无解【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2,故选C.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.12.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4 C.4D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.13.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6 B.6C.9 D.3【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,∴BC=9,故选C.【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.14.我省2019年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2019年增速位居全国第一.若2019年的快递业务量达到4.5亿件.设2019年与2019年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5【分析】根据题意可得等量关系:2019年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:设2019年与2019年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.二、填空题(本大题满分16分,每小题4分)15.分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.用正方形地砖与正六边形地砖不能(填“能”或“不能”)密铺地板.【分析】根据密铺的条件,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行密铺,反之则不能.【解答】解:设用x块正方形地砖与y块正六边形地砖能密铺地板,根据题意得90x+120y=360,整理得,x=4﹣y,∵x、y都是正整数,∴不能密铺.故答案为:不能.【点评】本题考查了平面镶嵌(密铺),注意两种正多边形的镶嵌应符合多个内角度数和等于360°.17.计算:+=2.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为61°.【分析】首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD的度数,继而求得答案.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是58°,∴∠BOD=58°,∴∠BCD=∠BOD=29°,∴∠ACD=90°﹣∠BCD=61°.故答案为:61°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题(本大题满分62分)19.计算:(1)(﹣1)3﹣+|﹣2|;(2)(2a+b)(2a﹣b)﹣4a(a﹣b).【分析】(1)根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式(﹣1)3﹣+|﹣2|的值是多少即可.(2)首先应用平方差公式,求出(2a+b)(2a﹣b)的值是多少;然后用所得的值减去4a (a﹣b)即可.【解答】解:(1)(﹣1)3﹣+|﹣2|=﹣1﹣2+2=﹣1(2)(2a+b)(2a﹣b)﹣4a(a﹣b)=4a2﹣b2﹣4a2+4ab=﹣b2+4ab【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了平方差公式的应用,以及单项式乘多项式的方法,要熟练掌握.20.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B 商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?【分析】设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出买50件A商品和40件B商品共需要的钱数即可.【解答】解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则打折前需要50×8+40×2=480(元),打折后比打折前少花480﹣364=116(元).答:打折后比打折前少花116元.【点评】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是72°.(2)请你帮学校估算此次活动共种多少棵树.【分析】(1)利用360°乘以对应的比例即可求解;(2)先求出抽查的50个组植树的平均数,然后乘以200即可求解.【解答】解:(1)植树量为“5棵树”的圆心角是:360°×=72°,故答案是:72;(2)每个小组的植树棵树:(2×8+3×15+4×17+5×10)=(棵),则此次活动植树的总棵树是:×200=716(棵).答:此次活动约植树716棵.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,此时测得轮船乙在甲的东北方向,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,此时测得轮船乙在甲的北偏东32°,此时B处距离码头O多远?(结果保留一位小数)(参考数据:sin32°≈0.53,cos32°≈0.85,tan58°≈1.60,tan32°≈0.625)【分析】设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO 和DO,再利用DC=DO﹣CO,得出x的值即可得出答案.【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.∴B处距离码头O大约13.5km.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数和三角形中的边角关系是解题的关键.23.如图(1),E为正方形ABCD的边AD上一点.AE:ED=1:,过E作EP⊥BD于P.连接AP、CP.BE与AP交于G.(1)证明:AP=CP;(2)求∠ABE的度数;(3)如图(2),点F在AD的延长线上,且PA=PF,PF交CD于H,连接CF,请写出线段AP与线段CF的数量关系,并说明理由.【分析】(1)根据正方形的性质,判定△ADP≌△CDP,进而得到AP=CP;(2)先根据△DEP是等腰直角三角形以及AE:ED=1:,得到AE=PE,再判定Rt△ABE≌Rt△PBE,最后求得∠ABE的度数;(3)先根据等腰三角形的性质求得∠APC和∠APF的度数,进而计算出∠CPF为直角,得到△CPF为等腰直角三角形,根据其边角关系以及PA=PF=PC,得到线段AP与线段CF的数量关系.