当前位置:文档之家› 路基土的特性及设计参数

路基土的特性及设计参数

路基土的特性及设计参数
路基土的特性及设计参数

第二章路基土的特性及设计参数

小组讨论

讨论一:路基工作区计算时荷载应力有两种计算方法:1)用简化布辛尼斯克公式进行计算;2)用层状体系计算软件计算,请结合习题7和8讨论荷载大小、不同路面结构工作区深度的影响、应力计算方法对工作区深度的影响。

答:荷载大小对工作区深度的影响:由工作区深度计算公式可知:Za=√(3&KnP/γ)。荷载大小与工作区深度成正比。因此荷载越大,工作区深度越深。

不同路面结构对工作区深度的影响:路面结构的强度和模量远大于路基土,路面材料的容量也不同于路基土。路面结构的存在,使轮载传递到路基顶面的附加应力显著减小。因为路面结构和一定厚度的路基共同承担车辆荷载,路面结构与路基工作区组成了道路的工作区,也就是工作区深度=路面结构厚度+路基工作区深度。因此路面结构的厚度越大,道路工作区的深度也就越小。

应力计算方法对工作区深度的影响:(1)路基工作区深度的计算,布辛尼斯克公式与层状体系理论程序计算结果相差较多,轴重100KN时,n=5相差为;n=10相差为;轴重120KN时,n=5相差为;n=10相差为。(2)根据“公路低路堤设计指南”提出的情况,布辛尼斯克修正公式所得的路基工作区深度过小,而层状体系理论程序所得的比辛尼斯克修正公式所得的

路基工作区深度为大。(3)根据“公路低路堤设计指南”规定n=10,在采用层状体系理论公式后,采用n=5或n=10为宜,尚需再论证。

讨论二:请讨论路基顶面综合模量E和路基反应模量K的意义和在路面设计中的作用,如何结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K。

答:路基顶面综合模量E:即路基回弹模量。用路基回弹模量表征土基的承载能力,可以反映土基在瞬时荷载作用下的可恢复变形能力,因而可以应用弹性立论公式描述荷载与变形之间的关系。以回弹模量作为表征土基承载能力的参数,可以在以弹性理论为基本体系的各种设计方法中得到应用。

路基反应模量K:使用温克勒(E. Winkler)低级模型描述土基工作状态时,用路基反应模量K表征路基的承载力。温克勒地基又称为稠密液体地基。路基反应模量K相当于该液体的相对密度,路面板受到的路基反力相当于液体产生的浮力。

结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K:

1、快速路和主干路路基顶面设计回弹模量值不应小于30MPa;次干路和支路不应小于20MPa;当不满足上述要求时,应采取措施提高回弹模量。

2、路基设计中,应充分考虑道路运行中的各种不利因素,采取措施减小路基回弹模量的变异性,保证其持久性。

3、道路路基应处于干燥或中湿状态;对潮湿或过湿路基,必须采取措施

改善其湿度状况或适当提高路基回弹模量。

地基岩土的分类及工程特性指标

地基岩土的分类及工程特性指标 4.1岩土的分类 4.1.1作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。 4.1.2岩石的坚硬程度和完整程度可按本规范第4.1.3~4.1.4条划分。 4.1.3岩石的坚硬程度应根据岩块的饱和单轴抗压强度f rk按表4.1.3分为坚硬岩、较硬岩、较软岩、软岩和极软岩。当缺乏饱和单轴抗压强度资料或不能进行该项试验时,可在现场通过观察定性划分,划分标准可按本规范附录A.0.1条执行。岩石的风化程度可分为未风化、微风化、中等风化、强风化和全风化。 表4.1.3岩石坚硬程度的划分 坚硬程度类别坚硬岩较硬岩较软岩软岩极软岩 饱和单轴抗压强度 标准值f rk(MPa) >6060≥f rk>3030≥f rk>1515≥f rk>5≤5 4.1.4岩体完整程度应按表4.1.4划分为完整、较完整、较破碎、破碎和极破碎。当缺乏试验数据时可按本规范附录A.0.2条确定。 表4.1.4岩体完整程度划分 完整程度等级完整较完整较破碎破碎极破碎 完整性指数>0.750.75~0.550.55~0.350.35~0.15<0.15 注:完整性指数为岩体纵波波速与岩块纵波波速之比的平方。选定岩体、岩块测定波速时应有代表性。4.1.5碎石土为粒径大于2mm的颗粒含量超过全重50%的土。碎石土可按表4.1.5分为漂石、块石、卵石、碎石、圆砾和角砾。 表4.1.5碎石土的分类 土的名称颗粒形状粒组含量 漂石块石圆形及亚圆形为主 棱角形为主 粒径大于200mm的颗粒含量超过 全重50% 卵石圆形及亚圆形为主粒径大于20mm的颗粒含量超过

碎石棱角形为主全重50% 圆砾角砾圆形及亚圆形为主 棱角形为主 粒径大于2mm的颗粒含量超过全 重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。 4.1.6碎石土的密实度,可按表4.1.6分为松散、稍密、中密、密实。 表4.1.6碎石土的密实度 重型圆锥动力触探锤击数N63.5密实度 N63.5≤5松散 520密实 注:1.本表适用于平均粒径小于等于50mm且最大粒径不超过100mm的卵石、碎石、圆砾、角砾。对于平均粒径大于50mm或最大粒径大于100mm的碎石土,可按本规范附录B鉴别其密实度; 2.表内N6 3.5为经综合修正后的平均值。 4.1.7砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。砂土可按表4.1.7分为砾砂、粗砂、中砂、细砂和粉砂。 表4.1.7砂土的分类 土的名称粒组含量 砾砂粒径大于2mm的颗粒含量占全重25%~50% 粗砂粒径大于0.5mm的颗粒含量超过全重50% 中砂粒径大于0.25mm的颗粒含量超过全重50% 细砂粒径大于0.075mm的颗粒含量超过全重85% 粉砂粒径大于0.075mm的颗粒含量超过全重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。

