当前位置:文档之家› 信息光学总结

信息光学总结

信息光学总结
信息光学总结

第1章

二维傅里叶分析

第一讲 光学中常用的几种非初等函数 δ函数

Ⅰ重要的基本概念和公式 δ函数性质 (1)筛选特性 0000(,)δ(,)d d (,)f x y x x y y x y f x y +∞-∞

--=??

(2)可分离变量 0000δ(,)δ()δ()x x y y x x y y --=--

(3)乘法性质 000000(,)δ(,)(,)δ(,)f x y x x y y f x y x x y y --=-- (4)坐标缩放 1

δ(.)δ(,)ax by x y ab

=

(5)积分形式 1

1

δ()cos , δ()d 22i x

x xd x e

ωωωωππ∞∞

±-∞

-∞

=

=??

Ⅱ 例题讲解:

证明:()x df e x x

f j x δπ=?

-±2 ()()[]()()()

x x f x f f df x f df

x f i x f df e x x x f x

x x

x

x

x x

f j x x δππππππ===±=∞

→∞

-∞

∞-±???

22sin 22cos 22sin 2cos lim 20

2

此证明利用了关系式()()Nx c N x f N sin =; ()()y x f x N N ,lim ∞

→=δ

Ⅲ 练习题: 一、计算题

1. 已知连续函数f (x ), a >0和b >0 。求出下列函数: (1) ()()()0x ax x f x h -=δ

(2) ()()()[]x x comb x f x g 0-=

(提出:本题主要复习δ函数的缩放性质和筛选性质;梳妆函数的抽样特征和平移复制功能)

第二讲 卷积和相关

Ⅰ重要的基本概念和公式

1. 卷积定义:设f (x )和h (x )是两个复函数,其卷积定义为:

?∞

--=

*=ξξξd x h f x h x f x g )()()()()(

卷积运算的意义:一个函数绕函数轴反转并沿自变量轴做某一平移后与另一

函数的重叠面积。

2. 相关的定义及其运算性质

两个复函数f (x ,y )和h (x ,y )的互相关定义为:

()()()()()()fh e x f h x d f x h d f x ξξξξξξ∞

*

*-∞

-∞

=+=-=?

?

★()h x

相关运算的四个步骤:第一函数取共轭?两函数变量变换?第二函数平移?相乘积分。

3. 互相关与卷积的比较:

1)互相关时有一函数要取复共轭,而卷积没有; 2)互相关图形不需要反转;

3)两者在位移、相乘和积分这三个过程是一样的。

4. 互相关的意义:衡量两个函数间存在的关联程度,两信号关联程度高互相关值就大。 Ⅱ 例题讲解:

证明:??

?

??=*a x atri a x rect a x rect )()(

证明:相关与卷积的关系 ()()()()()fh e x f x h x f x h x *

==-*★

[]()()()()()()()()()

fh e x f x h x f x h d h f

x d f

x h x ξξξ

ξξξ∞

*-∞

*

*

-∞==-=--=-*??证明:★

Ⅲ 练习题: 一、证明题

1. 若

)()()(x g x h x f =*,试证明)()()(00x x g x h x x f -=*-;即参

与卷积的一个函数发生平移,卷积的结果也仅仅发生平移。 证明:根据卷积的定义,已知 ?∞

--=*t

t x h t f x h x f d )()()()(

)

('d )'()'('

d )'()'(d )()()()(000'000

x x g t t x x h t f t x t x h t f t t x h x t f x h x x f x t t -=--=--=

--=*-??

?∞

-∞

--=∞

-

2. 证明)()()(00x x f x f x x -=*-δ

根据卷积的定义写出积分表达式,然后再根据δ函数的筛选性质。

)(d )()()()(000x x f t t x f x t x f x x -=--=*-?∞

-δδ

二、思考题

1. 利用梳函数与矩形函数的卷积表示线光栅的透过率。假定缝宽为a ,光栅常数为d ,缝数为N 。

()??

?

?????? ??*??? ????? ??=d x comb d a x rect Nd x rect x g 1

第三讲 第四讲 傅里叶变换的基本性质和基本定理

Ⅰ重要的基本概念和公式

复函数f(x,y)的傅里叶变换定义为:

2()2()1(,){(,)}(,)d d (,){(,)}(,)d d x y x y i f x f y x y i f x f y x y x y x y

F f f FT f x y f x y e x y

f x y FT F f f F f f e f f ππ∞-+-∞

+--∞

?==??????==???? 其中(,)x y F f f 称为像函数(或频谱),f(x,y)称为原函数.两者构成傅里叶变换对; 傅里叶变换基本定理(重点)

1.线性定理 {(,)(,)}(,)(,)x y x y FT af x y bg x y aF f f bG f f +=+

2.缩放和反演定理 1

{(,)}(,){(,)}()y x x y f f FT f ax by F FT f x y F f f ab a b

=

→--=-- 3.位移定理 {}2()

(,)(,)x y i f a f b x y FT f x a y b F f f e

π±+±±=

{}12()

(,)(,)i x y x y FT F f f f x y e

πξηξη-+±±=

4. Parseval 定理

2

2

d d (,)

(,)

x y x y df df x y f x y F f f ∞

-∞

-∞

=???

? (能量守恒定理)

5.卷积定理 {}{}1(,)(,)(,)(,)

(,)(,)(,)(,)

x y x y x y x y F f x y g x y F f f G f f F F f f G f f f x y g x y -?*=??*=??

6. 互相关定理{}{}1(,)(,)(,)(,)(,)(,)(,)(,)x y x y x y x y FT f x y g x y F f f G f f FT F f f G f f f x y g x y *-*

?=?

?=??

★★ (表示互功率谱)

7.迭次变换定理 {}{}11{(,)}{(,)}(,)FT FT f x y FT FT f x y f x y --==--

即对函数f(x,y)连续作两次傅立叶变换或逆变换,得其“镜像”(傅立叶变换的对称性)。光学模型为4f 成像系统

8.积分变换定理 1(0)

()()()22x x x x F F f d F f f i f ξξδπ-∞??=+????? 9.共轭变换定理 1**

**{(,)}(,){(,)}(,)FT x y x y x y f f f f F FT F x y -==--

10.空间周期与空间频率

20200(,,)exp (cos cos cos )exp[]exp[cos ]

E x y z E i x y z E ik r E i r π

λπλ

αβγθ=++????

