高中数学复习:圆锥曲线的方程与性质
- 格式:doc
- 大小:604.08 KB
- 文档页数:20
高考数学复习考点突破专题讲解第12讲圆锥曲线的方程与性质一、单项选择题1.(2022·广东惠州一模)若抛物线y2=2px(p>0)上一点P(2,y0)到其焦点的距离为4,则抛物线的标准方程为()A.y2=2xB.y2=4xC.y2=6xD.y2=8x2.(2022·山东临沂二模)已知双曲线C:=1(a>0,b>0)的焦距为4,实轴长为4,则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x3.(2022·广东肇庆二模)已知F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆上一点,O 为坐标原点,若|OA|=|OF1|,直线F2A的斜率为-3,则椭圆C的离心率为()A. B. C. D.4.(2022·河北保定高三期末)为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB与曲线CD中间最窄处间的距离为30 cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=36 cm,则|AD|=()A.12 cmB.6 cmC.38 cmD.6 cm5.(2022·全国甲·文11)已知椭圆C:=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若=-1,则C的方程为()A.=1B.=1C.=1D.+y2=16.(2022·广东执信中学模拟)已知双曲线C的离心率为,F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为,则双曲线C的实轴长为()A.1B.2C.3D.47.(2022·江西宜春期末)已知抛物线E:y2=8x的焦点为F,P是抛物线E上的动点,点Q与点F关于坐标原点对称,当取得最小值时,△PQF的外接圆半径为()A.1B.2C.2D.48.(2022·山东滨州二模)已知椭圆C1和双曲线C2有相同的左、右焦点F1,F2,若C1,C2在第一象限内的交点为P,且满足∠POF2=2∠PF1F2,设e1,e2分别是C1,C2的离心率,则e1,e2的关系是()A.e1e2=2B.=2C.+e1e2+=2D.=2二、多项选择题9.(2022·湖北武昌高三期末)已知双曲线C:=1,下列对双曲线C判断正确的是()A.实轴长是虚轴长的2倍B.焦距为8C.离心率为D.渐近线方程为x±y=010.(2022·新高考Ⅱ·10)已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°11.(2022·山东临沂三模)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F(0,2),椭圆的短轴与半圆的直径重合,下半圆与y轴交于点G.若过原点O的直线与上半椭圆交于点A,与下半圆交于点B,则()A.椭圆的长轴长为4B.线段AB长度的取值范围是[4,2+2]C.△ABF的面积最小值是4D.△AFG的周长为4+412.(2022·江苏南通高三检测)已知椭圆C1:=1(m>n>0)的上焦点为F1,双曲线C2:=1的左、右焦点分别为F2,F3,直线F1F2与C2的右支相交于点A,若AF3⊥F2F3,则()A.C1的离心率为B.C2的离心率为C.C2的渐近线方程为y=±xD.△AF1F3为等边三角形三、填空题13.(2021·全国乙·理13)已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为.14.(2022·河北保定模拟)已知椭圆C的中心为坐标原点,焦点在y轴上,F1,F2为C的两个焦点,C的短轴长为4,且C上存在一点P,使得|PF1|=6|PF2|,写出椭圆C的一个标准方程:.15.(2022·山东威海高三期末)已知抛物线C1:y2=8x,圆C2:x2+y2-4x+3=0,点M(1,1),若A,B分别是C1,C2上的动点,则|AM|+|AB|的最小值为.16.(2022·河北石家庄二模)已知椭圆C1和双曲线C2有公共的焦点F1,F2,曲线C1和C2在第一象限内相交于点P,且∠F1PF2=60°.若椭圆C1的离心率的取值范围是,则双曲线C2的离心率的取值范围是.高考数学复习考点突破专题讲解12圆锥曲线的方程与性质1.D解析∵抛物线y2=2px上一点P(2,y0)到其焦点的距离等于到其准线的距离,∴+2=4,解得p=4,∴抛物线的标准方程为y2=8x.2.C解析由已知得,双曲线的焦点在y轴上,双曲线的焦距2c=4,解得c=2,双曲线的实轴长为2a=4,解得a=2,则b=--=4,故双曲线C的渐近线方程为y=±x=±x.3. D解析如图,由|OA|=|OF1|,得|OA|=|OF1|=|OF2|=c,故∠F1AF2=90°.因为直线F2A的斜率为-3,所以tan∠F1F2A=3,所以|AF1|=3|AF2|.又|AF1|+|AF2|=2a,所以|AF1|=,|AF2|=.又|AF1|2+|AF2|2=|F1F2|2,即a2+a2=4c2,得,所以.4. D解析以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,因为双曲线的离心率为2,所以可设双曲线的标准方程为=1(a>0),依题意可得2a=30,则a=15,即双曲线的标准方程为=1.因为|AB|=36cm,所以点A的纵坐标为18.由=1,得|x|=3,故|AD|=6cm.5.B解析由题意知,A1(-a,0),A2(a,0),B(0,b),则=(-a,-b)·(a,-b)=-a2+b2=-1,①由e=,得e2=-=1-,即b2=a2.②联立①②,解得a2=9,b2=8.故选B.6.B解析根据双曲线的定义,可得|PF1|-|PF2|=2a,又|PF1|=3|PF2|,解得|PF1|=3a,|PF2|=a.因为双曲线C的离心率为,所以c= a.在△PF1F2中,由余弦定理,可得cos∠F1PF2=-=-,则sin∠F1PF2=.由△PF1F2的面积为,可得|PF1||PF2|sin∠F1PF2=a2=,解得a=1.故双曲线C的实轴长为2.7. C解析过点P作准线的垂线,垂足为M,由抛物线的定义知|PF|=|PM|,所以=cos∠QPM=cos∠PQF,要使取得最小值,则cos∠PQF取得最小值,即tan∠PQF取得最大值0<∠PQF<,此时直线PQ与抛物线相切.设直线PQ的方程为y=k(x+2),由得k2x2+(4k2-8)x+4k2=0,所以Δ=(4k2-8)2-4k2·4k2=64(1-k2)=0,即k2=1,解得k=±1,不妨取k=1,此时直线PQ的倾斜角∠PQF=,且有x2-4x+4=0,所以x=2,所以P(2,4),所以|PF|=4.设△PQF的外接圆半径为R,在△PQF中,由正弦定理知,2R==4.所以此时△PQF的外接圆半径R=2.8. D解析因为∠POF2=∠PF1F2+∠F1PO,∠POF2=2∠PF1F2,所以∠PF1F2=∠F1PO,所以|OF1|=|OP|=|OF2|=c,所以PF1⊥PF2.记椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,则由椭圆和双曲线定义可得,m+n=2a1,①m-n=2a2,②①2+②2可得2(m2+n2)=4().由勾股定理知,m2+n2=4c2,代入上式可得2c2=,整理得=2,即=2,所以=2.9.BD解析由双曲线C:=1,可得a2=12,b2=4,则c2=a2+b2=16,所以a=2,b=2,c=4,故A不正确,B正确;e=,故C不正确;易知渐近线方程为y=±x,即x±y=0,故D正确.10.ACD解析选项A,由题意知,点A为FM的中点,设A(x A,y A),则x A=p,所以=2px A=2p·p=p2(y A>0).=2,故选项A正确;所以y A=p,故k AB=-选项B,由斜率为2可得直线AB的方程为x=y+,联立抛物线方程得y2-py-p2=0,设B(x B,y B),则p+y B=p,则y B=-,代入抛物线方程得-=2p·x B,解得x B=.∴|OB|=,故选项B错误;选项C,|AB|=p++p=p>2p=4|OF|,故选项C正确;选项D,由选项A,B知,A p,p,B,-p,所以=p,p·,-p=-p2=-p2<0,所以∠AOB为钝角.又=-p·-,-p=-p2=-p2<0,所以∠AMB为钝角.所以∠OAM+∠OBM<180°.故选项D正确.故选ACD.11. ABD解析由题知,椭圆中b=c=2,则a=2,则2a=4,故A正确;|AB|=|OB|+|OA|=2+|OA|,由椭圆性质可知2≤|OA|≤2,所以4≤|AB|≤2+2,故B正确;若A,B,F能构成三角形,则AB不与y轴重合,此时2≤|OA|<2,记∠AOF=θ,则S△ABF=S△AOF+S△OBF=|OA||OF|sinθ+OB·OF sin(π-θ)=|OA|·sinθ+2sinθ=(|OA|+2)sinθ,取θ=,则S△ABF=1+|OA|<1+×2<4,故C错误;由椭圆定义知,|AF|+|AG|=2a=4,所以△AFG的周长L=|FG|+4=4+4,故D正确.12. ACD解析易知F1(0,-),F2(-,0),F3(,0),将x=代入双曲线C2的方程得=1,可得y2=,则点A.因为O为F2F3的中点,且OF1∥AF3,所以OF1为△F2AF3的中位线,所以-,整理可得m4=4m2n2-4n4,即m2=2n2.椭圆C1的离心率为e1=-,故A正确;双曲线C2的离心率为e2=,故B错误;双曲线C2的渐近线方程为y=±x=±x,故C正确;易知点A(n,2n),F2(-n,0),则,则∠AF2F3=30°,故∠F2AF3=60°.因为|AF3|=2n,|AF1|=|AF2|=(|AF3|+2n)=2n,所以△AF1F3为等边三角形,故D正确.13.4解析由双曲线方程可知其渐近线方程为±y=0,即y=±x,得-=-,解得m=3.可得C 的焦距为2=4.14.=1(答案不唯一)解析因为|PF1|=6|PF2|,所以|PF1|+|PF2|=7|PF2|=2a,则|PF2|=.又因为a-c≤|PF2|≤a+c,所以≥a-c,即.根据题意可设C的标准方程为=1(a>b>0),因为椭圆C的短轴长为4,所以2b=4,b=2.又由,可得--,解得a2≥,所以椭圆C的一个标准方程为=1.15. 2解析由抛物线C1:y2=8x得焦点F(2,0),准线方程为x=-2.由圆C2:x2+y2-4x+3=0,得(x-2)2+y2=1,所以圆C2是以F(2,0)为圆心,以r=1为半径的圆.所以|AM|+|AB|≥|AM|+|AF|-1,所以当|AM|+|AF|取得最小值时,|AM|+|AB|取得最小值.又根据抛物线的定义得|AF|等于点A到准线的距离,所以过点M作准线的垂线,垂足为N,且与抛物线C1:y2=8x相交,当点A为此交点时,|AM|+|AF|取得最小值,最小值为|1-(-2)|=3.所以此时|AM|+|AB|≥|AM|+|AF|-1≥3-1=2,所以|AM|+|AB|的最小值为2.16.解析设椭圆C1:=1(a>b>0),双曲线C2:=1,椭圆与双曲线的半焦距为c,椭圆的离心率e=,双曲线的离心率e1=,|PF1|=s,|PF2|=t,如图,由椭圆的定义可得s+t=2a,由双曲线定义可得s-t=2a1,联立可得s=a1+a,t=a-a1.由余弦定理可得4c2=s2+t2-2st cos∠F1PF2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos60°=a2+3,即4=,解得.-因为e∈,所以≤e2≤,2≤≤3,可得≤3,故≤e1≤.。