路基土的特性及设计参数

第二章路基土的特性及设计参数 小组讨论 讨论一:路基工作区计算时荷载应力有两种计算方法:1)用简化布辛尼斯克公式进行计算;2)用层状体系计算软件计算,请结合习题7和8讨论荷载大小、不同路面结构工作区深度的影响、应力计算方法对工作区深度的影响。 答:荷载大小对工作区深度的影响:由工作区深度计算公式可知:Za=√(3&KnP/γ)。荷载大小与工作区深度成正比。因此荷载越大,工作区深度越深。 不同路面结构对工作区深度的影响:路面结构的强度和模量远大于路基土,路面材料的容量也不同于路基土。路面结构的存在,使轮载传递到路基顶面的附加应力显著减小。因为路面结构和一定厚度的路基共同承担车辆荷载,路面结构与路基工作区组成了道路的工作区,也就是工作区深度=路面结构厚度+路基工作区深度。因此路面结构的厚度越大,道路工作区的深度也就越小。 应力计算方法对工作区深度的影响:(1)路基工作区深度的计算,布辛尼斯克公式与层状体系理论程序计算结果相差较多,轴重100KN时,n=5相差为;n=10相差为;轴重120KN时,n=5相差为;n=10相差为。(2)根据“公路低路堤设计指南”提出的情况,布辛尼斯克修正公式所得的路基工作区深度过小,而层状体系理论程序所得的比辛尼斯克修正公式所得的

路基工作区深度为大。(3)根据“公路低路堤设计指南”规定n=10,在采用层状体系理论公式后,采用n=5或n=10为宜,尚需再论证。 讨论二:请讨论路基顶面综合模量E和路基反应模量K的意义和在路面设计中的作用,如何结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K。 答:路基顶面综合模量E:即路基回弹模量。用路基回弹模量表征土基的承载能力,可以反映土基在瞬时荷载作用下的可恢复变形能力,因而可以应用弹性立论公式描述荷载与变形之间的关系。以回弹模量作为表征土基承载能力的参数,可以在以弹性理论为基本体系的各种设计方法中得到应用。 路基反应模量K:使用温克勒(E. Winkler)低级模型描述土基工作状态时,用路基反应模量K表征路基的承载力。温克勒地基又称为稠密液体地基。路基反应模量K相当于该液体的相对密度,路面板受到的路基反力相当于液体产生的浮力。 结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K: 1、快速路和主干路路基顶面设计回弹模量值不应小于30MPa;次干路和支路不应小于20MPa;当不满足上述要求时,应采取措施提高回弹模量。 2、路基设计中,应充分考虑道路运行中的各种不利因素,采取措施减小路基回弹模量的变异性,保证其持久性。 3、道路路基应处于干燥或中湿状态;对潮湿或过湿路基,必须采取措施

八种常见不良地基土及其特点

八种常见不良地基土及其特点 软粘土 软粘土也称软土,是软弱粘性土的简称。它形成于第四纪晚期,属于海相、泻湖相、河谷相、湖沼相、溺谷相、三角洲相等的粘性沉积物或河流冲积物。多分布于沿海、河流中下游或湖泊附近地区。常见的软弱粘性土是淤泥和淤泥质土。软土的物理力学性质包括如下几个方面:(1)物理性质 粘粒含量较多,塑性指数Ip一般大于17,属粘性土。软粘土多呈深灰、暗绿色,有臭味,含有机质,含水量较高、一般大于40%,而淤泥也有大于80%的情况。孔隙比一般为1.0-2.0,其中孔隙比为1.0~1.5称为淤泥质粘土,孔隙比大于1.5时称为淤泥。由于其高粘粒含量、高含水量、大孔隙比,因而其力学性质也就呈现与之对应的特点---低强度、高压缩性、低渗透性、高灵敏度。 (2)力学性质 软粘土的强度极低,不排水强度通常仅为5~30kPa,表现为承载力基本值很低,一般不超过70kPa,有的甚至只有20kPa。软粘土尤其是淤泥灵敏度较高,这也是区别于一般粘土的重要指标。 软粘土的压缩性很大。压缩系数大于0.5MPa-1,最大可达45MPa-1,压缩指数约为0.35-0.75。通常情况下,软粘土层属于正常固结土或微超固结土,但有些土层特别是新近沉积的土层有可能属于欠固结土。 渗透系数很小是软粘土的又一重要特点,一般在10-5-10-200px/s之间,渗透系数小则固结速率就很慢,有效应力增长缓慢,从而沉降稳定慢,

地基强度增长也十分缓慢。这一特点是严重制约地基处理方法和处理效果的重要方面。 (3)工程特性 软粘土地基承载力低,强度增长缓慢;加荷后易变形且不均匀;变形速率大且稳定时间长;具有渗透性小、触变性及流变性大的特点。常用的地基处理方法有预压法、置换法、搅拌法等。 2.杂填土 杂填土主要出现在一些老的居民区和工矿区内,是人们的生活和生产活动所遗留或堆放的垃圾土。这些垃圾土一般分为三类:即建筑垃圾土、生活垃圾土和工业生产垃圾土。不同类型的垃圾土、不同时间堆放的垃圾土很难用统一的强度指标、压缩指标、渗透性指标加以描述。 杂填土的主要特点是无规划堆积、成分复杂、性质各异、厚薄不均、规律性差。因而同一场地表现为压缩性和强度的明显差异,极易造成不均匀沉降,通常都需要进行地基处理。 3.冲填土 冲填土是人为的用水力冲填方式而沉积的土。近年来多用于沿海滩涂开发及河漫滩造地。西北地区常见的水坠坝(也称冲填坝)即是冲填土堆筑的坝。冲填土形成的地基可视为天然地基的一种,它的工程性质主要取决于冲填土的性质。冲填土地基一般具有如下一些重要特点。 (1)颗粒沉积分选性明显,在入泥口附近,粗颗粒较先沉积,远离入泥口处,所沉积的颗粒变细;同时在深度方向上存在明显的层理。 (2)冲填土的含水量较高,一般大于液限,呈流动状态。停止冲填后,表

