信息光学(第二)数学基础常用函数
- 格式:ppt
- 大小:702.50 KB
- 文档页数:21
1.常用的非初等函数:矩形函数、Sinc函数、三角形函数、符号函数、阶跃函数、圆柱函数。
2.δ函数的定义:a.类似普通函数定义b.序列极限形式定义c.广义函数形式定义δ函数的性质:a.筛选性质 b.坐标缩放性质 c.可分离变量性d.与普通函数乘积性质4.卷积,性质:线性性质、交换律、平移不变性、结合律、坐标缩放性质5.互相关,两个函数f(x,y)和g(x,y)的互相关定义为含参变量的无穷积分6.惠更斯-菲涅尔原理:光场中任意给定曲面上的诸面元可以看作是子波源,如果这些子波源是相干的,则在波继续传播的空间上任意一点处的光振动都可看作是子波源各自发出的子波在该点相干叠加的结果。
7.基尔霍夫理论:在空域中光的传播,把孔径平面上的光场看作点源的集合,观察平面上的场分布则等于他们所发出的带有不同权重的因子的球面子波的相干叠加。
8.角谱理论:孔径平面和观察平面上的光场分布都可以分别看成是许多不同方向传播的单色平面波分量的线性组合。
9.点扩散函数:面元的光振动为单位脉冲即δ函数时,这个像场分布函数叫做~。
10.菲涅尔衍射成立的充分条件:传递函数:11.泰伯效应:当用单色平面波垂直照明一个具有周期性透过率函数的图片时,发现在该透明片后的某些距离上出现该周期函数的现象,这种不用透镜就可以对周期物体成像的现象称为~。
12.夫琅禾费衍射:13.衍射受限系统:不考虑系统的几何像差,仅仅考虑系统的衍射限制。
14.单色信号的复表示:去掉实信号的负频成分,加倍实信号的正频成分。
多色信号的复表示:16.如果两点处的光扰动相同,两点间的互相干函数将变成自相干函数。
18.光学全息:利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,做记录的干涉条纹图样被称为“全息图”,当用光波照射全息图时,由于衍射原理能能重现出原始物光波,从而形成与原物体逼真的三维像,这个波前记录和重现的过程成为~19.+1级波(虚像),-1级波(实像),±1级波(赝像)20.从物光与参考光的位置是否同轴考虑:同轴全息、离轴全息。
[]{}{}{}{}{}{}),(),(),(),(),(),(),(),()2()()]()([212sin )](exp[)](exp[)]()([212cos )()()()(),()](2exp[)(sin )(sin )()(1),()(sin )(sin )()()](2exp[),()()(),()()(11)()(),(),(),(),()(),(1),(),(),(),(1),(000),(1)2(),()(),(01)(exp ),(exp 01)()(),()()(sin sin Sinc )()(),(021)(11110002222000220000000000222212222212222222222000200ηεηεηεηερπρδδπππδδπδπδπδτδτδτττδδδδδδδδδδδππππππG b F a bG aF y x g b y x f a y x bg y x af J r circ f f f f jx f f f y x f f f f xf f comb f comb y comb x comb f f f f y f x f j f c f c y tri x tri y x f c f c y rect x rect b f a f j b y a x y Comb x Comb y x Comb n x n x x Comb y x y x y y x x y x f y y x x xy f y x abby ax y x f dxdy y y x x y x f dxdy y x y x y x y x y x N J N y x f y x N Circ N y x f a y x a y x Circ y x N N y x f a x a x Gaus ax a x a x a x Tir Ny Sinc Nx Sinc N y x f a x x ax x a x x c Ny rect Nx rect N y x f a x x a x x rect x x y x x x y x b y a x b a y x y x y x n n N NN N N ---∞-∞=∞-∞=∞+∞-∞+∞-+=++=+---+-+--+---++---=-=-=⎪⎭⎫ ⎝⎛=--=--==--⎪⎩⎪⎨⎧=≠≠=++=+=⎪⎩⎪⎨⎧≤+=++-=⎥⎦⎤⎢⎣⎡-=⎪⎩⎪⎨⎧≤-=∧==--=-=⎪⎩⎪⎨⎧≤-=-∑∑⎰⎰⎰⎰F F FF F F 频谱函数原函数频谱函数原函数,梳状函数:分离性质:相乘性质:比例性质:筛选性质:函数的定义及性质:贝塞尔函数:,其它)()(圆域函数:,)()(高斯函数:其它)()(三角函数:,)(函数:,其它矩形函数:线性关系。
目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。