=?=

f f f f

像面

谱面

物面

透镜

透镜

试证明

{(,)(,)}(,)(,)x y x y f x y g x y F f f G f f *=

()()()2222{(,)(,)}(,)(,)(,)(,)(,)(,)x y x y x y x y i f x f y i f x f y i f f i f X f Y f x y g x y f g x y d d e dxdy

f g x y d d e dxdy

f e

g X Y e d d d ππξξζζπξζπξζξζξζξζξζξζξζξζ∞

∞-+-∞-∞∞

∞??--++-+??

-∞-∞∞∞????-+-+????-∞-∞??*=--??????=--??????=????

????????????22(,)(,)(,)(,)

x y x y i f f i f X f Y x y x y XdY

f e

d d g X Y e

dXdY

F f f

G f f πξζπξζξζ∞

????-+-+??

??

-∞

-∞

==??

??

Ⅱ 例题讲解:

1. 证明下面的傅里叶变换关系式

{rect()rect()}absinc(a )sinc(b )a b

X Y x y

f f =

a/2b/2a/2b/2{rect()rect()}exp[2()]d d a b

X Y x y

-j f x f y x y π--=+??

根据傅里叶变换的定义,写出它的积分表达式:

)a (asinc a )a sin(a )]a sin(2[21

)]2[exp(21d )2exp(2

/a 2

/a 2

/a 2/a X X

X X X X X

X f f f f j f j x f -j f j x x f -j ==--=-=--?πππππππ

同理,)b (bsinc dy )y 2ex p(2/b 2

/b X X f f -j =?

-π把此结果和矩形夫琅和费衍射的结

果相比较。 一、计算题

1. 求()0cos 2f x π的傅里叶变换。

解:(){}()()dx ux j x f x f FT πππ2ex p 2cos 2cos 00-=

?

-

()()[]()dx ux j x f j x f j πππ2exp 2exp 2exp 2

1

00--+=?

∞∞- ()[]()[]dx x f u j dx x f u j ??∞∞-∞

∞-+-+--=002exp 2

12exp 21

ππ ()()[]002

1

f u f u ++-=

δδ 2.

单色平面波的复振幅表达式为(,,)exp 2U x y z A j π??=???

?

,求此波在传播方向的空间频率以及在x ,y ,z 方向的空间频率。 解:由题设知cos ,cos ,cos x y z k k k k k k αβγ=== 2分

1

12k f λπ===

=

cos cos x y z f f f α

βλ

λ=

=

===

3. 应用卷积定理,求tri(x ∕a)的傅里叶变换。

解:()()exp(2)x x x F rect rect i f x dx a a π∞

-∞?

?=-???

??

上式()()()2

22sin sin exp(2)sin 22a

x x x x a x x x i f a f a i f x a a c af i f i f f a ππππππ+-

??

-==

==??-??

()()()x x x a rect rect a a a

Λ=*

{}21

1()()()()()sin ()x x x x x F x rect rect rect rect a c af a

a a a a a ???

??

?∴Λ=

*=?=?

??

??

??????

? 第五讲 线性系统与线性空间不变系统和二维采样定理

Ⅰ重要的基本概念和公式

1. 线性系统:若一个系统同时具有叠加性和均匀性,即有:

111122111111221111222222{(,)(,)}{(,)}{(,)}(,)(,)

S a f x y a f x y a S f x y a S f x y a g x y a g x y +=+=+则称该系统是线性系统。

2. 平移不变性: 若{}1122(,)(,)S f x y g x y =

{}10102020(,)(,)S f x x y y g x Mx y My --=--

则称该系统具有平移不变性。

所谓平移不变性就是当输入产生平移时,输出也仅发生平移,形式不变。 3. 线性平移不变系统: 既具有线性又具有平移不变性的系统称为线性平移不变系统。

线性平移不变系统的空域描述:

(,)(,)(,)g x y f x y h x y =*

由FT 的卷积定理:可得:线性平移不变系统的频域描述为

其中:G (u ,v )、F (u ,v )和H (u ,v )分别是g (x ,y )、f (x ,y )和h (x ,y )的频谱。 4. 线性平移不变系统的本征函数

对于一个系统,若存在一个函数 f (x ,y ),满足条件:

{}(,)(,)S f x y af x y a = ,是复常数

则称该函数为该系统的本征函数。

线性平移不变系统的本征函数是复指数基元函数,即:

[]exp 2()j ux vy π+,也是δ函数。脉冲响应是实函数的线性平移不变系统, 其本征函数是正、余弦函数;即:[]{}[]cos 2()(,)cos 2()(,)S ux vy A u v ux vy u v ππφ+=+- Ⅱ 例题讲解:

1. 光学傅里叶变换可看成是函数到其频谱的变换,试回答

(1)这个系统是线性的吗?

(2)这个系统具有线性不变性质吗?为什么? 答 傅里叶变换有线性性质。设

{}(){}),(,,),(),(y x g f f G y x f f f F y x y x FT FT ==

a ,

b 为常数,则

{}()()y x y x f f gG f f aF y x bg y x af ,,),(),(+=+FT

函数有空间位移时其频谱有相移,并不会产生频谱移动。因此傅里叶变换没有线性平移不变性。

2. 写出物光场U(x,y)的二维傅里叶变换表达式,并说明其物理意义。 解:任意光场U(x,y),其二维傅里叶逆变换为

??∞

-+=y x y x y x df df y f x f i f f U y x U )](2exp[),(),(π

其中U(f x ,f y )df x df y 是平面波exp[i2p(f x x+f y y)]的振幅,平面波的传播方向由空间频率(f x ,f y )决定

物理意义:任意一光场都可以分解成无穷多个传播方向不同的,振幅不同的平面波;

例题1:有两个线性平移不变系统,它们的原点脉冲响应分别为()()x c x h sin 1=和

()()x c x h 2sin 22=,试计算各自对输入函数()x x f π2cos =的响应。

解:对与线性平移不变系统,脉冲响应的傅里叶变换是系统的传递函数

(){}(){}(){}2

sin 2sin 2sin 2c x c x c x =*

??

?