【解答】解:(1)∵正方形ABCD中,AD=CD=45°∴在△ADP和△CDP中∴△ADP≌△CDP(SAS)∴AP=CP;(2)∵EP⊥BD,∠EDP=45°∴△DEP是等腰直角三角形∴PE:ED=1:又∵AE:ED=1:∴AE=PE在Rt△ABE和Rt△PBE中∴Rt△ABE≌Rt△PBE(HL)∴∠ABE=∠PBE=∠ABD=22.5°(3)线段AP与线段CF的数量关系为:CF=AP 由Rt△ABE≌Rt△PBE可得,AB=PB∵∠ABP=45°∴∠APB=67.5°=∠CPB,即∠APC=135°∵AE=PE,∠PED=45°∴∠PAE=22.5°又∵PA=PF∴∠APF=180°﹣2×22.5°=135°∴∠CPF=360°﹣135°﹣135°=90°又∵PA=PF=PC∴△PCF是等腰直角三角形∴CP:CF=1:∴AP:CF=1:即CF=AP【点评】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是根据等腰三角形的底角度数求得顶角度数,以及根据顶角度数求得底角度数.解题时注意,在等腰直角三角形中,其直角边与斜边的比值为1:,即底边长是腰长的倍.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC 的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M 点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.【解答】解:(1)①y=当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a∴a=∴y=x2x+2.(2)设P(m,m2m+2).过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=m2m+2﹣(m+2)=m2﹣2m,∵S△PAC=×PQ×4,=2PQ=﹣m2﹣4m=﹣(m+2)2+4,∴当m=﹣2时,△PAC的面积有最大值是4,此时P(﹣2,3).(3)方法一:在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M(n,n2n+2),则N(n,0)∴MN=n2+n﹣2,AN=n+4当时,MN=AN,即n2+n﹣2=(n+4)整理得:n2+2n﹣8=0解得:n1=﹣4(舍),n2=2∴M(2,﹣3);当时,MN=2AN,即n2+n﹣2=2(n+4),整理得:n2﹣n﹣20=0解得:n1=﹣4(舍),n2=5,∴M(5,﹣18).综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.方法二:∵A(﹣4,0),B(1,0),C(0,2),∴K AC×K BC=﹣1,∴AC⊥BC,MN⊥x轴,若以点A、M、N为顶点的三角形与△ABC相似,则,,设M(2t,﹣2t2﹣3t+2),∴N(2t,0),①||=,∴||=,∴2t1=0,2t2=2,②||=,∴||=2,∴2t1=5,2t2=﹣3,综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.【点评】本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.。
-2019年初中数学海南中考考试模拟试卷含答案考点及解2022年-2022年初中数学海南中考考试模拟试卷含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7B.8C.9D.10B试题分析:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选;B.考点:中位数2.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1 到6的点数,掷得面朝上的点数小于3的概率为()A.B.C.D.D.试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵六个面上数小于3的有1,2两个,∴掷得面朝上的点数小于3的概率为.故选D.考点:概率.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°C试题分析:根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角)计算出角度即可.该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.考点:本题考查了图形的旋转变化点评:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.4.的绝对值是A.B.C.D.2D解:的绝对值是,故选D.5.数据1,1,2,2,3,3,3的极差是A.1B.2C.3D.6B极差=最大值-最小值=3-1=2,故选B6.-2的绝对值是A.-B.-2C.D.2D。
海南省XX 中学2019年中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明.一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2009年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 19 D. 24A .B .C .D .9. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B. 45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地19千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .图2 ECBADAB OC图31 小时) 图4图516.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .19.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--.20.(本题满分9分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (9分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时 C.0.5~1小时 D .0.5小时以下图9.1、9.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图6 图9图9.1 图9.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间 在0.5小时以下.22.(9分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O轴上一点,过点B 作BC ∥x 轴交抛物线于点C 行四边形.(1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;图11A C D EGFM12图10图9(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.海南省XX 中学2019中考模拟考试(一)数学科试题答题卡以下为非选择题答题区,必须用黑色字迹的签字笔或钢笔在指定的区域内作答,否则答案效。