专题限时集训(十) 圆锥曲线的定义、方程及性质[专题通关练] (建议用时:30分钟)1.(2019·贵阳一模)抛物线C :y 2=2px (p >0)的焦点F 到准线l 的距离为2,则C 的焦点坐标为( )A .(4,0)B .(2,0)C .(1,0)D.⎝ ⎛⎭⎪⎫12,0 C [因为抛物线焦点到准线的距离为2,所以p =2,所以抛物线的方程为y 2=4x ,抛物线的焦点坐标为(1,0),选C.]2.(2019·沈阳一模)若点(3,0)到双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线的距离为2,则双曲线的离心率为( )A. 3B.62C.3或62D.33A [双曲线的渐近线方程为y =±b ax ,即ay ±bx =0,由题知(3,0)到渐近线的距离为2,即|3b |a 2+b2=2,由a 2+b 2=c 2得3b =2c,3(c 2-a 2)=2c 2,即c 2=3a 2,得e =c a=3,故选A.]3.若中心在坐标原点的椭圆的长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程为( )A.x 230+y 220=1B.x 240+y 220=1C.x 275+y 215=1 D.x 280+y 220=1 D [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),依题意得,2a 2b =ab =2⇒a =2b ,∵c =215,c 2=a 2-b 2,∴(215)2=(2b )2-b 2⇒b 2=20,得a 2=4b 2=80,故所求椭圆的标准方程为x 280+y 220=1.]4.如图,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,∠F 1PF 2=120°,则a 的值为( )A .2B .3C .4D .5B [因为b 2=2,c =a 2-2,所以|F 1F 2|=2a 2-2.又|PF 1|=4,|PF 1|+|PF 2|=2a ,|PF 2|=2a -4,由余弦定理得 cos 120°=42+2a -42-2a 2-222×4×2a -4=-12,解得a =3.]5.过抛物线C :y 2=2px (p >0)的焦点F 且倾斜角为锐角的直线l 与C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线相交于点M ,若|MN |=|AB |,则直线l 的倾斜角为( )A .15°B .30°C .45°D .60°B [分别过A ,B ,N 作抛物线准线的垂线,垂足分别为A ′,B ′,N ′(图略),由抛物线的定义知|AF |=|AA ′|,|BF |=|BB ′|,|NN ′|=12(|AA ′|+|BB ′|)=12|AB |,因为|MN |=|AB |,所以|NN ′|=12|MN |,所以∠MNN ′=60°,即直线MN 的倾斜角为120°,又直线MN与直线l 垂直且直线l 的倾斜角为锐角,所以直线l 的倾斜角为30°,故选B.]6.[易错题]若方程x 22+m -y 2m +1=1表示椭圆,则实数m 的取值范围是________. ⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫-32,-1 [由题意可知⎩⎪⎨⎪⎧2+m >0,m +1<0,2+m ≠-m +1.解得-2<m <-1且m ≠-32.]7.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线C :x 2a2-y 2=1(a >0)上,则双曲线C 的渐近线方程为________.y =±22x [由于双曲线的图象关于原点对称,故(-2,1),(2,-1)在双曲线上,代入方程解得a =2,又因为b =1,所以渐近线方程为y =±22x .] 8.[易错题]若椭圆的对称轴是坐标轴,且短轴的一个端点与两个焦点组成一个正三角形,焦点到同侧顶点的距离为3,则椭圆的方程为________.x 212+y 29=1或x 29+y 212=1 [由题意,得⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.所以b 2=a 2-c 2=9.所以当椭圆焦点在x 轴上时,椭圆的方程为x 212+y 29=1;当椭圆焦点在y 轴上时,椭圆的方程为x 29+y 212=1.故椭圆的方程为x 212+y 29=1或x 29+y 212=1.][能力提升练] (建议用时:20分钟)9.(2019·全国卷Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50°D.1cos 50°D [由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D.]10.(2019·珠海质检)过点M (1,1)作斜率为-13的直线l 与椭圆C :x 2a 2+y2b 2=1(a >b >0) 相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为________.63[设A (x 1,y 1),B (x 2,y 2),由题意得, ⎩⎪⎨⎪⎧b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2,∴b 2(x 1+x 2)(x 1-x 2)+a 2(y 1+y 2)(y 1-y 2)=0, ∴2b 2(x 1-x 2)+2a 2(y 1-y 2)=0, ∴b 2(x 1-x 2)=-a 2(y 1-y 2).∴b 2a 2=-y 1-y 2x 1-x 2=13,∴a 2=3b 2. ∴a 2=3(a 2-c 2),∴2a 2=3c 2,∴e =63.] [点评] 点差法适用范围:与弦的中点轨迹有关、与弦所在直线斜率有关. 11.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.0 [设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得⎝ ⎛⎭⎪⎫x 1-p 2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2=-⎝ ⎛⎭⎪⎫x 3-p 2,y 3,y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,k AC =y 3-y 1x 3-x 1=2p y 1+y 3,kBC=y 3-y 2x 3-x 2=2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p +y 2+y 32p =y 1+y 2+y 3p =0.] 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝ ⎛⎭⎪⎫1,32在该椭圆上.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.[解](1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+9434a 2=1,解得a 2=4,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y23=1,消去x ,得(4+3t 2)y 2-6ty -9=0,显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=36t 24+3t22+364+3t 2=12t 2+14+3t2, 所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627, 化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去).又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2, 所以r =22, 故圆O 的方程为x 2+y 2=12.有________.①该双曲线的离心率为2;②该双曲线的一条渐近线方程为 y -3x =0; ③该双曲线的标准方程为x 211-y 2113=1.①② [设双曲线的渐近线方程为y =kx ,即kx -y =0,由渐近线与圆x 2+(y -2)2=1相切可得圆心(0,2)到渐近线的距离等于半径1,由点到直线的距离公式可得|k ×0-2|k 2+1=1,解得k =±3,即渐近线方程为y ±3x =0,故②正确;因为双曲线经过点(2,1),所以双曲线的焦点在x 轴上,可设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),将点(2,1)代入可得4a 2-1b2=1,由⎩⎪⎨⎪⎧4a 2-1b 2=1,b a =3,得⎩⎪⎨⎪⎧a 2=113,b 2=11,故所求双曲线的方程为x 2113-y 211=1,故③错误,又离心率e =b 2a 2+1=2,故①正确,综上可知①②正确.] 【押题2】 已知|MN |=1,MP →=3MN →,当N ,M 分别在x 轴,y 轴上滑动时,点P 的轨迹记为E .(1)求曲线E 的方程;(2)设斜率为k (k ≠0)的直线MN 与E 交于P ,Q 两点,若|PN |=|MQ |,求k . [解] (1)设M (0,m ), N (n,0),P (x ,y ),由|MN |=1得m 2+n 2=1.由MP →=3MN →,得(x ,y -m )=3(n ,-m ), 从而x =3n ,y -m =-3m , ∴n =x 3,m =-y2,∴曲线E 的方程为x 29+y 24=1.(2)直线MN 为y =kx +t ,∴n =-tk.① 设P (x 1,y 1),Q (x 2,y 2),将MN 的方程代入到E 的方程并整理,可得(4+9k 2)x 2+18ktx +9t 2-36=0, ∴x 1+x 2=-18kt4+9k2.∵|PN |=|MQ |,所以MN 的中点和PQ 的中点重合, ∴-9kt 4+9k 2=-t2k,② 联立①②可得k 2=49,故k =±23.[点评] 向量条件转化,一是向坐标转化,建立坐标间关系,二是挖掘向量条件的几何意义如共线、中点、垂直.。