??Λ=??? ??*??? ??=

221221221x x x f f rect f rect 所以 ())2

(21

),()(21x x x x f f H f rect f H Λ=

= 输入频谱为 ()()()[]112

1

-++=

x x x f f f F δδ 对于系统1的输出频谱为

()()()()()[]()01121

11=++-==x x x x x x f rect f f f F f H f G δδ

对于系统1的输出函数也为 0 ,即()(){}1

1

10x

g x G f -==

对于系统2的输出频谱为

()()()()()()()22111111428

x x x x x x x x f G f H f F f f f f f δδδδ??==

-++Λ=-++???? ??????? 对于系统2的输出函数为 ()(){}1

221

cos 24x g x G f x π-==

一、计算题

1、 已知衍射受限光学系统的输入函数为()()x comb x g =,系统的传递函数为

三角形函数()x rect f b 。若b 取:①b=1;②b=3,求系统的输出频谱()x G f 和输出函数()x g '。

解: 根据梳妆函数的定义,梳妆函数的傅里叶变换还是梳妆函数,即

(){}()x F comb x comb f =,此为间隔为1的δ函数组成的分立的周期频谱值。 当b =0.5时,只有零频成为通过,且()01H =,输出频谱为()()x x H f f δ=

输出的函数是()1g x =的常数。

当b =1.5时,只有零频和两个基频成份通过,且()01H =,()11H ±= 其输出的频谱是()()()()11x x x x G f f f f δδδ=+++- 输出的函数是其频谱的傅里叶逆变换()()12cos 2g x x π=+ 2、 如何利用透镜的傅里叶变换性质,来获得物光场的傅里叶频谱? 解:由透镜的傅里叶变换性质可得,当物t(x 0,y 0)位于前焦平面,在单色平面光波的照射下,其后焦平面上的光场为

f

y f f x f f f F f y f x y x t f i A

y x U λλλ===

,00)],([),(F

可见,此时在透镜的焦平面上,即可得到物体的准确傅里叶频谱。也就

是说;这时透镜起到了一个傅里叶变换的作用。

第2章 标量衍射理论

复习纲要:

1. 基尔霍夫积分定理

设有一单色光波通过闭合曲面∑′传播。则光波电磁场的任一直角分量的复振幅

满足亥姆霍兹方程,即:0

22=+?→

E k E

若不考虑电磁场其它分量的影响,孤立地把E 看作标量场,并用曲面上的E 和

n

E

??值表示面内任一点的E ,这种理论就是亥姆霍兹-基尔霍夫积分定理。

在1S 面上的积分,应用基尔霍夫边界条件:

(1)在孔径∑上,光场分布U 及其导数

U

n

??与没有屏幕时完全相同。 (2)在孔径S 阴影区内的那部分,光场分布及其导数恒等于零。

(3)由索莫非辐射条件 lim (

)0R U

R ikU n

→∞

?-=?故2S 面上的整个积分随R 趋于无穷大而消失。 最后得:01()()d 4S

U G

U P G

U S n n

π

??=

-???? 2.基尔霍夫衍射理论:

??∑-=ds r ikr r n r n r ikr j A P U 01

01210121210)

ex p(]2),cos(2),cos([)ex p()(

λ; 令011001

1(,)()ikr e h P P K i r θλ=

,()2)

,cos(2),cos(2101r n r n K

-=θ, 所以0110()()(,)d d U P U P h P P x y ∞

-∞

=??

当光源足够远,且入射光在孔径平面上各点的入射角都不大时,

信息光学复习重要知识点

1.常用的非初等函数:矩形函数、Sinc函数、三角形函数、符号函数、阶跃函数、圆柱函 数。 2.δ函数的定义:a.类似普通函数定义b.序列极限形式定义c.广义函数形式定义 δ函数的性质:a.筛选性质 b.坐标缩放性质 c.可分离变量性 d.与普通函数乘积性质 4.卷积,性质:线性性质、交换律、平移不变性、结合律、坐标缩放性质 5.互相关,两个函数f(x,y)和g(x,y)的互相关定义为含参变量的无穷积分 6.惠更斯-菲涅尔原理:光场中任意给定曲面上的诸面元可以看作是子波源,如果这些子 波源是相干的,则在波继续传播的空间上任意一点处的光振动都可看作是子波源各自发出的子波在该点相干叠加的结果。 7.基尔霍夫理论:在空域中光的传播,把孔径平面上的光场看作点源的集合,观察平面上 的场分布则等于他们所发出的带有不同权重的因子的球面子波的相干叠加。 8.角谱理论:孔径平面和观察平面上的光场分布都可以分别看成是许多不同方向传播的单 色平面波分量的线性组合。 9.点扩散函数:面元的光振动为单位脉冲即δ函数时,这个像场分布函数叫做~。 10.菲涅尔衍射成立的充分条件: 传递函数: 11.泰伯效应:当用单色平面波垂直照明一个具有周期性透过率函数的图片时,发现在该透 明片后的某些距离上出现该周期函数的现象,这种不用透镜就可以对周期物体成像的现象称为~。 12.夫琅禾费衍射: 13.衍射受限系统:不考虑系统的几何像差,仅仅考虑系统的衍射限制。 14.单色信号的复表示:去掉实信号的负频成分,加倍实信号的正频成分。 多色信号的复表示: 16.如果两点处的光扰动相同,两点间的互相干函数将变成自相干函数。 18.光学全息:利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光 波前的全部信息都储存在记录介质中,做记录的干涉条纹图样被称为“全息图”,当用光波照射全息图时,由于衍射原理能能重现出原始物光波,从而形成与原物体逼真的三维像,这个波前记录和重现的过程成为~ 19.+1级波(虚像),-1级波(实像),±1级波(赝像) 20.从物光与参考光的位置是否同轴考虑:同轴全息、离轴全息。 从记录时物体与全息图片的相对位置分类:菲涅尔全息图、像面全息图、傅里叶变换全息图。 从记录介质的厚度考虑:平面全息图、体积全息图。 21.菲涅尔全息图:记录平面位于物体衍射光场的菲涅尔衍射区,物光由物体直接照到底片 上 傅里叶全息图:物体或图像频谱的全息记录。