2019年海南省定安县中考数学模拟试卷(一)一.选择题:(每小题3分,共36分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下.1.2019的倒数是()A.2019B.﹣2019C.D.﹣2.函数y=中自变量x的取值范围是()A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣13.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”能搜索到与之相关的结果的条数约为67 100 000,这个数67 100 000用科学记数法可表示为()A.671×105B.6.71×106C.6.71×107D.0.671×1084.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大5.不等式3x﹣1>5的解集在数轴上表示正确的是()A.B.C.D.6.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A.3,2B.2,2C.2,3D.2,47.一次函数y=(k﹣1)x+3的图象经过点(﹣2,1),则k的值是()A.﹣1B.2C.1D.08.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.9.下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.610.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,2=84°,则∠3的度数为()A.30°B.40°C.45°D.60°11.如图,⊙A过点O(0,0),C(2,0),D(0,2),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°12.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6B.5C.4D.3二.填空题:(每小题4分,共16分)13.(4分)若=,则的值为.14.(4分)分式方程=的根为.15.(4分)在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数.16.(4分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.三.解答题:(共68分)17.(10分)(1)计算:(﹣2)2×﹣()﹣2;(2)化简求值:2a(1﹣2a)+(2a+1)(2a﹣1),其中a=2.18.(8分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?19.(10分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试859590口试8085(1)请将表和图中的空缺部分补充完整;(2)图中B同学对应的扇形圆心角为度;(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C 同学得票数为;(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)20.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,斜坡CD的坡度为5:12,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求DE的长度;(2)求大楼AB的高度.(参考数据:sin64°≈0.9,tan64°≈2)21.(14分)如图1,在正方形ABCD中,点E为边AB上的点,BE:AE=n,连结DE、BD,过点A作AG⊥DE,垂足为点F,与BC、BD分别交于点G、H,连结EH.(1)①求证:△ADE≌△BAG;②求证:DH:BH=n+1;(2)如图2,当EH∥AD时,求n的值.22.(16分)如图,直线y=x+3与x轴、y轴分别交于B、C两点,经过点B、C两点的抛物线y =x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请写出所符合条件的点M的坐标;若不存在,请说明理由.2019年海南省定安县中考数学模拟试卷(一)参考答案与试题解析一.选择题:(每小题3分,共36分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下.1.【分析】直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:2019的倒数是:.故选:C.【点评】此题主要考查了倒数,正确把握相关定义是解题关键.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x+1≥0,解得x≥﹣1,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67 100 000用科学记数法可表示为6.71×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.【点评】此题主要考查了简单组合体的三视图,关键是正确画出三视图.5.【分析】依次移项、合并同类项、系数化为1即可得.【解答】解:3x﹣1>5,3x>5+1,3x>6,x>2,故选:A.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.6.【分析】根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.【解答】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.【点评】本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.7.【分析】函数经过点(﹣2,1),把点的坐标代入解析式,即可求得k的值.【解答】解:根据题意得:﹣2(k﹣1)+3=1,解得:k=2.故选:B.