土力学与地基基础习题集与答案第章

第9章地基承载力(答案在最底端) 一、简答题 1.地基破坏模式有几种?发生整体剪切破坏时p-s曲线的特征如何? 1.【答】 在荷载作用下地基因承载力不足引起的破坏,一般都由地基土的剪切破坏引起。试验表明,浅基础的地基破坏模式有三种:整体剪切破坏、局部剪切破坏和冲切剪切破坏。 地基整体剪切破坏的主要特征是能够形成延伸至地面的连续滑动面。在形成连续滑动面的过程中,随着荷载(或基底压力)的增加将出现三个变形阶段:即弹性变形阶段、弹塑性变形阶段以及破坏(或塑性流动)阶段。即地基在荷载作用下产生近似线弹性(p-s曲线首段呈线性)变形;当荷载达到一定数值时,剪切破坏区(或称塑性变形区)逐渐扩大,p-s曲线由线性开始弯曲;当剪切破坏区连成一片形成连续滑动面时,地基基础失去了继续承载能力,这时p -s曲线具有明显的转折点。 2.何为地基塑性变形区? 3.何为地基极限承载力(或称地基极限荷载)? 4.何为临塑荷载、临界荷载p1/4? 5.地基破坏型(形)式有哪几种?各有何特点。 6.试述地基极限承载力一般公式的含义。 二、填空题 1.确定地基承载力的方法一般有原位试验法、理论公式法、规范表格法、当地经验法等。 2.地基极限承载力的公式很多,一般讲有和公式等。(给出任意两个) 3.一般来讲,浅基础的地基破坏模式有三种: 、和。 4. 是指地基稳定具有足够安全度的承载力,它相当于地基极限承载力除以一个安全系数k,且要验算地基变形不超过允许变形值。 三、选择题 1.下面有关P cr与P1/4的说法中,正确的是()。 A. P cr与基础宽度b无关,P1/4与基础宽度b有关 B. P cr与基础宽度b有关,P1/4与基础宽度b无关 C. P cr与P1/4都与基础宽度b有关 D. P cr与P1/4都与基础宽度b无关 2.一条形基础b=1.2m,d=2.0m,建在均质的粘土地基上,粘土的Υ=18KN/m3,φ=150,c=1 5KPa,则临塑荷载P cr和界线荷载P1/4分别为() A. 155.26KPa, 162.26KPa B.162.26KPa, 155.26KPa C. 155.26KPa, 148.61KPa D.163.7KPa, 162.26Kpa 3.设基础底面宽度为b,则临塑荷载P cr是指基底下塑性变形区的深度z max=()的基底压力。 A.b/3 B.> b/3 C. b/4 D.0,但塑性区即将出现 4.浅基础的地基极限承载力是指()。 A.地基中将要出现但尚未出现塑性区时的荷载

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

路基土的特性及设计参数

小组讨论 讨论一:路基工作区计算时荷载应力有两种计算方法:1)用简化布辛尼斯克公式进行计算;2)用层状体系计算软件计算,请结合习题7和8讨论荷载大小、不同路面结构工作区深度的影响、应力计算方法对工作区深度的影响。 答:荷载大小对工作区深度的影响:由工作区深度计算公式可知:Za=√(3&KnP/γ)。荷载大小与工作区深度成正比。因此荷载越大,工作区深度越深。 不同路面结构对工作区深度的影响:路面结构的强度和模量远大于路基土,路面材料的容量也不同于路基土。路面结构的存在,使轮载传递到路基顶面的附加应力显着减小。因为路面结构和一定厚度的路基共同承担车辆荷载,路面结构与路基工作区组成了道路的工作区,也就是工作区深度=路面结构厚度+路基工作区深度。因此路面结构的厚度越大,道路工作区的深度也就越小。 应力计算方法对工作区深度的影响:(1)路基工作区深度的计算,布辛尼斯克公式与层状体系理论程序计算结果相差较多,轴重100KN时,n=5相差为;n=10相差为;轴重120KN时,n=5相差为;n=10相差为。(2)根据“公路低路堤设计指南”提出的情况,布辛尼斯克修正公式所得的路基工作区深度过小,而层状体系理论程序所得的比辛尼斯克修正公式所得的路基工作区深度为大。(3)根据“公路低路堤设计指南”规定n=10,在

采用层状体系理论公式后,采用n=5或n=10为宜,尚需再论证。 讨论二:请讨论路基顶面综合模量E和路基反应模量K的意义和在路面设计中的作用,如何结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K。 答:路基顶面综合模量E:即路基回弹模量。用路基回弹模量表征土基的承载能力,可以反映土基在瞬时荷载作用下的可恢复变形能力,因而可以应用弹性立论公式描述荷载与变形之间的关系。以回弹模量作为表征土基承载能力的参数,可以在以弹性理论为基本体系的各种设计方法中得到应用。 路基反应模量K:使用温克勒(E. Winkler)低级模型描述土基工作状态时,用路基反应模量K表征路基的承载力。温克勒地基又称为稠密液体地基。路基反应模量K相当于该液体的相对密度,路面板受到的路基反力相当于液体产生的浮力。 结合路基湿度的变化选择路基顶面综合模量E或路基反应模量K: 1、快速路和主干路路基顶面设计回弹模量值不应小于30MPa;次干路和支路不应小于20MPa;当不满足上述要求时,应采取措施提高回弹模量。 2、路基设计中,应充分考虑道路运行中的各种不利因素,采取措施减小路基回弹模量的变异性,保证其持久性。 3、道路路基应处于干燥或中湿状态;对潮湿或过湿路基,必须采取措施改善其湿度状况或适当提高路基回弹模量。