信息光学重点解答题

(1)()?? ? ? ?-=?? ? ??-?? ? ? ?-=?? ? ??--2 5.22 121*232121*32x rect x rect x x rect x δδ (2)()()1*=x rect x comb (3)??? ??+21x rect *?? ? ??-21x rect 设卷积为()x g ,当0≤x 时,()x g =220+=?+x d x α,当0>x 时,()x g =x d x -=?22α ()?????>-<+=0,2 10 ,212x x x x x g 即 ()?? ? ??Λ=22x x g (4)已知()2 ex p x π-的傅里叶变换为()2 ex p πξ-,求 (){}()222 ex p ex p ξππ-=-x (){}() 2 2222 2ex p 22/ex p ξσππσ-=-x (5)单位振幅的单色平面波垂直入射到一半径为a 的圆形孔径上,试求菲涅耳衍射图样在轴上的强度分布 解:孔径平面撒谎能够的透射场为()??? ? ??+=a y x circ y x U 2020000,由菲涅耳公式,当0==y x 时,得到轴上点的复振幅分布为 ()()0020 202 020 2exp exp ;0,0dy dx z y x jk a y x circ z j jkz z U ??? ? ??+??? ? ? ?+=??∞∞-λ ()rdr z r jk d z j jkz a ?????? ??=02202exp exp π θλ()??? ? ?????? ??-=z a z a jk jkz j λπ2sin 4exp exp 222 ()??? ? ??=z a z I λπ2sin 4;0,022 (6)焦距 mm f 500=,直径mm D 50=的透镜将波长nm 8.632=λ的激光束聚焦,激光束的截面mm D 201=。试求透镜焦点处的光强是激 光束光强的多少倍? 解:设入射激光束的复振幅为0A ,强度为200A I =,通过透镜后的出射光场为,将此式代入菲涅耳衍射公式,并令0==y x 得焦点处的复振幅 和光强为 ()()()4exp 2/exp ;0,02100012 020 0D z j jkz A dy dx D y x circ z j jkz A f U πλλ=??? ? ? ?+=??∞∞- ()6 02120 104;0,0?≈??? ? ??=I f D A f I λπ (14)彩虹全息照相系统中使用狭缝的作用是什么?为什么彩虹全息图的色模糊主要发生在狭缝垂直的方向上? 在彩虹全息照相中使用狭缝的目的是为了能在白光照明下再现准单色像。在普通全息照相中,若用白光照明全息图再现时,不同波长的光同时进入人眼,我们将同时观察到相互错位的不同颜色的再现像,造成再现像的模糊,即色模糊。在彩虹全息照相中,由于狭缝起了分色作用,再现过程中不同波长的光对应不同的水平狭缝位置,通过某一狭缝位置只能看到某一准单色的像,从而避免了色模糊。 在彩虹全息照相中,为了便于双眼观察,参考平面波的选择总是使全息图的光栅结构主要沿水平方向,因而色散沿竖直方向。狭缝沿水平方向放置,这样色散方向与狭缝垂直,即色模糊主要发生在与狭缝垂直的方向上,这样做的结果便于人眼上下移动选择不同颜色的准单色像

大学物理实验参考

信息光学实验 实验报告 班级 学号 姓名 教师 上课时间

填写实验报告的要求 1.实验前要认真预习实验内容,理解实验的原理。 2.实验过程中要严肃认真地做好实验记录,确认所记录的数据无误后,认真 填写实验报告。 3.在试验过程中,对观察到的现象,尽量用图示说明并加以简明的理论分析。 4.对实验原理深入理解,认真回答课后思考题。 5.要求书写整洁,字体端正。

实验1 像面全息图 第一部分:预习 (一) 实验目的 1.掌握像面全息图的记录和再现原理,学会制作像面全息图,为彩虹全息实验打下基础; 2.观察像面全息图的再现像,比较其与普通三维全息图的不同之处; 3.分析离焦量对像面全息图再现像清晰度的影响 (二) 实验光路 La-激光器BS-分束镜M1、M2-全反镜L-成像透镜Lo1、Lo2-扩束镜H-全息片(三) 实验原理 将物体靠近全息记录介质,或利用成像系统将物体成像在记录介质附近,再引入一束与之相干的参考光束,即可制作像全息图。当物体紧贴记录介质或物体的像跨立在记录介质表面上时,得到的全息图称为像面全息图。因此,像面全息图是像全息图的一种特例。像面全息图的记录光路如图所示。激光器发出的激光束经反射镜M1折转后被分束镜分成两束,透过的光束经反射镜射M2反射后被扩束镜扩束并照明物体,物体被成象透镜成像在全息干板上构成物光;M3反射的一束光被扩束镜扩束并照明全息干板H,作为参考光。由于全息干板位于像面上,故记录的是像面全息图。 像面全息图的特点是可以用宽光源和白光再现。对于普通的全息图,当用点光源再现时。物上的一个点的再现像仍是一个像点。若照明光源的线度增大,像的线度随之增大,从而产生线模糊。计算表明,记录时物体愈靠近全息图平面,对再现光源的线度要求就愈低。当物体或物体的像位于全息图平面上时,再观光源的线度将不受限制。这就是像面全息图可以用宽光源再现的原因。 全息图可以看成是很多基元全息图的叠加,具有光栅结构。当用白光照明时,再现光的方向因波长而异,故再现点的位置也随波长而变化,其变化量取决于物体到全息图平面的

光学论文

理学院电子科学与技术120131326 刘玉光 浅谈光学概论 【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学将成为今后光学工程学科的重要发展方向。 【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction. 【关键词】光学、现代科技、应用、研究、历史、前景 【正文】 一、光学简介 在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。这些技术和工业至今仍然发挥着重要作用。本世纪中叶,产生了全息术和以傅里叶光学为基础的光学信息处理的理论和技术。特别是六十年代初第一台激光器的问世,实现了高亮度和高时一空相干度的光源,使光子不仅成为了信息的相干载体而且成为了能量的有效载体,随着激光技,本和光电子技术的崛起,光学工程已发展为光学为主的,并与信息科学、能源科学、材料科学。生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。它包含了许多重要的新兴学科分支,如激光技术、光通信、光存储与记录、光学信息处理、光电显示、全息和三维成像薄膜和集成光学、光电子和光子技术、激光材料处理和加工、弱光与红外热成像技术、光电测量、光纤光学、现代光学和光电子仪器及器件、光学遥感技术以及综合光学工程技术等。这些分支不仅使光学工程产生了质上的跃变,而且推动建立了一个规模迅速扩大的前所未有的现代光学产业和光电子产业。 近些年来,在一些重要的领域,信息载体正在由电磁波段扩展到光波段,从而使现代光学产业的主体集中在光信息获取、传输、处理、记录、存储、显示和传感等的光电信息产业上。这些产业一般具有数字化、集成化和微结构化等技术特征。在传统的光学系统经不断地智能化和自动化,从而仍然能够发挥重要作用的同时,对集传感、处理和执行功能于一体的微光学系统的研究和开拓光子在信息科学中作用的研究,将成为今后光学工程学科的重要发展方向。

计算全息实验二

实验注意事项(必读) 1.提前预习,没有弄清楚实验内容者,禁止接触实验仪器。 2.注意激光安全。绝对不可用眼直视激光束,或借助有聚光性的光学组件观察激光束,以免损 伤眼睛。 3.注意用电安全。He-Ne激光器电源有高压输出,严禁接触电源输出和激光头的输入端,避免触 电。 4.注意保持卫生。严禁用手或其他物品接触所有光学元件(透镜、反射镜、分光镜等)的光学 表面;特别是在调整光路中,要避免手指碰到 光学表面。 5.光学支架上的调整螺丝,只可微量调整。过度的调整,不仅损坏器材,且使防震功能大减。6.实验完成后,将实验所用仪器摆放整齐,清理一下卫生。