【点评】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.8.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.【点评】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.【分析】根据对顶角相等队第1个图进行判断;根据平行线的性质和对顶角相等对第2个图进行判断;根据三角形外角性质对第4个图进行判断;根据圆周角定理对第5个图进行判断;根据平行四边形的性质对第6个图进行判断.【解答】解:在图1中,∠1=∠2;在图2中,∵a∥b,∴∠1=∠3,而∠2=∠3,∴∠1=∠2;在图3中,∠1>∠2;在图4中,∵AB=AC,∴∠1=∠2;在图5中,∠1=∠2;在图6中,∠1=∠2.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了对顶角、平行线的性质、三角形外角性质、等腰三角形的性质和平行四边形的性质.10.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后根据平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣84°﹣56°=40°,故选:B.【点评】该题主要考查了平行线的性质及其应用,平角的定义,应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.11.【分析】连接DC,根据正切的定义求出∠OCD,根据圆周角定理解答.【解答】解:连接DC,在Rt△DOC中,tan∠OCD===,则∠OCD=30°,由圆周角定理得,∠OBD=∠OCD=30°,故选:B.【点评】本题考查的是圆周角定理,坐标与图形性质,正切的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.12.【分析】设CD=x,则AE=x﹣1,证明△ADE≌△FCD,得ED=CD=x,根据勾股定理列方程可得CD的长.【解答】解:设CD=x,则AE=x﹣1,由折叠得:CF=BC=3,∵四边形ABCD是矩形,∴AD=BC=3,∠A=90°,AB∥CD,∴∠AED=∠CDF,∵∠A=∠CFD=90°,AD=CF=3,∴△ADE≌△FCD,∴ED=CD=x,Rt△AED中,AE2+AD2=ED2,(x﹣1)2+32=x2,x=5,∴CD=5,故选:B.【点评】本题考查了翻折变换的性质、矩形的性质、全等三角形的性质;熟练掌握矩形的性质、折叠的性质,并能进行推理计算是解决问题的关键.二.填空题:(每小题4分,共16分)13.【分析】利用=,则可设y=3k,x=4k,所以=,然后约分即可.【解答】解:∵=,∴设y=3k,x=4k,∴==.故答案为.【点评】本题考查了比例的性质:灵活运用比例的性质计算.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=3x﹣3,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【分析】设黄球的个数为x个,根据概率公式得到=,然后解方程即可.【解答】解:设黄球的个数为x个,根据题意得=,解得x=6,所以黄球的个数为6个.故答案为6.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.【分析】根据圆周角定理可得∠AED=∠ABC,然后求出tan∠ABC的值即可.【解答】解:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC==,∴tan∠AED=.故答案为:.【点评】本题考查了圆周角定理和锐角三角函数的定义,解答本题的关键是掌握同弧所对的圆周角相等.三.解答题:(共68分)17.【分析】(1)求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=4×,=2﹣4,=﹣2;(2)原式=2a﹣4a2+4a2﹣1,=2a﹣1,当a=2时,原式=2×2﹣1,=4﹣1,=3.【点评】此题考查了实数的运算和]整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.【点评】本题考查了列二元一次方程组和列一元一次方程解实际问题的运用,二元一次方程组及一元一次方程的解法的运用,解答时理解图画含义是解答本题的关键.19.【分析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.【解答】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为:90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为:144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为:105、120、75;(4)A的最终得分为=92.5(分),B的最终得分为=98(分),C的最终得分为=84(分),∴B最终当选,故答案为:B.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.【分析】(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为5:12,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.【解答】解:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为5:12,∴=,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得,x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)∵tan64°=,tan45°=,DE=5米,CE=12米,∴2=,1=,解得,AB=34米,AC=17米,即大楼AB的高度是34米.【点评】本题考查解直角三角形的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用坡度和锐角三角函数解答问题.21.【分析】(1)①由正方形的性质可得AD=AB,∠DAB=∠ABC=90°,由余角的性质可得∠BAG=∠ADF,由“ASA”可证△ADE≌△BAG;②由全等三角形的性质可得BG=AE,通过证明△ADH∽△GBH,可得,将BE:AE=n,BG=AE,AD=AB代入等式可得结论;(2)设BG=AE=k,则BE=nk,通过证明△AEH∽△ABG,可得,即可求n的值.