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F-E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。
它由圆、椭圆、双曲线和抛物线四种曲线构成。
掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。
本文将介绍高三数学圆锥曲线的知识点。
一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。
圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。
1. 圆:圆是所有到一个点的距离相等的点的轨迹。
圆的特点是中心坐标为(h, k),半径为r。
2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。
椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。
3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。
双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。
4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。
抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。
二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。
2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。
3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。
4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。
三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。
2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。
圆锥曲线的方程圆锥曲线的标准方程与性质圆锥曲线的方程:圆锥曲线是由一个固定点(焦点)和一个到该点距离与到一个固定直线(称为准线)距离成比例的点(称为动点)构成的曲线。
圆锥曲线包括椭圆、双曲线和抛物线三种形式,每种形式都有其特定的方程和性质。
1. 椭圆的方程与性质:椭圆是焦点到准线的距离比常数小于1的点构成的曲线。
其标准方程为:[(x - h)^2 / a^2] + [(y - k)^2 / b^2] = 1其中(h, k)为椭圆中心的坐标,a和b为椭圆在x轴和y轴上的半轴长度。
椭圆的性质包括:- 对称性:椭圆关于中心轴和副中心轴对称。
- 焦点与准线:椭圆有两个焦点,位于椭圆的中心轴上,并且焦点到准线的距离之比为e,其中e为椭圆的离心率,0 < e < 1。
- 离心率:离心率e定义为焦点到准线的距离之比,e = c / a,其中c为焦点到中心轴的距离。
- 焦距:焦点到准线的距离称为椭圆的焦距。
- 根据离心率大小,椭圆可分为圆形(e = 0)、长椭圆(0 < e < 1)和扁椭圆(e > 1)三种情况。
2. 双曲线的方程与性质:双曲线是焦点到准线的距离比常数大于1的点构成的曲线。
其标准方程为:[(x - h)^2 / a^2] - [(y - k)^2 / b^2] = 1或[(y - k)^2 / b^2] - [(x - h)^2 / a^2] = 1其中(h, k)为双曲线中心的坐标,a和b为双曲线在x轴和y轴上的半轴长度。
双曲线的性质包括:- 对称性:双曲线关于中心轴和副中心轴对称。
- 焦点与准线:双曲线有两个焦点,位于双曲线的中心轴上,并且焦点到准线的距离之比为e,其中e为双曲线的离心率,e > 1。
- 离心率:离心率e定义为焦点到准线的距离之比,e = c / a,其中c为焦点到中心轴的距离。
- 焦距:焦点到准线的距离称为双曲线的焦距。
- 根据离心率大小,双曲线可分为关于x轴对称的双叶双曲线和关于y轴对称的单叶双曲线两种情况。
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
高考数学二轮复习考点知识与题型专题讲解第41讲圆锥曲线的方程与性质[考情分析]高考对这部分知识的考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率以及渐近线问题;三是抛物线的性质及应用问题.考点一圆锥曲线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”“定型”:确定曲线焦点所在的坐标轴的位置;“计算”:利用待定系数法求出方程中的a2,b2,p 的值.例1(1)(2022·衡水中学模拟)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP且线段AP的长为2+2,则该椭圆方程为()A.x 24+y 22=1B.x 28+y 23=1 C.x 25+y 24=1 D.x 28+y 24=1 答案 D解析 设椭圆的半焦距为c ,因为点P 在以线段F 1A 为直径的圆上,所以AP ⊥PF 1.又因为F 2B ∥AP ,所以F 2B ⊥BF 1.又因为|F 2B |=|BF 1|,所以△F 1F 2B 是等腰直角三角形,于是△F 1AP 也是等腰直角三角形,因为|AP |=2+2,所以|F 1A |=2(2+2),得a +c =2(2+2),又b =c ,所以a =2c ,解得a =22,c =2,得b 2=a 2-c 2=4,所以椭圆方程为x 28+y 24=1. (2)(2022·荆州模拟)已知双曲线C :x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 是C 右支上的一点(不是顶点),过F 2作∠F 1PF 2的角平分线的垂线,垂足是M ,O 是原点,则|MO |=________. 答案 4解析 延长F 2M 交PF 1于点Q ,由于PM 是∠F 1PF 2的角平分线,F 2M ⊥PM ,所以△QPF 2是等腰三角形,所以|PQ |=|PF 2|,且M 是QF 2的中点.根据双曲线的定义可知|PF 1|-|PF 2|=2a ,即|QF 1|=2a ,由于O 是F 1F 2的中点,所以MO 是△QF 1F 2的中位线,所以|MO |=12|QF 1|=a =4. 易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的方程为( ) A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m=1(m ≠0), ∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的方程为x 24-y 22=1或y 24-x 28=1. (2)已知A ,B 是抛物线y 2=8x 上两点,当线段AB 的中点到y 轴的距离为3时,|AB |的最大值为( )A .5B .5 2C .10D .10 2答案 C解析 设抛物线y 2=8x 的焦点为F ,准线为l ,线段AB 的中点为M .如图,分别过点A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,连接AF ,BF .因为线段AB 的中点到y 轴的距离为3,抛物线y 2=8x 的准线l :x =-2,所以|MN |=5.因为|AB |≤|AF |+|BF |=|AC |+|BD |=2|MN |=10,当且仅当A ,B ,F 三点共线时取等号,所以|AB |max =10.考点二 椭圆、双曲线的几何性质 核心提炼1.求离心率通常有两种方法(1)求出a ,c ,代入公式e =c a. (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线bx ±ay =0的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 椭圆、双曲线的几何性质例2(2022·河南五市联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心的圆恰好与双曲线C 的两条渐近线相切,且该圆恰好经过线段OF 2的中点,则双曲线C 的渐近线方程为( )A .y =±3xB .y =±33x C .y =±233x D .y =±2x答案 B解析 由题意知,渐近线方程为y =±b ax , 焦点F 2(c ,0),c 2=a 2+b 2,因为以F 2为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r 等于圆心到切线的距离,即r =⎪⎪⎪⎪±b a ·c 1+⎝⎛⎭⎫±b a 2=b , 又该圆过线段OF 2的中点,故c 2=r =b , 所以b a =b 2a 2=b 2c 2-b2=33. 所以渐近线方程为y =±33x . 考向2 离心率问题例3(多选)(2022·全国乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( ) A.52B.32 C.132 D.172 答案 AC解析 不妨设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0). 