计算全息(二) 修正离轴干涉型与相息图编码 计算全息是利用计算机设计制作全息图或衍射光学元件的技术。从原理上,计算全息和光学全息没有什么本质差别,所不同的是产生全息图的方法。光学全息是直接利用光的干涉特性,通过物波和一束相干参考波的干涉将物波的振幅和位相信息转化成一幅干涉条纹的强度分布图,即全息图。光学全息记录的物体必须是实际存在的。而计算全息则是利用计算机程序对被记录物波的数学描述或离散数据进行处理,形成一种可以光学再现的编码图案,即计算全息图。他不需要被记录物体的实际存在。由于计算全息图编码的多样性和波面变换的灵活性,以及近年来计算机技术的飞速发展,计算全息技术已经在三维显示、图像识别、干涉计量、激光扫描、激光束整形等研究领域得到应用。最近计算全息领域的新进展是利用高分辨位相空间光调制器实现了计算全息图的实时再现,这种实时动态计算全息技术已经在原子光学、光学微操纵、微加工、软物质自组织过程的控制等领域得到成功的应用,显示了计算全息技术的巨大应用发展前景。 计算全息除了其在工业和科学研究方面的应用价值,也是一个非常好的教学工具。要做好一个计算全息图,既要熟悉衍射光学、光全息学等物理知识,还要了解抽样理论、快速傅里叶变换、调制技术和计算机编程方面的知识。这些知识对于物理类和光电信息技术类专业的学生和研究人员都是不可缺少的。 1、实验目的: 1.通过设计制作一计算全息图、利用高分辨液晶空间光调制器(LCD)实时再现 该计算全息图、观察再现结果、并利用CCD 记录再现像等实验内容; 2.掌握计算全息图的编码原理,加深对光全息原理,光的干涉和衍射特性的 认识;训练使用空间滤波器、空间光调制器(LCD)、CCD图像采集等重要的现代光学实验装置进行数字光学实验的能力。 3.同时初步了解Matlab 语言在光学中的应用。 2、实验原理 本实验以经典的迂回相位型计算全息图设计制作过程为例,介绍计算全息的基本原理。一般说来,计算全息图的制作大致可分成下述五个步骤: 1.选择物体或波面,给初其数学描述或离散数据。 2.计算物波在全息图面上的光场分布。 3.把上述光场分布编码成全息图的透过率变化。 4.输出:光学缩版或微加工。 5.光学再现。

信息光学简介

信息光学是现代光学前沿阵地的一个重要组成部分。 信息光学采用信息学的研究方法来处理光学问题,采用信息传递的观点来研究光学系统,这之所以成为可能,是由于下述两方面的原因。 首先,物理上可以把一幅光学图象理解为一幅光学信息图。一幅光学图象,是一个两维的光场分布,它可以被看作是两维空间分布序列,信息寓于其中。而信息学处理的电信号可以看作是一个携带着信息的一维时间序列,因此,有可能采用信息学的观点和方法来处理光学系统。 然而,仅仅由于上述原因就把信息学的方法引入光学还是远远不够的。在光学中可以引入信息学方法的另一个重要原因是光学信号通过光学系统的行为及其数学描述与电信号通过信息网络的行为及其数学描述有着极高的相似性。在信息学中,给网络输入一个正弦信号,所得到的输出信号仍是一个正弦波,其频率与输入信号相同,只不过输出波形的幅度和位相(相对于输入信号而言)发生了变化,这个变化与、且仅与输入信号的性质以及网络特点有关。在光学中,一个非相干的光强按正弦分布的物场通过线性光学系统时,所得到的像的光强仍是同一频率的正弦分布,只不过相对于物光而言,像的可见度降低且位相发生了变化,而且这种变化亦由、且仅由物光的特性和光学系统的特点来决定。很显然,光学系统和网络系统有着极强的相似性,其数学描述亦有共同点。正因为如此,信息学的观点和方法才有可能被借鉴到光学中来。 信息学的方法被引入光学以后,在光学领域引起了一场革命,诞生了一些崭新的光学信息的处理方法,如模糊图象的改善,特征的识别,信息的抽取、编码、存贮及含有加、减、乘、除、微分等数学运算作用的数据处理,光学信息的全息记录和重现,用频谱改变的观点来处理相干成像系统中的光信息的评价像的质量等。这些方法给沉寂一时的光学注入了新的活力。 信息光学和网络系统理论的相似是以正弦信息为基础的,而实际的物光分布不一定是正弦分布,因此,在信息光学中自然必须引入傅里叶分析方法。用傅里叶分析法可以把一般光学信息分解成正弦信息,或者把一些正弦信息进行傅里叶叠加。把傅里叶分析法引入光学乃是信息光学的一大特征。在此基础上引入了空间频谱思想来分析光信息,构成了信息光学的基本特色。 信息光学的基本规律仍然没有超出经典波动理论的范围,它仍然以波动光学原理为基础。信息光学主要是在方法上有了进一步的发展,用新的方法来处理原来的光学问题,加深对光学的理解。当然如果这些发展只具有理论的意义,它就不会像现在这样受到人们的重视,它除了可以使人们从更新的高度来分析和综合光现象并获得新的概念之外,还由此产生了许多应用。例如,引入光学传递函数来进行像质评价,全息术的应用等。

光学实验报告(一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。

3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连续的。观察者所看到的物体像具有连续变化的颜色, 像雨后天空中的彩虹一样, 因此这种全息图称为彩虹全息图。 一步彩虹全息图的记录光路是在三维照相的光路中,在记录干板与物体之间插入一个成像透镜和一个水平狭缝,把物体和狭缝的像一次记录下来,由于狭缝放置的位置不同,一步彩虹全息图的记录光路有两种;一种是赝像的记录光路,一种是真像记录光路。 3.2.1 赝像的记录光路 狭缝紧贴成像透镜后面放置,成像透镜只对物体成实像对狭缝不成实像,狭缝位于透镜焦点之内在焦点外成虚像。用会聚光作参考光。 3.2.2 真像的记录光路 狭缝和物体O均放在透镜L的焦点以外,狭缝位于物体和透镜之间。成像透镜对物体和狭缝均成实像,二者的像均在透镜的另一侧,物体的实像和狭缝的实像分别成在记录干板的前边和后边,物体的像离全息干板近一些。

(整理)信息光学导论第二章.