八种常见不良地基土及其特点_1

八种常见不良地基土及其特点 软粘土也称软土,是软弱粘性土的简称。它形成于第四纪晚期,属于海相、泻湖相、河谷相、湖沼相、溺谷相、三角洲相等的粘性沉积物或河流冲积物。多分布于沿海、河流中下游或湖泊附近地区。常见的软弱粘性土是淤泥和淤泥质土。软土的物理力学性质包括如下几个方面: (1)物理性质 粘粒含量较多,塑性指数Ip一般大于17,属粘性土。软粘土多呈深灰、暗绿色,有臭味,含有机质,含水量较高、一般大于40%,而淤泥也有大于80%的情况。孔隙比一般为1.0-2.0,其中孔隙比为1.0~1.5称为淤泥质粘土,孔隙比大于1.5时称为淤泥。由于其高粘粒含量、高含水量、大孔隙比,因而其力学性质也就呈现与之对应的特点---低强度、高压缩性、低渗透性、高灵敏度。 (2)力学性质 软粘土的强度极低,不排水强度通常仅为5~30kPa,表现为承载力基本值很低,一般不超过70kPa,有的甚至只有20kPa。软粘土尤其是淤泥灵敏度较高,这也是区别于一般粘土的重要指标。 软粘土的压缩性很大。压缩系数大于0.5MPa-1,最大可达45MPa-1,压缩指数约为0.35-0.75。通常情况下,软粘土层属于正常固结土或微超固结土,但有些土层特别是新近沉积的土层有可能属

于欠固结土。 渗透系数很小是软粘土的又一重要特点,一般在 10-5-10-200px/s之间,渗透系数小则固结速率就很慢,有效应力增长缓慢,从而沉降稳定慢,地基强度增长也十分缓慢。这一特点是严重制约地基处理方法和处理效果的重要方面。 (3)工程特性 软粘土地基承载力低,强度增长缓慢;加荷后易变形且不均匀;变形速率大且稳定时间长;具有渗透性小、触变性及流变性大的特点。常用的地基处理方法有预压法、置换法、搅拌法等。 2.杂填土 杂填土主要出现在一些老的居民区和工矿区内,是人们的生活和生产活动所遗留或堆放的垃圾土。这些垃圾土一般分为三类:即建筑垃圾土、生活垃圾土和工业生产垃圾土。不同类型的垃圾土、不同时间堆放的垃圾土很难用统一的强度指标、压缩指标、渗透性指标加以描述。 杂填土的主要特点是无规划堆积、成分复杂、性质各异、厚薄不均、规律性差。因而同一场地表现为压缩性和强度的明显差异,极易造成不均匀沉降,通常都需要进行地基处理。 3.冲填土 冲填土是人为的用水力冲填方式而沉积的土。近年来多用于沿海滩涂开发及河漫滩造地。西北地区常见的水坠坝(也称冲填坝)即是冲填土堆筑的坝。冲填土形成的地基可视为天然地基的一种,它的工

几种特殊土地基的工程特性及地基处理

几种特殊土地基的工程特性及地基处理 城市化和工业化进程的快速发展,使得土木工程向各种复杂地基条件的区域发展,特殊土地基的工程特性引起工程师的重视。总结了湿陷性黄土、液化土、盐渍土等几种特殊土的重要工程性质,提出了相应的地基处理方法以及工程注意事项;最后针对山西采煤大省的特点,对老采空区上建(构)筑物基础的稳定性评价、勘察技术及处治技术进行了论述。 关键词:膨胀土;湿陷性黄土;盐渍土;地基处理 我国地域辽阔,从沿海到内陆,从山区到平原,分布着多种多样的土类。由于生成时地理环境、气候条件、地质成因不同以及次生变化等原因,使一些土类具有特殊的成分、结构和工程性质。通常把这些具有特殊工程性质的土类称为特殊土。随着人类生活水平的不断提高,土地的需求日益上涨,人们不得不在各种复杂和软弱地基上开展工程建设。因此,正确认识各种特殊土的工程特性就显得尤为重要。 1 膨胀土 膨胀土是指土中黏粒成分主要由亲水性矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性和黏性土。膨胀土地基的国内外研究动态国际膨胀土工程问题,始于20世纪20年代末30年代初。由于建筑技术的发展,一些国家过去本来能够承受较大变形的轻载框架式建筑物,逐渐被承受变性较差的砖石结构所取代,随之在膨胀土地区便出现了房屋开裂问题。 (1)膨胀土的物理性质及力学性质分析 膨胀土按粘土矿物分类,可以归纳为两大类:一类以蒙脱石为主,另一类以伊利土和高岭土为主。蒙脱石粘土在含水量增加时出现膨胀,而伊利土和高岭土则发生有限的膨胀,引起膨胀土发生变化的条件,分析概述如下: 1.1 含水量 膨胀土具有很高的膨胀潜势,这与它含水量的大小及变化有关。如果其含水量保持不变,则不会有体积变化。在工程施工中,建造在含水量保持不变的粘土上的构造物不会遭受由膨胀而引起的破坏。当粘土的含水量发生变化,立即就会产生垂直和水平两个方向的体积膨胀。含水量的轻微变化,仅1%~2%的量值,就足以引起有害的膨胀。 1.2 干容量 粘土的干容重与其天然含水量是息息相关的,干容重是膨胀土的另一重要指标。Y=18.0KN/M3的粘土,通常显示很高的膨胀潜势。

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

深层地基土承载力特征值如何确定

岩土工程勘察专业 有关技术问题的解释说明 天津市勘察工作委员会天津市施工图审查管理中心针对2011年勘察技术人员培训时收集的“有争议的、或较为困惑的技术问题”,天津市勘察设计协会勘察工作委员会组织专家进行了研讨;同时岩土工程勘察专业施工图审要点编制组、审核组对其中的一些问题也进行了研讨。依据两次研讨会达成的共识,整理成此稿,现予以发布,期望达到统一认识,提高我市岩土工程勘察水平的目的。 1、国标、行标、地标执行次序的理解。 依据地标主要是对本地区工程经验的总结;行标是行业或某些专项工程建设标准(如高层建筑勘察等);国标是指导全国勘察专业进行勘察工作原则性的技术要求。因此,建议执行标准时原则上宜先地标、行标,再国标。 当国家标准规定的严格程度为“应”或“必须”时,考虑到国家标准是最低的要求,至少应按国家标准执行; 当国家标准规定的严格程度为“宜”或“可”时,允许按行业、地方标准略低于国家标准的规定执行; 行业、地方标准的要求高于国家标准,应按行业、地方标准执行; 行业、地方标准的要求高于国家标准但其版本早于国标时,仍可按国家标准执行。 总之,采用不同标准有关条文的基本原则,应首先确保工程的质量安全,其次应考虑经济合理性等。 2、现场勘探孔允许移位的距离.