当两个交点M ,N 在双曲线两支上时,如图1所示,图1设过F 1的直线与圆D 相切于点P ,连接OP ,由题意知|OP |=a ,又|OF 1|=c ,所以|F 1P |=b .过点F 2作F 2Q ⊥F 1N ,交F 1N 于点Q .由中位线的性质,可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 故|NF 2|=52a ,|QN |=32a , 所以|NF 1|=|F 1Q |+|QN |=2b +32a . 由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以2b +32a -52a =2a ,所以2b =3a . 两边平方得4b 2=9a 2,即4(c 2-a 2)=9a 2,整理得4c 2=13a 2,所以c 2a 2=134, 故c a =132,即e =132. 当两个交点M ,N 都在双曲线上的左支上时,如图2所示,图2同理可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 可得|NF 2|=52a ,|NQ |=32a , 所以|NF 1|=|NQ |-|QF 1|=32a -2b , 所以|NF 2|=|NF 1|+2a =72a -2b , 又|NF 2|=52a ,所以72a -2b =52a , 即a =2b ,故e =1+⎝⎛⎭⎫b a 2=52.故选AC.规律方法 (1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆(或双曲线)的定义,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(2)求双曲线渐近线方程的关键在于求b a 或a b的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.跟踪演练2 (1)(2022·全国甲卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A.32 B.22 C.12 D.13答案 A解析 设P (m ,n )(n ≠0),则Q (-m ,n ),易知A (-a ,0),所以k AP ·k AQ =n m +a ·n -m +a =n 2a 2-m 2=14.(*) 因为点P 在椭圆C 上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14, 所以e =c a =1-b 2a 2=32.故选A. (2)(多选)(2022·衡水中学模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线的右支交于A ,B 两点,若|AF 1|=|BF 2|=2|AF 2|,则( )A .∠AF 1B =∠F 1ABB .双曲线的离心率e =333C .双曲线的渐近线方程为y =±63x D .原点O 在以F 2为圆心,|AF 2|为半径的圆上答案 AB解析 设|AF 1|=|BF 2|=2|AF 2|=2m ,则|AB |=|AF 2|+|BF 2|=3m ,由双曲线的定义知,|AF 1|-|AF 2|=2m -m =2a ,即m =2a ,|BF 1|-|BF 2|=2a ,即|BF 1|-2m =2a ,∴|BF 1|=3m =|AB |,∠AF 1B =∠F 1AB ,故选项A 正确;由余弦定理知,在△ABF 1中,cos ∠AF 1B =|AF 1|2+|BF 1|2-|AB |22|AF 1|·|BF 1|=4m 2+9m 2-9m 22·2m ·3m =13, 在△AF 1F 2中,cos ∠F 1AB =|AF 1|2+|AF 2|2-|F 1F 2|22·|AF 1|·|AF 2|=4m 2+m 2-4c 22·2m ·m =cos ∠AF 1B =13, 化简整理得12c 2=11m 2=44a 2,∴离心率e =c a =4412=333,故选项B 正确; 双曲线的渐近线方程为y =±b ax =±c 2-a 2a 2x =±e 2-1x =±263x , 故选项C 错误;若原点O 在以F 2为圆心,|AF 2|为半径的圆上,则c =m =2a ,与c a =333相矛盾,故选项D 错误. 考点三 抛物线的几何性质核心提炼抛物线的焦点弦的几个常见结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2. (2)|AB |=x 1+x 2+p .(3)当AB ⊥x 轴时,弦AB 的长最短为2p .例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( )A.18 B .2 C.14D .4 答案 B解析 设点M 到抛物线的准线的距离为|MM ′|,抛物线的准线与x 轴的交点记为点B.由抛物线的定义知,|MM ′|=|FM |.因为|FM ||MN |=55, 所以|MM ′||MN |=55, 即cos ∠NMM ′=|MM ′||MN |=55, 所以cos ∠OF A =cos ∠NMM ′=55, 而cos ∠OF A =|OF ||AF |=p 2⎝⎛⎭⎫p 22+22=55,解得p =2. (2)(多选)(2022·新高考全国Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A .直线AB 的斜率为2 6B .|OB |=|OF |C .|AB |>4|OF |D .∠OAM +∠OBM <180°答案 ACD解析 对于A ,由题意,得F ⎝⎛⎭⎫p 2,0. 因为|AF |=|AM |,且M (p ,0), 所以x A =x F +x M 2=34p ,将其代入抛物线方程y 2=2px ,得y A =62p , 所以A ⎝⎛⎭⎫34p ,62p ,所以直线AB 的斜率k AB =k AF =62p -034p -p 2=26,故A 正确;对于B ,由选项A 的分析,知直线AB 的方程为y =26⎝⎛⎭⎫x -p2,代入y 2=2px ,得12x 2-13px +3p 2=0,解得x =34p 或x =13p ,所以x B =13p ,所以y B =-63p ,所以|OB |=x 2B +y 2B =73p ≠|OF |,故B不正确;对于C ,由抛物线的定义及选项A ,B 的分析, 得|AB |=x A +x B +p =1312p +p =2512p >2p ,即|AB |>4|OF |,故C 正确; 对于D ,易知|OA |=334p ,|AM |=54p , |OB |=73p ,|BM |=103p , 则cos ∠OAM =|OA |2+|AM |2-|OM |22|OA |·|AM |=3316p 2+2516p 2-p 22×334p ·54p=21533>0,cos ∠OBM =|OB |2+|BM |2-|OM |22|OB |·|BM |=79p 2+109p 2-p 22×73p ·103p=470>0,所以∠OAM <90°,∠OBM <90°,所以∠OAM +∠OBM <180°,故D 正确.综上所述,选ACD.规律方法 利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p 的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.跟踪演练3 (1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________. 答案 x =-32解析 方法一 (解直角三角形法)由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF , 所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二 (应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)(2022·济宁模拟)过抛物线y 2=4x 的焦点F 的直线与该抛物线及其准线都相交,交点从左到右依次为A ,B ,C .若AB →=2BF →,则线段BC 的中点到准线的距离为( ) A .3 B .4 C .5 D .6 答案 B解析 由抛物线的方程可得焦点F (1,0),渐近线的方程为x =-1,由AB →=2BF →,可得|AB ||BF |=2,由于抛物线的对称性,不妨假设直线和抛物线位置关系如图所示,作BE 垂直准线于点E , 准线交x 轴于点N ,则|BF |=|BE | ,故|AB ||BF |=|AB ||BE |=2,故∠ABE =π4 , 而BE ∥x 轴,故∠AFN =π4,所以直线AB 的倾斜角为π4,所以直线AB 的方程为y =x -1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,整理可得x 2-6x +1=0,则x 1+x 2=6,所以BC 的中点的横坐标为3, 则线段BC 的中点到准线的距离为3-(-1)=4.专题强化练一、单项选择题1.(2022·中山模拟)抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则抛物线C 的方程为( ) A .y 2=4x B .y 2=8x C .y 2=12x D .y 2=16x 答案 B解析 因抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则p >0,抛物线准线方程为x =-p2,由抛物线定义得1-⎝⎛⎭⎫-p2=3,解得p =4, 所以抛物线C 的方程为y 2=8x .2.已知双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),则其渐近线方程为( )A .y =±24x B .y =±22xC .y =±2xD .y =±12x答案 A解析 因为双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),所以由m +1=32,得m =8, 所以双曲线方程为x 28-y 2=1,所以双曲线的渐近线方程为y =±24x .3.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( ) A .2 B .2 2 C .3 D .3 2 答案 B解析 方法一由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2).