第二章 信息光学的数学基础 ◆引言 在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。 2.1傅里叶变换 ◆傅里叶级数 首先.让我们回忆周期函数的傅里叶级数展开式, 这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量n f x i e 2π的 幅值. ◆频谱的概念 频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。因此,傅立叶分析也称频谱分析。频谱分为振幅型频谱和相位型频谱。相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。 为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。为了讨论问题方便, 设光栅狭缝总数N 无限大 . )(x g 是周期性函数 则: 上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为 ), ()(md x g x g +=) ,2,1,( ±±=m ++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ

这里f 称为空间频率. 0f 是f 的基频.。周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量. 透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下 因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。 ◆傅里叶变换 在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下, 上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为 简单地表示为 ,5 ,3,1, d d d f =x f i n x f i x f i x f i x p i x f i x f i n e G e e e e e e x g 25252323222 )(51)(31)(121)(000000ππππππππ ππ∑ =++++-++=--- ,sin λθn d =) ,2,1,0( ±±=n ,sin 0λλθnf d n f x =='≈λ f x nf f '==0

光学期中测试

《光学》期中测试 一、单项选择题. (3×10=30分) 1. 如图,S 1、S 2 是两个相干光源,它们到P 点的距离分别 为r 1 和r 2 ,路径S 1P 垂直穿过一块厚度为t 2 ,折射率 为n 1的介质板,路径S 2P 垂直穿过厚度为t 2折射率为n 2 的另一介质板,其余部分可看作真空,这两条路径的 光程差等于 [ B ] (A )(r 2+n 2t 2)-(r 1+n 1t 1); (B )[r 2+(n 2-1)t 2-[r 1+(n 1-1)t 1 ]; (C )(r 2-n 2t 2)-(r 1-n 1t 1); (D )n 2t 2-n 1t 1。 2. 如图所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方 的透明介质的折射率分别为n 1和n 3 。已知n 1< n 2 < n 3 λ束①与②的光程差是 [ A ] (A )2 n 2e ; (B ) 2 n 2e - ? λ ; (C ) 2 n 2e - λ ; (D ) 2 n 2e - ? n 2 λ。 3.用白光源进行杨氏双缝干涉实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色滤光片 遮盖另一条缝,则 [ D ] (A )纹的宽度将发生改变; (B )产生红色和蓝色的两套彩色干涉条纹; (C )干涉条纹的亮度将发生变化; (D )不产生干涉条纹。 4. 把一平凸透镜放在平玻璃上,构成牛顿环装置当平凸透镜慢慢的向上平移时, 由反射光形成的牛顿环 [ B ] (A ) 向中心收缩,条纹间隔变小; (B ) 向中心收缩,环心呈明暗交替变化; (C ) 向外扩张,环心呈明暗交替变化; (D ) 向外扩张,条纹间隔变大。 5.在单缝夫琅和费衍射装置中,将单缝宽度b 稍稍变宽,同时使单缝沿y 轴正方向作为微小位移, 则屏幕上的中央衍射条纹将 [ C ] (A ) 变窄,同时向上移; (B ) 变窄,同时向下移; (C ) 变窄,不移动; (D ) 变宽,同时向上移; (E ) 变宽,不移动。 S S ① 3

苏州大学信息光学工程研究所研究情况介绍

苏州大学信息光学工程研究所研究情况介绍 苏州苏大维格光电科技股份有限公司(SVG Optronics)是在苏州大学信息光学工程研究所的基础上组建的企业,是苏州大学的下属企业。即将于2010年10正式登陆创业板。 维格光电科技股份有限公司(SVG Optronics)作为世界上“干涉光刻”、“卷对卷纳米压印”技术的领先者,致力于微纳光学结构制造设备的生产、行业应用以及激光直写光刻技术的研发。产品应用领域包括: 高级印刷包装、微光学应用、Displays、光学防伪、微米与纳米技术、MEMS 以及许多相关领域。 我公司现已发展成为集研发和制造并举的基于干涉光刻、精密图形化直写、微纳结构压印方面的领军型企业。拥有行业最先进的研发条件、生产设施和一流的人才团队。在微纳光学应用做出开创性工作:在定制化镭射薄膜材料、高端光学防伪器件、微纳光学制造设备和激光干涉光刻设备方面,形成规模化制造能力,成为中国具有自主知识产权的创新企业。 我公司的客户包括了全球以微米与纳米技术为研究方向的科技公司,以及在电子、防伪、信息技术和高档印刷包装方面最前沿的企业。 苏州苏大维格光电科技股份有限公司(SVG Optronics)是中国从事微纳光学制造、激光图像与全息包装、微光学薄膜产业化领域的技术领先性公司,也是中国规模最大的“定制化镭射转移材料”研发者和制造商。拥有自主研发的激光干涉制版系统,掩膜制造设备、精密电铸制版系统,精密镭射图形模压,薄膜PMMA 涂层涂布,薄膜真空镀膜(金属化、介质),UV 纳米压印系统和激光转移(复合)纸张的设备。目前,建成的定制化微结构光学薄膜的产能(1500 万平方米/月),通过ISO9001:2000 质量管理体系认证。 产品与业务领域: 1、新型镭射转移材料(膜、纸)规模化与市场推广。 ?定制化镭射薄膜(转移、烫金) ?无缝镭射与光学转移薄膜 ?微纳光学薄膜 2、光学防伪:中国高端安全防伪解决方案提供者。 ?法律证卡系统 ?交通安全系统 ?金融安全系统 3、微纳光学在先进显示与照明:具有表面微纳结构制造设备等完整研发、设计、打样和规模生产。 ?微透镜阵列器件 ?导光薄膜 ?微光学器件 ?LED 照明 4、微纳光学制造装备:自主研发“大型激光制版设备”“高速紫外激光干涉光刻设备”“DMD 并行激光直写系统”“纳米压印设备”拥有行业领先水平的紫外激光光刻/刻蚀设备(自主研发),幅面可达700mmx1000mm。具有检测精密图形微结构的检测条件。 ?图形化制造 ?微纳压印 ?LIGA 维旺科技属于维格光电科技控股的子公司,专注于手机与平板显示关键光学薄膜和材料