【解答】证明:(1)①∵四边形ABCD是正方形∴AD=AB,∠DAB=∠ABC=90°∴∠DAG+∠BAG=90°∵AG⊥DE∴∠DAG+∠ADF=90°∴∠BAG=∠ADF,且AD=AB,∠DAB=∠ABG∴△ADE≌△BAG(ASA)②∵△ADE≌△BAG∴BG=AE∵四边形ABCD是正方形∴AD∥BC∴△ADH∽△GBH∴∵BE:AE=n,BG=AE,AD=AB∴=n+1(2)设BG=AE=k,则BE=nk,∵EH∥AD∴∠BEH=∠BAD=90°,∠EHB=∠ADB=45°,且∠ABD=45°∴∠EHB=∠ABD∴BE=EH=nk,∵EH∥AD∴△AEH∽△ABG∴∴∵n>0∴n=【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用相似三角形的判定和性质解决问题是本题的关键.22.【分析】(1)用直线表达式求出点B、C的坐标,将点B、C的坐标代入y=x2+bx+c,即可求解;=HE×OB=3×(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),即可求解;(2)S△CBE(3)分CM=CP、CP=PM、CM=PM三种情况,分别求解即可.【解答】解:(1)y=﹣x+3,令y=0,则x=3,令x=0,则y=3,故点B、C的坐标为(3,0)、(0,3),将点B、C的坐标代入y=x2+bx+c并解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3;(2)过点E作EH∥y轴交BC于点H,设点E(x,x2﹣4x+3),则点H(x,﹣x+3)S=HE•OB=×3×(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△CBE有最大值,∵﹣<0,当x=时,S△CBE点E(,﹣);(3)点C(0,3)、点P(2,﹣1),设点M(2,m),CP2=4+16=20,CM2=4+(m﹣3)2=m2﹣6m+13,PM2=m2+2m+1,①当CM=CP时,20=m2﹣6m+13,解得:m=7或﹣1(舍去m=﹣1);②当CP=PM时,同理可得:m=﹣1±2;③当CM=PM时,同理可得:m=;故点M坐标为:(2,7)或(2,﹣1+2)或(2,﹣1﹣2)或(2,).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019年海南省中考数学模拟试卷(一)一、选择题(本大题满分42分,每小题3分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣2.方程x+3=2的解为()A.1B.﹣1C.5D.﹣53.2018年6月3日,海南宣布设立海南自贸区海口江东新区,总面积约298000000平方米.数据298000000用科学记数法表示为()A.298×106B.29.8×107C.2.98×108D.0.298×1094.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36B.45C.48D.505.如图所示的几何体的俯视图为()A.B.C.D.6.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x37.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°8.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)9.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°10.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.8l(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=10011.要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.B.C.D.12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.πB.C.D.13.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B 的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或514.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3二、填空题(本大题满分16分,每小题4分)15.代数式中x的取值范围是.16.已知在反比例函数y=图象的任一分支上,y都随x的增大而增大,请写出一个符合条件的k的值.17.如图,AB是⊙O的直径,点P是⊙O上的一动点,当△AOP与△APB相似时,∠BAP等于.18.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.三、解答题(本大题满分62分)19.(10分)(1)计算:4×(﹣)+3﹣2(2)先化简,再求值:a(a﹣3)﹣(a﹣1)2,其中a=﹣.20.(8分)“绿水青山就是金山银山”,某省2018年新建湿地公园和森林公园共42个,其中森林公园比湿地公园多4个.问该省2018年新建湿地公园和森林公园各多少个?21.(8分)某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成A、B、C、D四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取参加测试的学生为人,扇形统计图中A等级所对的圆心角是度;(2)请补全条形统计图和扇形统计图;(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有人.22.(8分)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)23.(13分)如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.24.(15分)如图甲,抛物线y=ax2+bx﹣1经过A(﹣1,0),B(2,0)两点,交y轴于点C.(1)求抛物线的表达式和直线BC的表达式.(2)如图乙,点P为在第四象限内抛物线上的一个动点,过点P作x轴的垂线PE交直线BC于点D.①在点P运动过程中,四边形ACPB的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②是否存在点P使得以点O,C,D为顶点的三角形是等腰三角形?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2019年海南省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.方程x+3=2的解为()A.1B.﹣1C.5D.﹣5【分析】依次移项,合并同类项,即可得到答案.