不妨取A (1,2),则|AB |=(1-3)2+(2-0)2=8=22,故选B. 方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴,所以|AB |=22+22=8=2 2.故选B.4.(2022·潍坊模拟)如图,某建筑物白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座建筑以轻盈、极简和雕塑般的气质,该建筑物外形弧线的一段可以近似看成焦点在y 轴上的双曲线y 2a 2-x 2b 2=1(a >0,b >0)上支的一部分.已知该双曲线的上焦点F 到下顶点的距离为36,F 到渐近线的距离为12,则该双曲线的离心率为( )A.53B.54C.43D.45 答案 B解析 点F (0,c )到渐近线y =±ab x ,即ax ±by =0的距离d =|±bc |a 2+b 2=b =12, 又由题意知⎩⎪⎨⎪⎧a +c =36,a 2+122=c 2, 解得⎩⎪⎨⎪⎧a =16,c =20,所以e =c a =2016=54.5.(2022·福州质检)已知点F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 2的直线交椭圆于A ,B 两点,且满足AF 1⊥AB ,|AF 1||AB |=43,则该椭圆的离心率是( )A.23B.53C.33D.63 答案 B解析 如图所示,设|AF 1|=4x ,则|AB |=3x ,因为AF 1⊥AB ,则|BF 1|=|AB |2+|AF 1|2=5x , 由椭圆的定义可得|AF 1|+|AB |+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=4a =12x ,则x =a 3,所以|AF 1|=4x =4a 3, 则|AF 2|=2a -4a 3=2a3,由勾股定理可得|AF 1|2+|AF 2|2=|F 1F 2|2, 则⎝⎛⎭⎫4a 32+⎝⎛⎭⎫2a 32=4c 2,则c =53a , 因此该椭圆的离心率为e =c a =53.6.如图,圆O 与离心率为32的椭圆T :x 2a 2+y 2b 2=1(a >b >0)相切于点M (0,1),过点M 引两条互相垂直的直线l 1,l 2,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任意一点,记点P 到两直线的距离分别为d 1,d 2,则d 21+d 22的最大值是( )A .4B .5 C.163 D.253答案 C解析 易知椭圆C 的方程为x 24+y 2=1,圆O 的方程为x 2+y 2=1, 设P (x 0,y 0), 因为l 1⊥l 2,则d 21+d 22=|PM |2=x 20+(y 0-1)2,因为x 204+y 20=1,所以d 21+d 22=4-4y 20+(y 0-1)2=-3⎝⎛⎭⎫y 0+132+163, 因为-1≤y 0≤1,所以当y 0=-13,即点P ⎝⎛⎭⎫±423,-13时,d 21+d 22取得最大值163. 二、多项选择题7.(2022·临沂模拟)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F (0,2),椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A .椭圆的长轴长为4 2B .|AB |的取值范围是[4,2+22]C .△ABF 面积的最小值是4D .△AFG 的周长为4+4 2 答案 ABD解析 由题意知,椭圆中的几何量b =c =2, 得a =22,则2a =42,A 正确; |AB |=|OB |+|OA |=2+|OA |, 由椭圆性质可知2≤|OA |≤22, 所以4≤|AB |≤2+22,B 正确; 记∠AOF =θ, 则S △ABF =S △AOF +S △OBF=12|OA |·|OF |sin θ+12|OB |·|OF |sin(π-θ) =|OA |sin θ+2sin θ =(|OA |+2)sin θ, 取θ=π6,则S △ABF =1+12|OA |≤1+12×22<4,C 错误;由椭圆定义知|AF |+|AG |=2a =42, 所以△AFG 的周长L =|FG |+42=4+42, D 正确.8.(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A .||P A 1|-|P A 2||=2aB .若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5 C .若双曲线C 为等轴双曲线,则直线P A 1的斜率与直线P A 2的斜率之积为1D .若双曲线C 为等轴双曲线,且∠A 1P A 2=3∠P A 1A 2,则∠P A 1A 2=π10答案 BCD解析 对于A ,在△P A 1A 2中,根据三角形两边之差小于第三边, 可知||P A 1|-|P A 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0,设F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎨⎧n m -c ×ba =-1,b ×m +c 2-a ×n2=0,得⎩⎨⎧m =a 2-b 2c,n =2abc ,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎫a 2-b 2c ,2ab c , 由题意知该点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2 代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=5,得e =5,故B 正确;对于C ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2, 则x 20-a 2=y 20,故12·PA PA k k =y 0x 0+a ·y 0x 0-a=y 20x 20-a2=1,故C 正确; 对于D ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 且∠A 1P A 2=3∠P A 1A 2, 设∠P A 1A 2=θ,∠A 1P A 2=3θ, 则∠P A 2x =4θ,根据C 的结论12·PA PA k k =1, 即有tan θ·tan 4θ=1, ∴sin θcos θ·sin 4θcos 4θ=1, ∴cos 5θ=0, ∵θ+3θ∈(0,π), ∴θ∈⎝⎛⎭⎫0,π4, ∴5θ=π2,∴∠P A 1A 2=θ=π10.三、填空题9.写出一个满足以下三个条件的椭圆的方程:______________.①中心为坐标原点;②焦点在坐标轴上;③离心率为13.答案x 29+y 28=1(答案不唯一)解析 只要椭圆方程形如x 29m +y 28m =1(m >0)或y 29m +x 28m=1(m >0)即可.10.(2022·淄博模拟)已知P 1,P 2,…,P 8是抛物线x 2=4y 上不同的点,且F (0,1).若FP 1--→+FP 2--→+…+FP 8--→=0,则|FP 1--→|+|FP 2--→|+…+|FP 8--→|=________.答案 16解析 设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),…,P 8(x 8,y 8),P 1,P 2,P 3,…,P 8是抛物线x 2=4y 上不同的点,点F (0,1),准线为y =-1,则FP i --→=(x i ,y i -1)(i =1,2,…,8),所以FP 1--→+FP 2--→+…+FP 8--→=(x 1+x 2+…+x 8,(y 1-1)+(y 2-1)+…+(y 8-1))=0,所以(y 1-1)+(y 2-1)+…+(y 8-1)=0,即y 1+y 2+y 3+…+y 8=8,∴|FP --→1|+|FP 2--→|+…+|FP 8--→|=(y 1+1)+(y 2+1)+…+(y 8+1)=y 1+y 2+…+y 8+8=16.11.(2022·济南模拟)已知椭圆C 1:x 236+y 2b 2=1(b >0)的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P 是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为________.答案57解析 依题意,由椭圆定义得|PF 1|+|PF 2|=12,而|PF 1|=7,则|PF 2|=5,因为点F 2是抛物线C 2:y 2=2px (p >0)的焦点,则该抛物线的准线l 过点F 1,如图,过点P 作PQ ⊥l 于点Q ,由抛物线定义知|PQ |=|PF 2|=5,而F 1F 2∥PQ ,则∠PF 1F 2=∠F 1PQ ,所以cos ∠PF 1F 2=cos ∠F 1PQ =|PQ ||PF 1|=57. 12.(2022·福州质检)已知O 为坐标原点,F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A 为C 的右顶点,过F 作C 的渐近线的垂线,垂足为M ,且与y 轴交于点P .若直线AM 经过OP 的中点,则C 的离心率是________.答案 2解析 由题意可知,F (-c ,0),A (a ,0),渐近线不妨设为y =-b ax , 则k FM =a b, 直线FM 的方程为y =a b(x +c ), 令x =0,可得y =ac b, 则P ⎝⎛⎭⎫0,ac b , 则OP 的中点坐标为⎝⎛⎭⎫0,ac 2b , 联立⎩⎨⎧ y =-b a x ,y =a b (x +c ),解得M ⎝⎛⎭⎫-a 2c ,ab c , 因为直线AM 经过OP 的中点,所以ac 2b -00-a =ab c -0-a 2c-a ,则2b 2=ac +c 2,2(c 2-a 2)=ac +c 2, 即c 2-ac -2a 2=0,则e 2-e -2=0,解得e =-1 (舍)或e =2.四、解答题13.(2022·衡水中学模拟)双曲线x 2-y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b =3,若l 的斜率存在,且(F 1A --→+F 1B --→)·AB →=0,求l 的斜率.解 (1)设A (x A ,y A ).由题意知,F 2(c ,0),c =1+b 2,y 2A =b 2(c 2-1)=b 4,因为△F 1AB 是等边三角形, 所以2c =3|y A |,即4(1+b 2)=3b 4,解得b 2=2⎝⎛⎭⎫b 2=-23舍去. 故双曲线的渐近线方程为y =±2x .(2)由已知,F 1(-2,0),F 2(2,0). 设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2).显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0. 因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ). 由(F 1A --→+F 1B --→)·AB →=0,即F 1M →·AB →=0, 知F 1M ⊥AB ,故1· 1.F M k k =-而x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,1F M k =3k 2k 2-3, 所以3k 2k 2-3·k =-1,得k 2=35, 故l 的斜率为±155.。