全息照相与信息光学实验报告

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下 载支持。一.实验目的 1.了解全息照相的基本原理,熟悉反射式全息照相和透射式全息照相的基 本技术和方法。 2.掌握在光学平台上进行光路调整的基本方法和技能。 3.通过全息照片的拍摄和冲洗,了解有关照相的一些基本知识,拍摄合格 的全息图。 二.实验原理 1.反射式全息照相 反射式全息照相也称为白光重现全息照相,这种全息照相用相干光记录全息图,而用“白光”照明得到重现像。由于重现时眼睛接收的是白光在底片上的反射光,故称为反射式全息照相。这方法的关键在于利用了布拉格条件来选择波长。 2.透射式全息照相 所谓透射式全息照相是指重现时所观察和研究的是全息图透射光的成像。这里将重点讨论以平行光作为参考光,对物光和参考光夹角较小的平面全息图的记录及再现过程。最后再简单介绍球面波作参考光的全息照相以及体积全息照相。 1)全息记录 2)物光波前的重现 全息图右侧空间并无光源,因而光场就唯一地决定于z=0处波前。因而0 级和±1级三束光从传播方向上是分离的。 0级衍射近似于一束平面波,其传播方向与全息图法线成α角。 +1级衍射则是一束球面发散波,其源点就是原来物光点源所在位置。由于 点源不是在透射光场内,因而形成虚像。 第三束光则是一束会聚的球面波,其会聚点就是实像的位置,由于波前有一项附加相位因子相当于这束球面波传播方向有一附加角度变化,很小时,这角 度近似于2α。 三.实验仪器 光学平台,半导体激光器及电源,快门及定时曝光器,扩束透镜,反射镜,光功率计,全息干板,三枚硬币。 四.实验条件 为了照好一张全息图必须具备下列几个基本条件: (1)一个很好的相干光源。全息原理是在1948年就已提出,但由于没有合适的光源而难以实现。激光的出现为全息照相提供了一个理想的光源。这是 因为激光具有很好的空间相干性与时间相干性。本实验用650半导体激光 器,其相干长度约为20cm。为了保证物光和参考光之间良好的相干性, 应尽可能使两束光光程相等。 (2)保证全息照相所用系统的稳定性。由于全息底片上所记录的干涉条纹很细,相当于波长量级,在照相过程中极小的干扰都会引起干涉条纹的模糊,甚 至使干涉条纹完全无法记录。例如记录过程中若底片位移了1um,则条纹0word格式支持编辑,如有帮助欢迎下载支持。

信息光学公式整理1

信息光学公式 1·矩形函数 ? ??? ? ≤-=??? ??-其它 , 021,10 0a x x a x x rect F { a sinc(a x ) } = rect(f /a ) F ?? ? ??Λ= b f b 1 (bx)}{sinc 2 2·inc s 函数 ()()a x x a x x a 0 00sin x x sinc --= ??? ??-ππ 3·三角形函数 ? ????≤-=??? ??Λ其它 , 0,1a x a x a x 4·符号函数 ()?? ? ??<-=>=0,10,00, 1sgn x x x x 5·阶跃函数 ()? ??<>=0,00 ,1x x x step 6·圆柱函数 ?? ???<+=???? ??+其它 ,0, 12 22 2a y x a y x circ 极坐标内 ?? ?><=??? ??a r o a r a r , ,1circ 7·δ函数的定义 普通函数形式的定义 ()()????? ?? =? ? ?==∞≠≠=∞ ∞ -?? 1 ,0,0,0, 0,dxdy y x y x y x y x δδ 广义函数形式的定义 ()()()0,0,,φφδ=∞ ∞ -?? dxdy y x y x 其中()y x ,φ在原点处连续 δ函数的性质 设函数()y x f ,在()00,y x 点出连续,则有 筛选性质 ()()()y x f dxdy y y x x y x f ,,,00=--∞ ∞ -?? δ 坐标缩放性质 ()()y x ab by ax ,1,δδ= 可变性 ()()()y x y x δδδ=, 8·梳状函数性质 ()()()∑∑∞ -∞ =∞∞ -=-= m nx j m x x πδ2exp comb ()∑∞ ∞ -?-?=??? ???x m x x x x δcomb ()∑∞ -∞=?? ? ?? ?-?=?m x m x x δ1 xx comb ()()ξcomb x comb ??→←? ()ξx comb x x comb ????→←?? ? ????x ()()()y x comb comb y x,comb = 9·傅里叶变换 ()()(){}dxdy y x j y x f F ηξπηξ+-=∞ ∞-?? 2exp ,, ()()()[]ηξηξπηξd d y x j F y x f += ∞ ∞ -?? 2exp ,, 10·阶跃函数step(x)的傅里叶变换 (){}(){}()? ?????-= +=??πξξδj 21x sgn 12 1 x step 11·卷积的定义 ()()()()()x h x f d x h f x g *=-= ?∞ ∞ -α αα 定义()x f 和()x h 的二维卷积: ()()()()()y x h y x f d d y x h f y x g ,*,,,,=--= ??∞ ∞ -β αβαβα 卷积的几个重要性质: 线性性质: {) ,(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+卷积符合交换律: ,(),(),(),(y x f y x h y x h y x f *=* 卷积符合结合律: [][] ),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则

激光物理学

第一章激光的基本概念 §1.1时间相干性和空间相干性 1.相干时间 2.相干面积 3.相干体积 §1.2光波模式和光子状态 1.光波模式 2.光子及其状态 §1.3光与物质的相互作用 1.光与物质相互作用的三过程(自发辐射受激吸收受激辐射)2.爱因斯坦系数间的关系 3.光子简并度 4.激光器与起振条件 第二章腔模理论的一般问题 §2.1变换矩阵 1.变换矩阵的基本性质 2.变换矩阵各元素的意义 §2.2腔的稳定性问题 1.稳定性条件 2.等效方法 §2.3腔的本征模式 §2.4腔的损耗 1. 平均单程损耗因子 2.光子在腔内平均寿命 3.无源谐振腔的品质因数Q 4.本征振荡模式带宽 第三章稳定球面腔 §3.1共焦腔的振荡模 §3.2光斑尺寸和等价共焦腔 §3.3衍射损耗及横模选择 §3.4谐振频率,模体积和远场发散角第四章高斯光束 §4.1 厄米高斯光束和拉盖尔高斯光束§4.2 高斯光束的q参数 第五章非稳定腔 §5.1 非稳定腔的谐振模 §5.2 几何放大率和功率损耗率 §5.3 单端输出虚共焦腔的设计 第六章电磁场和物质相互作用 §6.1 线性函数 1. 定义 2.自然加宽和碰撞加宽N 3. 多普勒加宽