孔位施放和移动允许误差按《建筑工程地质钻探技术标准》规定,超过规定应将移动后的孔位按实际位置标于平面图上。移位后的孔间距仍应满足规范要求,并能满足设计需要、保证工程安全。 报告中最好说明:施工中若出现异常,应注意进行施工勘察。3、较小工程取土样或原位测试数量的确定 必须满足规范要求:每一主要土层的原状土试样或原位测试数据(有效数据)应不少于6件(组)。 4、剪切波速孔的数量确定 按《建筑抗震设计规范》第4.1.3条规定:详勘阶段,单幢建筑剪切波速孔不宜少于2个;对小区中处于同一地质单元内的密集建筑群,剪切波速孔数量可适当减少,但每幢高层建筑和大跨空间结构的波速孔数量不得少于1个。 根据天津地区的地质条件和工程经验,对小区中处于同一地质单元内的密集建筑群,当地层分布稳定、土质均匀、土层厚度相差较小且估算的等效剪切波速相近时可按国家规定数量的2/3布置,否则应严格执行国家标准规定。 5、高层建筑群勘探点数量的布置要求 对密集的高层建筑群,相邻高层建筑勘探点可互相共用。计入互相共用的勘探点每栋高层建筑勘探点数量应不少于4个,且孔间距应满足有关规范、规程要求。 6、深层地基土承载力特征值提供要求 1)浅基础:应提供地基主要受力层深度范围内的地基土承载力,

1路基土的分类

1路基土的分类:巨粒土、粗粒土、细粒土、特殊土。 2根据水热平衡和地理位置,划分为冻土、湿润、干湿过渡、湿热、潮暖和高寒7个大区,Ⅰ北部多年冻土区、Ⅱ东部温润季冻区、Ⅲ黄土高原干湿过渡区、Ⅳ东南湿热区、Ⅴ西南潮暖去、Ⅵ西北干旱区、Ⅶ青藏高寒区。二级区划是每个级区内,再以潮湿系数为依据分6个等级,过湿、中湿、润湿、润干、中干、过干,还结合各大区的地理、气候特征、地貌类型将全国分33个二级区和19个二级副区。三级区划是二级区划的具体化,划分方法两种:一种以水热、地理和地貌为依据,另一种以地表、水文和土质为依据,由各省自治区自由划定。公路自然区划原则:道路工程特征相似的原则、地表气候区划差异性的原则、自然气候因素既有综合又有主导作用的原则 3、路基干湿类型:干燥、中湿、潮湿、过湿;划分方法:平均分界稠度(土的含水率与土的液限之差与土的塑限和液限之差的比值)和路基临界高度(路基离地下水位或地表积水水位的高度) 4.路面结构分层:面层、基层、垫层;面层:承受较大的行车荷载的垂直力、p平力和冲击力,水泥混凝土、沥青混凝土、沥青碎(砾)石混合料、砂砾或碎石掺土或不掺土的混合料以及块料;基层:承受由面层传来的车辆荷载的垂直力,并将力扩散到下面的垫层和土基中去,各种混合料(石灰、水泥或沥青)稳定土或稳定碎(砾)石、贫水泥混凝土、天然砂砾、各种碎石或砾石、片石、块石或圆石,各种工业废渣(煤渣、粉煤灰、矿渣石灰渣)和土、砂、石所组成的混合料;垫层:改善土基的湿度和温度状况,以保证面层和基层的强度、刚度和稳定性不受土基水温状况变化所造成的不良影响,将基层传下的车辆荷载应力加以扩散,以减小土基产生的应力和变形,阻止路基土挤入基层中,影响基层结构的性能松散粒料(砂、砾石、炉渣)、水泥或石灰稳定土。 5、路基等级划分:高级(水泥、沥青混凝土、厂拌沥青碎石、整齐石块或条石)、次高级(沥青贯入碎(砾)石、路拌沥青碎(砾)石、沥青表面处治、半整齐石块)、中级(泥结或级配碎(砾)石、水结碎石、不整齐石块、其他粒料)、低级(各种粒料或当地材料改善土、炉渣土、砾石土、砂砾土)。 6、路面分类:柔性路面、刚性路面、半刚性路面。 7、轮迹横向分布系数:刚性路面设计中,在设计车道上,50cm宽度范围内所受到的轮迹 作用次数与通过该车道横断面的轮迹总作用次数之比。 8、路基工作区:在路基某一深度处,当车轮荷载引起的垂直应力与路基土自重力引起的垂直应力相比所占比例很小,仅为1/10~1/5时,该深度范围内的路基。 9、表征土基承载力的参数指标:回弹模量、地基反应模量、加州承载比。 10、CBR:是美国加利福利亚州提出的一种评定土基及路面材料承载能力的指标,采用高质量标准碎石为标准,用对应于某一贯入度的土基单位压力P与相应贯入度的标准压力的比值表示CBR值。 10、路基横断面形式:路堤、路堑、填挖结合。 11、路堤的分类:矮路堤(1~1.5m)、高路堤(18/20m)、一般路堤(1.5~18m)。 12、路堑的分类:全挖路基、台口式路基、半山洞路基。 13、路基设计一般内容:路基宽度、高度、边坡坡度。14 14、路基工程的附属设施:取土坑、弃土堆、护坡道、碎落台、堆料台、错车道。 15、坡脚圆:坡面为水平面,圆弧滑动面通过坡脚。 16、中点圆:边坡角小于某一限制,则最危险滑动面将移至坡脚以外,连同部分地基软弱土形成整体滑动。 17、坡面圆:最危险滑动面在坡脚地面线以上。 18、路基防护与加固措施:边坡坡面防护、沿河路堤防护与加固、湿软地基的加固处置。