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
圆锥曲线的方程与性质1. (2013·课标全国Ⅱ)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p2,则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.2. (2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 由e =c a =52知,a =2k ,c =5k (k ∈R +),由b 2=c 2-a 2=k 2知b =k .所以b a =12.即渐近线方程为y =±12x .故选C.3. (2013·山东)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p 等于( )A.316B.38C.233D.433 答案 D解析 抛物线C 1的标准方程为:x 2=2py ,其焦点F 为⎝⎛⎭⎫0,p2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为:y =±33x .由y ′=1p x =33得x =33p ,故M ⎝⎛⎭⎫33p ,p6.由F 、F ′、M 三点共线得p =433.4. (2013·福建)椭圆Г:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y=3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 ________. 答案3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1, 所以∠MF 2F 1=30°,MF 1⊥MF 2, 所以|MF 1|=c ,|MF 2|=3c ,所以|MF 1|+|MF 2|=c +3c =2a .即e =ca=3-1.5. (2013·浙江)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A 、B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________. 答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1)、B (x 2,y 2)、Q (x 0,y 0).解方程组⎩⎪⎨⎪⎧y =k (x +1)y 2=4x .化简得:k 2x 2+(2k 2-4)x +k 2=0,∴x 1+x 2=4-2k 2k 2,y 1+y 2=k (x 1+x 2+2)=4k .∴x 0=2-k 2k 2,y 0=2k.由(x 0-1)2+(y 0-0)2=2得:⎝⎛⎭⎫2-2k 2k 22+⎝⎛⎭⎫2k 2=4. ∴k =±1.题型一 圆锥曲线的定义与标准方程例1 (1)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为 __________.(2)已知P 为椭圆x 24+y 2=1和双曲线x 2-y 22=1的一个交点,F 1,F 2为椭圆的两个焦点,那么∠F 1PF 2的余弦值为________.审题破题 (1)根据椭圆定义,△ABF 2的周长=4a ,又e =22可求方程;(2)在焦点△F 1PF 2中使用余弦定理.答案 (1)x 216+y 28=1 (2)-13解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,由e =22知c a =22,故b 2a 2=12. 由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8.∴椭圆C 的方程为x 216+y 28=1.(2)由椭圆和双曲线的方程可知,F 1,F 2为它们的公共焦点,不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=4|PF 1|-|PF 2|=2, 所以⎩⎪⎨⎪⎧|PF 1|=3|PF 2|=1.又|F 1F 2|=23,由余弦定理可知cos ∠F 1PF 2=-13.反思归纳 圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|.变式训练1 (1)已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两个焦点F 1,F 2,M 为双曲线上一点,且满足∠F 1MF 2=90°,点M 到x 轴的距离为72.若△F 1MF 2的面积为14,则双曲线的渐近线方程为__________.答案 y =±7x解析 由题意得12·2c ·72=14,所以c =4.又⎩⎪⎨⎪⎧||MF 1|-|MF 2||=2a ,|MF 1|2+|MF 2|2=82,12·|MF 1|·|MF 2|=14.所以a =2,b =14.所以渐近线方程为y =±7x .(2)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________. 答案 y 2=±8x解析 抛物线y 2=ax (a ≠0)的焦点坐标为⎝⎛⎭⎫a 4,0,过焦点且斜率为2的直线方程为y = 2⎝⎛⎭⎫x -a 4,令x =0得y =-a 2. ∴△OAF 的面积为12×⎪⎪⎪⎪a 4×⎪⎪⎪⎪-a 2=4,∴a 2=64,∴a =±8. ∴抛物线方程为y 2=±8x . 题型二 圆锥曲线的性质例2 (1)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B .2 2C .4D .8(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32B.23或2C.12或2D.23或32审题破题 (1)利用抛物线的几何性质结合方程组求解;(2)由于已知圆锥曲线的两个焦点,所以该圆锥曲线为椭圆或双曲线,再由离心率的定义即可求解. 答案 (1)C (2)A解析 (1)设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a 2=1和x =-4得A (-4,16-a 2),B (-4,-16-a 2), ∴|AB |=216-a 2=43,∴a =2,∴2a =4.∴C 的实轴长为4.(2)当曲线C 为椭圆时,e =|F 1F 2||PF 1|+|PF 2|=34+2=12;当曲线C 为双曲线时,e =|F 1F 2||PF 1|-|PF 2|=34-2=32.反思归纳 (1)求椭圆或双曲线的离心率的方法:①直接求出a 和c ,代入e =ca;②建立关于a ,b ,c 的方程或不等式,然后把b 用a ,c 代换.通过解关于ca 的方程或不等式求得离心率的值或范围.(2)研究圆锥曲线的几何性质,实质是求参数a 、b 、c 或者建立a 、b 、c 的关系式(等式或不等式),然后根据概念讨论相应的几何性质.变式训练2 (1)已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆与双曲线的渐近线交于异于原点的两点A ,B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3C. 2D. 3答案 C解析 如图,设OF 的中点为T ,由(AO →+AF →)·OF →=0可知 AT ⊥OF ,又A 在以OF 为直径的圆上,∴A ⎝⎛⎭⎫c 2,c 2, 又A 在直线y =bax 上,∴a =b ,∴e = 2.(2)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5答案 B解析 由⎩⎨⎧y =b ax x =-p2,解得⎩⎨⎧y =-bp 2ax =-p2,由题意得⎩⎨⎧-bp2a =-1-p2=-2,得⎩⎪⎨⎪⎧b a =12p =4,又知p2+a =4,故a =2,b =1,c =a 2+b 2=5,∴焦距2c =2 5.题型三 直线与圆锥曲线的位置关系例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A ,B 两点.当l 的斜率为1时,坐标原点O 到l 的距离为22. (1)求a 、b 的值;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.审题破题 (1)由直线l 的斜率为1过焦点F ,原点O 到l 的距离为22可求解;(2)需分直线l 的斜率存在或不存在两种情况讨论.设A (x 1,y 1),B (x 2,y 2),由条件OP →=OA →+OB →可得P 点坐标,结合A 、B 、P 在椭圆上列等式消元求解.解 (1)设F (c,0),当l 的斜率为1时,其方程为x -y -c =0,O 到l 的距离为|0-0-c |2=c 2,故c 2=22,c =1. 由e =c a =33,得a =3,b =a 2-c 2= 2.(2)C 上存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立. 由(1)知C 的方程为2x 2+3y 2=6.设A (x 1,y 1),B (x 2,y 2).