4. 综合加宽 §6.2 速率方程组 1.三能级系统 2.四能级系统 第七章增益饱和与光放大 §7.1 发射截面和吸收截面 §7.2 小信号增益系数 §7.3 均匀加宽工作物质的增益饱和 1. 反转集居数的饱和 2. 均匀加宽大信号增益系数 §7.4 非均匀加宽工作物质的增益饱和 1. 加宽大信号增益系数 2. 强光作用下弱光的增益系数 第八章激光振荡理论 §8.1激光器的振荡阈值,阈值反转集居数密度 §8.2连续激光器或长脉冲激光器的阈值泵浦功率§8.3多模激光器 §8.4 频率牵引 第九章激光的半经典理论 §9.1处理方法 §9.2 密度矩阵 1.定义 2.性质 §9.3 集居数运动方程迭代解 1. 静止原子的单模理论 2. 运动原子的单模理论 3. 静止原子的多模理论 4. 环形激光器 5. 塞曼激光器 第十章激光的量子理论 §10.1 辐射场的量子化 §10.2 相干态 §10.3 相干态的几个性质 §10.4 约化密度矩阵 §10.5 原子和辐射场的相干作用 §10.6 主方程 §10.7 振荡阈值和增益饱和 §10.8 光子统计 §10.9 内禀线宽 §10.10 激光场的光强涨落 第十一章相干光学瞬态效应 §11.1 二能级系统和辐射场相互作用 §11.2 相干瞬态光学过程 §11.3 相干双光子过程

(7) 光信号的空间频谱与空间滤波

实验七 光信号的空间频谱与空间滤波 一个光信号与它的频谱是同一事物在两个空间的表现,光信号分布于坐标空间,而它的频谱存在于频率空间。由信号到频谱可以通过透镜(欲获得准确的变换,当然不是一般的透镜所能凑效的)来实现。阿贝成像理论以及阿贝—波特实验告诉人类:可以通过对信号的频谱进行处理(滤波)来达到对信号本身作相应处理的目的。这正是现代光学信息处理最基本的思想和内容。 空间频谱与空间滤波实验是信息光学中最典型的基础实验,通过实验有助于加深对现代光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波等。 通过实验还可以验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可以进一步了解透镜孔径对分辨率的影响。 一、实验目的 1.了解信号与频谱的关系以及透镜的傅里叶变换功能; 2.掌握现代成像原理和空间滤波的基本原理,理解成像过程中“分频”和“合成”的作用; 3.掌握光学滤波技术,观察各种光学滤波器产生的滤波效果,加深对光学信息处理基本思想的认识。 二、实验原理 1. 光学信号的傅里叶频谱 设有一个空间二维函数,则其二维傅里叶变换为 ),(y x g ∫∞ +?=dxdy e y x g f f G y f x f j y x y x ) (2),(),(π (1) 式中和分别是x f y f x 和方向的空间频率,是的逆傅里叶变换,即 y ),(y x g ),(y x f f G y x y f x f j y x df df e f f G y x g y x ∫∞ +=) (2),(),(π (2) 式(2)可以理解为:任意一个空间函数可以表示为无穷多个基元函数的线形叠加。 是相应于空间频率的基元函数的权重,称为的空间频谱。 ),(y x g ) ,(2y f x f i y x e πy x y x df df f f G ),(y x f f ,),(y x f f G ),(y x g 利用瑞利-索末非公式可以推导出,如果在焦距为F 的会聚透镜的前焦面上放上一振幅透过率为 的图象作为物,并且用波长为λ的单色平面波垂直照明该物,则在透镜后焦面上的复振幅 分布就是的傅里叶变换,其中空间频率与的关系为: ),(y x g )','(y x ),(y x g ),(y x f f G y x f f ,','y x x x f F λ′= , y y f F λ′= 所以面称为频谱面。由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是夫琅和费衍射图样。 )','(y x 2. 阿贝成像理论 阿贝(E.Abbe)在1837年提出了相干光照明下的显微镜成像原理。即显微镜成像可以分成两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图(空间频谱),这是衍射所引起的“分频”作

信息光学习题答案

信息光学习题答案 信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?; g?x??????f????h?x????d?; 2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=

2所以当n为偶数时,左右两边相等。n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。解:设卷积为g(x)。当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2

光学试卷2

《光学》试题 4 页,五道大题,满分为100分,请考生仔细检查,以免漏答。 一、单项选择题(每小题2分,共10分) 1.波长为400nm和800nm的两条谱线的瑞利散射强度之比为: (A)2 (B)16 ( C)4 ( D)32 [] 2.全息照片记录的是 (A) 被拍照物体表面光波光强的分布. (B) 拍照物体表面光波相位的分布. (C) 物光与参考光的干涉图样. (D) 被拍照物体的像. (E) 被摄物体的倒立实像.[] 3.一束自然光以布儒斯特角入射于平板玻璃,则: (A)反射光束是垂直于入射面振动,而透射光束平行于入射面振动,并都为线偏光. (B)反射光束是平行于入射面振动的线偏振光,而透射光束是部分偏振光. (C)反射光束是垂直于入射面振动的线偏振光,而透射光束是部分偏振光. (D)反射光束和透射光束都是部分偏振光. [] 4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A)宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度变小.[] 5.仅用一个偏振片观察一束单色光时,发现出射光存在强度为最大的位置(标出此方向MN),但无消光位置.在偏振片前放置一块四分之一波片,且使波片的光轴与标出的方向MN平行,这时旋转偏振片,观察到有消光位置,则这束单色光是 (A) 线偏振光.(B) 椭圆偏振光. (C) 圆偏振光. (D)自然光.

二、填空题(每小题3分,共24分) 1. 能量为2电子伏特的光子频率为 。 (e=1.6310-19 C ,Js h 34 10 63.6-?=) 2. 一束单色光波在折射率为n 的介质中由A 点传播到B 点,位相改变了2π,问光程改变了_______________________。 3. 光栅衍射中,欲使双缝夫琅禾费衍射的中央峰内恰好含有11条干涉条纹,则缝宽和缝间距需要满足什么条件______________________。 4. 用波长λ=632.8nm 的光源照明迈克耳孙干涉仪测量长度时,发现一镜移动一段距离后,干涉条纹移动2000条,这段距离为______________mm 。 5. 如图所示的劈形薄膜,当上表面BB’平行地向上移动时,条纹将向 移动。 6. 用波长为λ的单色光垂直照射折射率为n 2的劈形膜,各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜尖开始向右数第5条明条纹中心所对应的厚度e =____________________. 7. 一束单色线偏振光沿光轴方向通过厚度为l 的旋光晶体后,若旋光晶体对该 光的旋光率为α,则线偏振光的振动面发生,旋转的角度的表示式为_________. 8. 激光器的基本结构包括三部分,即________________、______________和 __________________. 8小题,共56分) 6分) 若空气中一均匀球形透明体能将平行光束会聚于其背面的顶点上,此透明体的折射率应等于多少?

相关主题
文本预览
相关文档 最新文档