【解答】解:移项得:x=2﹣3,合并同类项得:x=﹣1,故选:B.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.3.2018年6月3日,海南宣布设立海南自贸区海口江东新区,总面积约298000000平方米.数据298000000用科学记数法表示为()A.298×106B.29.8×107C.2.98×108D.0.298×109【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【解答】解:298000000=2.98×108.故选:C.【点评】此题考查用科学记数法表示大数.用科学记数法表示数的关键是确定a与10的指数n,确定a时,要注意范围,n等于原数的整数位数减1.4.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36B.45C.48D.50【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【解答】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选:D.【点评】此题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.5.如图所示的几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3【分析】根据同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法求出每个式子的值,再进行判断即可.【解答】解:A、x2•x3=x5,故本选项错误;B、(x2)3=x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6÷x3=x3,故本选项正确;故选:D.【点评】本题考查了同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法的应用,主要考查学生的计算能力和辨析能力.7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.【解答】解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质.8.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.9.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.10.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.8l(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=100【分析】由两次涨价的百分率都为x,结合文化衫原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【解答】解:∵两次涨价的百分率都为x,∴81(1+x)2=100.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.11.要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小强和小红同时入选的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,小强和小红同时入选的有2种情况,∴小强和小红同时入选的概率是:=.故选:B.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.πB.C.D.【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【解答】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长==,故选:B.【点评】本题考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.13.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B 的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或5【分析】如图,连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7﹣x,根据等腰直角三角形的性质和折叠的性质得到:(7﹣x)2=25﹣x2,通过解方程求得x的值,易得点B′到BC的距离.【解答】解:如图,连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故选:A.【点评】本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△AMB′和等腰直角△B′DM,利用勾股定理将所求的线段与已知线段的数量关系联系起来.14.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3【分析】先把一般式配成顶点式得到抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),再利用点平移的规律得到把点(2,﹣8)平移后所得对应点的坐标为(﹣1,﹣3),然后利用顶点式写出平移后的抛物线的函数表达式.【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题(本大题满分16分,每小题4分)15.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.16.已知在反比例函数y=图象的任一分支上,y都随x的增大而增大,请写出一个符合条件的k的值k>1.【分析】根据“在反比例函数y=图象的任一分支上,y都随x的增大而增大”,得到关于k 的一元一次不等式,解之即可.【解答】解:根据题意得:1﹣k<0,解得:k>1,故答案为:k>1.【点评】本题考查了反比例函数图象上点的坐标特征和反比例函数的性质,正确掌握反比例函数的增减性是解题的关键.17.如图,AB是⊙O的直径,点P是⊙O上的一动点,当△AOP与△APB相似时,∠BAP等于45°.【分析】需要分类讨论:△APB∽△AOP和△APB∽△APO.利用相似三角形的对应角相等和圆周角定理解答.【解答】解:如图,∵AB是⊙O的直径,∴∠APB=90°.①当△APB∽△AOP时,∠BAP=∠PAO,∠APB=∠AOP=90°,此时OP⊥AB,由垂径定理知,OP垂直平分AB,此时△AOP是等腰直角三角形,∴∠PAO=45°.②当△APB∽△APO时,需要∠APB=∠APO,很明显,不成立,舍去.