(ⅰ)当l 不垂直于x 轴时,设l 的方程为y =k (x -1).C 上的点P 使OP →=OA →+OB →成立的充要条件是P 点坐标为(x 1+x 2,y 1+y 2),且2(x 1+x 2)2+3(y 1+y 2)2=6,整理得2x 21+3y 21+2x 22+3y 22+4x 1x 2+6y 1y 2=6, 又A 、B 在椭圆C 上,即2x 21+3y 21=6,2x 22+3y 22=6,故2x 1x 2+3y 1y 2+3=0.①将y =k (x -1)代入2x 2+3y 2=6,并化简得(2+3k 2)x 2-6k 2x +3k 2-6=0,于是x 1+x 2=6k 22+3k 2,x 1·x 2=3k 2-62+3k 2,y 1·y 2=k 2(x 1-1)(x 2-1)=-4k 22+3k 2.代入①解得k 2=2,此时x 1+x 2=32.于是y 1+y 2=k (x 1+x 2-2)=-k2,即P ⎝⎛⎭⎫32,-k 2. 因此,当k =-2时,P ⎝⎛⎭⎫32,22,l 的方程为2x +y -2=0;当k =2时,P ⎝⎛⎭⎫32,-22,l 的方程为2x -y -2=0.(ⅱ)当l 垂直于x 轴时,由OA →+OB →=(2,0)知,C 上不存在点P 使OP →=OA →+OB →成立.综上,C 上存在点P ⎝⎛⎭⎫32,±22使OP →=OA →+OB →成立,此时l 的方程为2x ±y -2=0.反思归纳 解决直线与圆锥曲线位置关系问题的步骤: (1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程(注意二次项系数是否为零);(3)应用根与系数的关系及判别式;(4)结合已知条件、中点坐标公式、斜率公式及弦长公式求解.变式训练3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.典例 (12分)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 规范解答解 (1)因为椭圆C 1的左焦点为F 1(-1,0),所以c =1.将点P (0,1)代入椭圆方程x 2a 2+y 2b 2=1,得1b 2=1,即b =1,所以a 2=b 2+c 2=2.所以椭圆C 1的方程为x 22+y 2=1.[4分](2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由 ⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①[7分]由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m , 消去y 并整理得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.②[10分]综合①②,解得⎩⎪⎨⎪⎧ k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2.[12分]评分细则 (1)得到b =1给2分;(2)两个判别式应用中,得到化简后的方程均给1分,判别式等于0没化简不扣分;(3)k 、m 的值不全扣2分.阅卷老师提醒 (1)对于直线和圆锥曲线相切的问题,除曲线为y 2=ax 形式的,一般都利用判别式.(2)直线和圆锥曲线是高考热点,判别式、弦长公式、设而不求思想是常用工具.1. (2013·四川)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3答案 B解析 抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线是y =±3x ,即3x ±y=0,∴所求距离为|3±0|(3)2+(±1)2=32.选B. 2. (2013·湖北)已知0<θ<π4 ,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等答案 D解析 双曲线C 1:e =sin 2θ+cos 2θcos 2=1cos 2, 双曲线C 2:e =sin 2θ+sin 2θtan 2θsin 2θ=1+tan 2θ=1cos 2θ, ∴C 1,C 2离心率相等.3. 已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是 ( )A.⎝⎛⎭⎫12,2B .(1,+∞)C .(1,2)D .⎝⎛⎭⎫12,1答案 C解析 由题意可得,2k -1>2-k >0, 即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 4. (2013·江西)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF 为等边三角形,则p =________. 答案 6解析 因为△ABF 为等边三角形,所以由题意知B ⎝⎛⎭⎫p 3,-p2,代入方程x 23-y23=1得p =6.5. (2013·湖南)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为______. 答案3解析 不妨设|PF 1|>|PF 2|, 则|PF1|-|PF 2|=2a ,又∵|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,由正弦定理得,∠PF 2F 1=90°,∴|F 1F 2|=23a ,∴双曲线C 的离心率e =23a2a = 3.6. (2013·辽宁)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e=________.答案 57解析 如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′, 由对称性,|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14.∴a =7,因此离心率e =c a =57.专题限时规范训练一、选择题1. (2013·广东)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y25=1 B.x 24-y25=1 C.x 22-y25=1D.x 22-y 25=1 答案 B解析 由题意知:c =3,e =c a =32,∴a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1. 2. 已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |等于( )A .2 2B .2 3C .4D .2 5答案 B解析 由题意设抛物线方程为y 2=2px (p >0),则M 到焦点的距离为x M +p 2=2+p2=3,∴p =2,∴y 2=4x .∴y 20=4×2=8,∴|OM |=4+y 20=4+8=2 3.3. 已知双曲线C :x 2a 2-y 2b2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线,垂足为H ,若F 2H 的中点M 在双曲线C 上,则双曲线C 的离心率为( )A. 2B. 3C .2D .3答案 A解析 取双曲线的渐近线y =b a x ,则过F 2与渐近线垂直的直线方程为y =-ab(x -c ),可解得点H 的坐标为⎝⎛⎭⎫a 2c ,ab c ,则F 2H 的中点M 的坐标为⎝⎛⎭⎫a 2+c 22c ,ab 2c ,代入双曲线方程x 2a 2-y 2b 2=1可得(a 2+c 2)24a 2c 2-a 2b 24c 2b 2=1,整理得c 2=2a 2,即可得e =c a=2,故应选A. 4. 设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于 ( )A.10 B .210 C. 5D .2 5答案 B解析 如图,由PF 1→·PF 2→=0,可得PF 1→⊥PF 2→,又由向量加法的平行四边形法则可知▱PF 1QF 2为矩形,因为矩形的对角线相等,故有|PF 1→+PF 2→|=|PQ →|=2c =210, 所以选B.5. 已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是 ( )A .2±3B .2+ 3 C.3±1D.3-1答案 A解析 依题意得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 212p ,y 1,Q ⎝⎛⎭⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝⎛⎭⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.6. (2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 |F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b 2=1.∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a , ∴|AF 2|=2+a ,|AF 1|=2-a . 在Rt △F 1AF 2中,∠F 1AF 2=90°, ∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.故选D.7. 已知双曲线x 2a 2-y2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 答案 A解析 ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,圆C 的标准方程为(x -3)2+y 2=4, ∴圆心为C (3,0).又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3ba 2+b 2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.8. (2012·安徽)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2答案 C解析 如图所示,由题意知,抛物线的焦点F 的坐标为(1,0), 又|AF |=3,由抛物线定义知:点A 到准线x =-1的距离为3, ∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8, 由图知点A 的纵坐标y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解之得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.