传感器的参数静态特性技术指标

1.线性度(Linearity) 传感器的输出输入关系或多或少地存在非线性。在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示: 式中:y—输出量;x—输入量;a0—零点输出; a1—理论灵敏度;a2、a3、… 、a n—非线性项系数。 各项系数不同,决定了特性曲线的具体形式。 静态特性曲线可实际测试获得。在获得特性曲线之后,可以说问题已经得到解决。但是为了标定和数据处理的方便,希望得到线性关系。这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理。 一般来说,这些办法都比较复杂。所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度。 通常用相对误差 L表示: ΔLmax一最大非线性误差;y FS—满量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。拟合直线不同,非线性误差也不同。所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。另外,还应考虑使用是否方便,计算是否简便。 ①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合;⑥最小包容拟合

2.迟滞(Hysteresis) 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即 式中△ Hmax —正反行程间输出的最大差值。 迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。检测回程误差时,可选择几个测试点。对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。 3.重复性(Repeatability) 重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。 重复性误差可用正、反行程的最大偏差表示,即 △Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。 重复性误差也常用绝对误差表示。检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列y i1,y i2,y i3,…,y in ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi ,在几个ΔRi 中取出最大值ΔRmax 作为重复性误差。 ()% 100/max ??±=FS R R y δ()%100/)3~2(?±=FS R y σδ

路基用土类型其工程性质

综合数据 巨粒土包括漂石(块石)土和卵石(小块石)土,有很高的强度和稳定性,是填筑路基很好的材料。级配良好的砾石混合料,由于粒径较大,内摩擦系数也大,容易压实,其强度和稳定性能很好地满足要求;级配不良的砾砂混合料,不容易达到规定的密实程度。 砂土无塑性,透水性强,毛细水上升高度很小,具有较大的内摩擦系数,采用砂土修筑路基,强度和水稳性均较好。但砂土由于粘性小,易于松散,压实困难,需用振动法才能压实,经充分压实的砂土路基压缩变形小。在有条件时,可掺加一些粘土,以提高其稳定性,改善路基的使用质量。 砂质土既含有一定数量的粗颗粒,具有足够的内摩擦刀,又含有一定数量的细颗粒,使其具有一定的粘聚力,其强度和稳定性等都能满足要求,是修筑路基的理想材料。例如:细粒土质砂土,其颗粒组成接近最佳级配,渗水性好,不膨胀,遇水不粘着,雨天不泥泞,晴天不扬尘,在行车作用下,易被压实成平整坚实的路基。 粉质土含有较多的粉土颗粒,干时虽有粘性,但易于破碎而扬尘,湿时容易成为流动状态。粉质土的毛细水上升高度大(可达1.5m),在季节性冰冻地区容易造成冻胀、翻浆等病害。粉质土属于不良的公路用土,应尽量避免使用。如果无法选择,只能用粉质土填筑路基,则应采取技术措施改良土质,并加强排水,采取隔离水等措施。

粘质土中细颗粒含量多,内摩阻角小而粘聚力大,透水性小,吸水能力强,具有较大的可塑性、粘结性和膨胀性,毛细水上升现象显著。粘质土干燥时坚硬,不易破碎,浸湿后水分不易挥发,承载能力降低。粘质土需要在最佳含水量条件下,充分压实,并做好排水设计,才能达到强度和稳定性要求。在季节性冰冻地区,在不良水温状况下,应采取措施防止粘质土路基出现冻胀、翻浆病害。 高液限土的塑性指数与液限都很高,其工程性质与一般粘质土相似,但受粘土矿物成分影响较大,如粘土中含高岭石其性质最好,含伊利石次之,含蒙脱石最差。重粘土不透水,粘聚力极强,膨账性和塑性都很大,干燥时很坚硬,施工时难以挖掘与破碎。 总之,作为路基材料,砂质土最优,粘质土次之,粉质土最差。重粘土,特别是蒙脱土,都是不良的路基土。除此之外,对于特殊土类,如黄土、膨胀土、腐殖土等,均不得直接用于填筑路基。