故答案是:45°.【点评】考查了相似三角形的判定,圆周角定理,利用圆周角定理推知∠APB=90°是解题的关键.18.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC =FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.三、解答题(本大题满分62分)19.(10分)(1)计算:4×(﹣)+3﹣2(2)先化简,再求值:a(a﹣3)﹣(a﹣1)2,其中a=﹣.【分析】(1)先计算乘法、算术平方根和负整数指数幂,再计算加减可得;(2)根据整式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)原式=﹣3﹣4+=﹣7+=﹣6;(2)原式=a2﹣3a﹣a2+2a﹣1=﹣a﹣1,当a=﹣时,原式=﹣1=﹣.【点评】本题主要考查实数的混合运算与整式的混合运算﹣化简求值,解题的关键是掌握整式的混合运算顺序和运算法则.20.(8分)“绿水青山就是金山银山”,某省2018年新建湿地公园和森林公园共42个,其中森林公园比湿地公园多4个.问该省2018年新建湿地公园和森林公园各多少个?【分析】根据两个量的比较可设新建湿地公园为x个,则森林公园为(x+4)个,再根据和的关系列出方程即可解决.【解答】解:设新建湿地公园为x个,则森林公园为(x+4)个,由题意得x+(x+4)=42解得x=19,∴x+4=23答:该省2018年新建湿地公园为19个,森林公园为23个.【点评】本题考查的是一元一次方程的应用,理清题意是重点,能根据题意列出等量关系是关键.21.(8分)某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成A、B、C、D四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取参加测试的学生为50人,扇形统计图中A等级所对的圆心角是72度;(2)请补全条形统计图和扇形统计图;(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有60人.【分析】(1)由A类别的人数及其所占百分比可得总人数,用360°乘以A类别的百分比即可得;(2)由各类别人数之和等于总人数求得C的人数,再求出C和D类别对应百分比可补全图形;(3)用总人数乘以样本中C等级的百分比即可.【解答】解:(1)本次抽取参加测试的学生为15÷30%=50(人),A类所对的圆心角是360×20%=72°,故答案为:50,72;(2)C类的人数为50﹣(15+22+3)=10,C类的百分比为×100%=20%,D类的百分比为×100%=6%,(3)300×20%=60(名),答:估计该校九年级学生物理实验操作成绩为C等级的有60名.故答案为:60.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)【分析】过点D作DE⊥AB于点E,设塔高AB=x,则AE=(x﹣10)m,在Rt△ADE中表示出DE,在Rt△ABC中表示出BC,再由DE=BC可建立方程,解出即可得出答案.【解答】解:过点D作DE⊥AB于点E,得矩形DEBC,设塔高AB=xm,则AE=(x﹣10)m,在Rt△ADE中,∠ADE=30°,则DE=(x﹣10)米,在Rt△ABC中,∠ACB=45°,则BC=AB=x,由题意得,(x﹣10)=x,解得:x=15+5≈23.7.即AB≈23.7米.答:塔的高度约为23.7米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段,注意方程思想的运用.23.(13分)如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.【分析】(1)根据平行四边形的性质可得AB∥CN,由此可知∠B=∠ECN,再根据全等三角形的判定方法ASA即可证明△ABE≌△NCE;(2)因为AB∥CN,所以△AFG∽△CNG,利用相似三角形的性质和已知条件即可得到含n的式子表示线段AN的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CN,∴∠B=∠ECN,∵E是BC中点,∴BE=CE,在△ABE和△NCE中,,∴△ABE≌△NCE(ASA).(2)∵AB∥CN,∴△AFG∽△CNG,∴AF:CN=AG:GN,∵AB=CN,∴AF:AB=AG:GN,∵AB=3n,F为AB中点∴FB=GE,∴GE=n,∴=,解得AE=3n,∴AN=2AE=6n.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及相似三角形的平和性质,题目的综合性较强,难度中等.24.(15分)如图甲,抛物线y=ax2+bx﹣1经过A(﹣1,0),B(2,0)两点,交y轴于点C.(1)求抛物线的表达式和直线BC的表达式.(2)如图乙,点P为在第四象限内抛物线上的一个动点,过点P作x轴的垂线PE交直线BC于点D.①在点P运动过程中,四边形ACPB的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②是否存在点P使得以点O,C,D为顶点的三角形是等腰三角形?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)设:二次函数的表达式为:y =a (x +1)(x ﹣2)=ax 2﹣ax ﹣2a ,即:﹣2a =﹣1,解得:a =,即可求解;(2)①S 四边形ACPB =S △ABC +S △BCP =×AB ×OC +×PD ×OB ,即可求解;②分CD =OC 、CD =OD 、OC =OD 三种情况分别求解即可.【解答】解:(1)二次函数的表达式为:y =a (x +1)(x ﹣2)=ax 2﹣ax ﹣2a ,即:﹣2a =﹣1,解得:a =,故抛物线的表达式为:y =x 2﹣x ﹣1,点C (0,﹣1),则直线BC 的表达式为:y =kx ﹣1,将点B 的坐标代入上式得:0=2k ﹣1,解得:k =,故直线BC 的表达式为:y =x ﹣1;(2)①设点P (x , x 2﹣x ﹣1),则点D (x , x ﹣1),S 四边形ACPB =S △ABC +S △BCP =×AB ×OC +×PD ×OB=×3×1+×2(x ﹣1﹣x 2+x +1)=﹣x 2+x +,∵﹣0,故S 有最大值,当x =1时,S 最大值为2;②设点D 坐标为(m , m ﹣1),则CD 2=m 2+m 2,OC 2=1,DO 2=m 2+(m ﹣1)2=m 2﹣m +1,当CD =OC 时,m 2+m 2=1,解得:m =, 同理可得:当CD =OD 时,m =1,当OC =OD 时,m =,则点P坐标为(,)或(1,﹣1)或(,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。