几种特殊土地基上的基础工程

第七章几种特殊土地基上的基础工程 特殊土定义:由于生成时不同的地理环境、气候条件、地质成因以及次生变化等原因,使一些土类具有特殊的成分、结构和工程性质。通常把这些具有特殊工程性质的土类称为特殊土。特殊土种类很多,大部分都具有地区特点,故又有区域性特殊土之称。 第一节湿陷性黄土地基 一、湿陷性黄土的定义和分布 湿陷性黄土的定义:凡天然黄土在一定压力作用下,受水浸湿后,土的结构迅速破坏,发生显著的湿陷变形,强度也随之降低的,称为湿陷性黄土。湿陷性黄土分为自重湿陷性和非自重湿陷性两种。黄土受水浸湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷性黄土。 湿陷性黄土的分布:在我国,它占黄土地区总面积的60%以上,约为40万km2,而且又多出现在地表浅层,如晚更新世(Q3)及全新世(Q4)新黄土或新堆积黄土是湿陷性黄土主要土层,主要分布在黄河中游山西、陕西、甘肃大部分地区以及河南西部,其次是宁夏、青海、河北的一部分地区,新疆、山东、辽宁等地局部也有发现。 二、黄土湿陷发生的原因和影响因素 黄土湿陷的原因: (一)水的浸湿:由于管道(或水池)漏水、地面积水、生产和生活用水等渗入地下,或由于降水量较大,灌溉渠和水库的渗漏或回水使地下水位上升等原因而引起。但受水浸湿只是湿陷发生所必需的外界条件;而黄土的结构特征及其物质成分是产生湿陷性的内在原因。 (二)黄土的结构特征:季节性的短期雨水把松散干燥的粉粒粘聚起来,而长期的干旱使土中水分不断蒸发,于是,少量的水分连同溶于其中的盐类都集中在粗粉粒的接触点处。可溶盐逐渐浓缩沉淀而成为胶结物。随着含水量的减少土粒彼此靠近,颗粒间的分子引力以及结合水和毛细水的联结力也逐渐加大。这些因素都增强了土粒之间抵抗滑移的能力,阻止了土体的自重压密,于是形成了以粗粉粒为主体骨架的多孔隙结构。 黄土受水浸湿时,结合水膜增厚楔入颗粒之间。于是,结合水联结消失,盐类溶于水中,骨架强度随着降低,土体在上覆土层的自重应力或在附加应力与自重应力综合作用下,其结构迅速破坏,土粒滑向大孔,粒间孔隙减少。这就是黄土湿陷现象的内在过程。 (三)物质成分:黄土中胶结物的多寡和成分,以及颗粒的组成和分布,对于黄土的结构特点和湿陷性的强弱有着重要的影响。胶结物含量大,可把骨架颗粒包围起来,则结构致密。粘粒含量多,并且均匀分布在骨架之间也起了胶结物的作用。这些情况都会使湿陷性降低并使力学性质得到改善。反之,粒径大于0.05mm的颗粒增多,胶结物多呈薄膜状分布,骨架颗粒多数彼此直接接触,则结构疏松,强度降低而湿陷性增强。此外,黄土中的盐类,

晶体管静态特性曲线分析

晶体管静态特性曲线分析 一、仿真目的 以三极管2N2222为例,运用Multisim对三极管的输入输出特性进行分析。 1)参照图一构建用于分析晶体管特性特性曲线的仿真电路。 2)参照图二,以Uce为参变量,通过仿真分析画出输入特性曲线Ube—I b.。3)参照图三,以ib为参变量,通过仿真分析画出输出特性曲线Uce—Ic 二、仿真要求 1)设计出用于分析NPN型晶体管输入输出特性的电路; 2)按要求选择合适的软件工具画出输入输出特性曲线,并对仿真进行总结分析,即:运用Multisim完成性能仿真,再选用自己熟悉的画图工具完成曲线绘制。 探索用Multisim仿真软件中的参数扫描功能,直接获取晶体三极管的特性曲线的方法。若能成功,,这应该是最直接最准确的好方法。 三、仿真电路图 四、仿真过程 静态工作点的设定

由图可知,晶体管处于放大状态,基本符合实验要求。 输入特性曲线: 将c极滑动变阻器调为0时,Uce近似与导线并联,约等于0,此时改变基极滑动变阻器可得到不同的Ube与Ib的值。 如图,令Uce=0V,1V,10V(0V操作简单,忘保存图了) 得到的Ube与Ib的值以及关系曲线分别为:

分析: 输入特性曲线描述了在关押将Uce一定的情况下,基极电流Ib与发射结压降Ube之间的函数关系。Uce=0V时,发射极与集电极短路,发射结与集电结均正偏,实际上时两个二极管并联的正向特性曲线。Uce>1时,Ucb=Uce-Ube>0,集电结进入反偏状态,开始Uce>1V 收集载流子,且基区复合减少,特性曲线将向右稍微移动一点,Ic/Ib增大,但Uce再增加时,曲线右移很不明显。 输出特性曲线: 将基极限流电阻调至很大(例如1M欧)时,基极电流Ib很小,近似约等于0。 令Ib分别=0uA,20uA,40uA,10mA:

路基土的分类

1路基土的分类?及土的工程性质 土依据上的颗粒组成特征,土的塑性指标和土中有机质存在的情况,分为巨粒土、粗粒土、细粒土和特殊土四类,特殊土主要包括黄土、膨胀土、红粘土和盐渍土。 巨粒土(包括漂石和卵石)有很高的强度和稳定性,是良好的填筑路基的材料。砂性土,集配适宜强度和稳定性都满足要求,是理想的路基填筑材料。粉性土,容易造成冻胀翻浆等路基病害,如果用它填筑路基则必须采用改良措施,加强排水,采取隔离水等措施。粘性土,干燥时坚硬,施工时不易破碎,浸湿后长期保持水分,不易挥发,因而承载能力小,因此粘性土在适当含水量的情况下,充分压实和设置良好的排水设施修筑而成的路基也能获得稳定。重粘土,工程性质和粘性土相似,重粘土不透水,粘聚力特强,塑性很大,干燥时很坚硬,施工时难以挖掘与破碎,因此不能做路基的填筑材料。 总之,土作为路基的建筑材料,砂性土最优,粘性土次之,粉性土属于不良材料,重粘土为不良的路基土,还有一些特殊土,根据其特殊的性质在筑路时采取相应的措施。 2我国公路区划的划分原则。1.道路工程特征相似的原则2.地表气候区划羌异性的原则3.自然气候因素既有综合义有主导作用的原则 3什么是潮湿系数?年降雨量R与年蒸发量Z之比,K=R/Z 4什么是冻胀与翻浆?积聚的水冻结后体积增大,使路基降赵而造成面层开裂,即冻胀现象。交通繁重的地区,经重车反复作用,路基路面结构会产生较大的变形,严重时,路基土以泥浆的形式从胀裂的路面缝隙冒出,形成了翻浆。 5路基的干湿类型分那几种?如何划分?路基按其干湿状态不同,分为四类:干燥、中湿、潮湿和过湿。 四种干湿类型以分界稠度Wc1、wc2和wc3来划分,干燥wc>wc1 中湿:wc1>=wc>wc2 潮湿:wc2>=wc>wc3 过湿:wc<=wc3 6什么叫路基工作区? 在路基某一深度Za处,当车轮荷载引起的垂直应力6Z与路基十自重引起的垂直应力‘M相比所占比例很小,仪为1/10—1/5时,该深度2a范围内的路基称为路基工作区。 7表征土基承载的系数有哪些?如何测? 用于表征J:基承载力的参数指标有回弹模量、地基反应模量和加州承载比(CBR)等。 回弹模量是用圆形承载板压入土基的方法测定的。地基反映模量是用用承载板试验确定。CBR值是标准试件在贯入量为2.5mm时所施加的试验荷载与标准碎石在相同贯入量时所加荷载的比值确定。 8路基的主要病害有哪些?1.路基沉陷2边坡滑塌3.碎落和崩塌4.路基沿山坡滑动5.不良地质和水文条件造成的路基破坏。 9什么叫高路堤?什么是一般路基? 通常把大于18m的土质路堤和大于20m的石质路堤视为高路堤。填筑高度在1.5m到18m 范围内,地质与水文条件良好填方高度不大的路基视为一般路堤. 10路基设计几何要求? (1)选择路基断面形式,确定路基宽度与路基高度;(2)选择路堤填料与比压实标准i(3)确定边坡形状与坡度;(4)路基排水系统布置和排水结构设计;(5)坡面防护与加固设计;(6)附属设施设计。 11边坡稳定性分析包括哪几类?个适合什么情况? 路基边坡稳定性分析方法可分为两类,即力学分析法和工程地质法。 1力学分析法包括数解法,这种方法精确,适用于重要工程;图解法和表解法,(直线法,适用于砂性土和沙土,圆弧法,适用于粘性土,)2工程地质法,适用于边坡不太复杂,有大量调查资料,从实践中马上可以得出结论的边坡。

路基路面思考题讲解学习

路基路面工程复习思考题 1 、路基结构承载能力包含哪两个方面?各反映结构的哪些特征?与路面的病害有何关联? 2 、为什么要对路基进行特别重视?其稳定过程受哪些因素影响? 3 、我国公路用土如何进行类型划分?土的粒组又如何区分? 4 、我国公路自然区划的原则是什么?各自然区划的道路设计应注重的特点有何差别? 5 、名词解释:路基干湿类型;路基临界高度;路基冻涨与翻浆。 6 、何谓路基工作区?当工作区深度大于路基填土高时应采取何措施?为什么? 7 、车辆荷载重复作用对路基产生的影响有哪些结果?其取决因素有哪些? 8 、何为CBR ?其反映结构材料的什么特性? 9 、路基病害的主要类型及其产生的主要原因? 1 、名词解释:路堤;路堑;一般路基;路基高度;路基宽度;路基边坡坡度;路基土的压实度 2 、保证路基稳定性的一般技术措施包括哪些方面? 3 、何谓矮路堤?在什么情况下使用矮路堤?为什么?选用该种形式路堤有何利弊?设计上要注意什么问题? 4 、一般路基的设计包含哪些主要内容? 5 、一般路堤的横截面尺寸如何设计? 6 、选定路基填筑高度主要考虑什么因素? 7 、路基土有何压实特性? 8 、一般路基工程的附属设施包括哪些内容? 1 、路基稳定性设计中所用各种近似方法的基本假定? 2 、分别指出路堑与路堤边坡稳定性验算时所需土的实验资料有哪些? 3 、行车荷载是怎样计入路基边坡稳定性计算的? 4 、路基边坡稳定性验算的目的何在? 5 、指出非浸水路堤边坡稳定性验算时,圆弧滑动面条分法计算中抵抗力矩与滑动力矩的各组成部分。在什么情况下小条块沿滑动面的切向分力也起抗滑作用? 6 、简述圆弧法验算边坡稳定性时,确定滑弧圆心轨迹的辅助线的基本方法?

天津市区浅层地基土的特性分析

天津市区浅层地基土的特性分析 摘要:天津市区第一陆相层是天津市区良好的天然地基浅基础持力层。文中对该成因层土的分布特征、物理力学性质进行了详细阐述,统计分析了各指标间关系。结果表明,该成因层按力学性质可分为黏土、粉质黏土、粉土;黏性土多呈可塑状态,属中压缩性土;粉土多呈稍密~中密状态,属低压缩性土,天然含水量与天然孔隙比、液限与塑性指数呈良好的线性关系;不同含水量下压缩系数具有一定集中区域;压缩系数与孔隙比呈正相关,可为天津浅基工程土工参数取值提供依据和参考。 关键词:天津;第一陆相层;黏性土;粉土 1. 前言 地基土土性指标是地基设计与地基处理的重要参数,具有较强的地域特征和不确定性。目前,陈晓平[1]对珠江三角洲地区软土的物理力学指标进行了统计和分析;尹利华[2]对天津软土土性指标进行了统计和概率分布模型分析,等。但是,对于不同地区、不同成因类型的土尚缺乏进一步分析与研究。 文中把某特定地质时代相同沉积环境下形成的、在工程性质上存在一定内在联系的、具有特性相近的土体作为统计单元体[2、3],即对天津市区第一陆相层的分布特征和土性指标进行了分析与统计,得到了相关指标间的经验公式,可为天津浅基工程土工参数取值提供依据和参考。 2. 第一陆相层的分布特征 第一陆相层(Q43al)为全新统上组河床~河漫滩相沉积,俗称上部陆相层,是天津地区的浅层“硬壳层”。除河道、沟坑切割区和西北部地区外,该层土在天津市区范围内均有分布,自西北向东南逐渐变浅,厚度一般为2.0~4.0m,总体上分布比较均匀,厚度变化不大。其顶部常见一层厚度(0.1~0.3m)富含有机质、腐植物的黑灰色黏性土,俗称“老地面”,为上部陆相层(成因)顶部的特征标志层。 上部陆相层按力学性质可划分为3个土性层,分别为黏土、粉质黏土、粉土。土层分布特征如下: ①黏土:呈黄褐、灰黄色,在市区内零星分布于该上部陆相层顶部,层底埋深一般在2.0~6.0m之间,一般厚度0.5~2.4m,无层理,含铁质。

相关主题
文本预览
相关文档 最新文档