由图知B ⎝⎛⎭⎫12,-2,∴S △AOB =12|OF |·|y A -y B |=12×1×|22+2|=32 2.故选C. 二、填空题9. 已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________. 答案 8解析 如图所示,由椭圆定义得 |AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =20, 又|AF 2|+|BF 2|=12,所以|AF 1|+|BF 1|=8,即|AB |=8.10.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有共同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1(λ≠0).由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.11.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________. 答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+(6-3)2+42=15.12.过双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE交双曲线的右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. 答案 102解析 设双曲线的右焦点为F ′,由于E 为PF 的中点,坐标原点O 为FF ′的中点,所以EO ∥PF ′,又EO ⊥PF ,所以PF ′⊥PF ,且|PF ′|=2×a2=a ,故|PF |=3a ,根据勾股定理得|FF ′|=10a .所以双曲线的离心率为10a 2a =102.三、解答题13.(2012·安徽)如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值. 解 (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)方法一 a 2=4c 2,b 2=3c 2,直线AB 的方程为 y =-3(x -c ),将其代入椭圆方程3x 2+4y 2=12c 2,得B ⎝⎛⎭⎫85c ,-335c ,所以|AB |=1+3·⎪⎪⎪⎪85c -0=165c . 由S △AF 1B =12|AF 1|·|AB |·sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.方法二 设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=40 3知,a =10,b =5 3.14.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b2=1 ① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.。
高中数学复习:圆锥曲线的方程与性质 1.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( ) A.2 B.3 C.6 D.9 解析 设A(x,y),由抛物线的定义知,点A到准线的距离为12,即x+p2=12. 又因为点A到y轴的距离为9,即x=9, 所以9+p2=12,解得p=6.故选C. 答案 C 2.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为( ) A.14,0 B.12,0 C.(1,0) D.(2,0) 解析 将x=2与抛物线方程y2=2px联立, 可得y=±2p, 不妨设D(2,2p),E(2,-2p),
由OD⊥OE,可得OD→·OE→=4-4p=0,解得p=1, 所以抛物线C的方程为y2=2x.其焦点坐标为12,0.故选B. 答案 B 3.设F1,F2是双曲线C:x2-y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )
A.72 B.3 C.52 D.2 解析 法一 由题知a=1,b=3,c=2,F1(-2,0),F2(2,0), 如图,因为|OF1|=|OF2|=|OP|=2,所以点P在以F1F2为直径的圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16. 由双曲线的定义知||PF1|-|PF2||=2a=2,所以|PF1|2+|PF2|2-2|PF1||PF2|=4,所以|PF1||PF2|=6, 所以△PF1F2的面积为12|PF1||PF2|=3.故选B. 法二 由双曲线的方程可知,双曲线的焦点F1,F2在x轴上,且|F1F2|=21+3=4.设点P
的坐标为(x0,y0),则x20-y203=1,x20+y20=2,解得|y0|=32. 所以△PF1F2的面积为12|F1F2|·|y0|=12×4×32=3.故选B. 答案 B 4.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|. (1)求C1的离心率; (2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程. 解 (1)由已知可设C2的方程为y2=4cx,其中c=a2-b2. 不妨设A,C在第一象限,由题设得A,B的纵坐标分别为b2a,-b2a;C,D的纵坐标分别为2c,-2c,故|AB|=2b2a,|CD|=4c.
由|CD|=43|AB|得4c=8b23a,即3×ca=2-2ca2. 解得ca=-2(舍去)或ca=12. 所以C1的离心率为12. (2)由(1)知a=2c,b=3c,故C1:x24c2+y23c2=1. 设M(x0,y0),则x204c2+y203c2=1,y20=4cx0, 故x204c2+4x03c=1.① 因为C2的准线为x=-c,所以|MF|=x0+c, 又|MF|=5,故x0=5-c, 代入①得(5-c)24c2+4(5-c)3c=1, 即c2-2c-3=0,解得c=-1(舍去)或c=3. 所以C1的标准方程为x236+y227=1, C2的标准方程为y2=12x.
考点 1.圆锥曲线的定义 (1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|); (2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|); (3)抛物线:|MF|=d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误. 2.圆锥曲线的标准方程 (1)椭圆:x2a2+y2b2=1(a>b>0)(焦点在x轴上)或y2a2+x2b2=1(a>b>0)(焦点在y轴上); (2)双曲线:x2a2-y2b2=1(a>0,b>0)(焦点在x轴上)或y2a2-x2b2=1(a>0,b>0)(焦点在y轴上); (3)抛物线:y2=2px,y2=-2px,x2=2py,x2=-2py(p>0). 3.圆锥曲线的重要性质 (1)椭圆、双曲线中a,b,c之间的关系
①在椭圆中:a2=b2+c2;离心率为e=ca=1-b2a2. ②在双曲线中:c2=a2+b2;离心率为e=ca=1+b2a2. (2)双曲线的渐近线方程与焦点坐标 ①双曲线x2a2-y2b2=1(a>0,b>0)的渐近线方程为y=±bax;焦点坐标F1(-c,0),F2(c,0). ②双曲线y2a2-x2b2=1(a>0,b>0)的渐近线方程为y=±abx,焦点坐标F1(0,-c),F2(0,c). (3)抛物线的焦点坐标与准线方程 ①抛物线y2=2px(p>0)的焦点Fp2,0,准线方程x=-p2. ②抛物线x2=2py(p>0)的焦点F0,p2,准线方程y=-p2. 4.弦长问题 (1)直线与圆锥曲线相交的弦 设而不求,利用根与系数的关系,进行整体代入.即当斜率为k,直线与圆锥曲线交于A(x1,y1),B(x2,y2)时,|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+
1
k2
(y1+y2)2-4y1y2. (2)过抛物线焦点的弦
抛物线y2=2px(p>0)过焦点F的弦AB,若A(x1,y1),B(x2,y2),则x1x2=p24,y1y2=-p2,弦长|AB|=x1+x2+p.
热点一 圆锥曲线的定义及标准方程 【例1】 (1)已知点O(0,0),A(-2,0),B(2,0).设点P满足|PA|-|PB|=2,且P为函数y=34-x2图象上的点,则|OP|=( )
A.222 B.4105 C.7 D.10 (2)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( ) A.x22+y2=1 B.x23+y22=1 C.x24+y23=1 D.x25+y24=1 解析 (1)由|PA|-|PB|=2<|AB|=4,得点P的轨迹是双曲线的右支.又a=1,c=2,知b2=c2-a2=3.故点P的轨迹方程为x2-y23=1(x≥1)①,由于y=34-x2②,联立①②,得x2=134,y2=274,故|OP|=x2+y2=10. (2)设椭圆的标准方程为x2a2+y2b2=1(a>b>0).连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m. 由椭圆定义,4m=2a,得m=a2, 故|F2A|=|F1A|=a,则点A为椭圆C的上顶点或下顶点. 如图,不妨设A(0,-b),依题意,AF2→=2F2B→,得B32,b2. 由点B在椭圆上,得94a2+b24b2=1, 得a2=3,b2=a2-c2=2,椭圆C的方程为x23+y22=1. 答案 (1)D (2)B 探究提高 1.两题求解的关键在于准确把握圆锥曲线的定义和标准方程,另外注意焦点在不同的坐标轴上,椭圆、双曲线、抛物线方程各有不同的表示形式. 2.求解圆锥曲线的标准方程的方法是“先定型,后计算”.所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值,最后代入写出椭圆、双曲线、抛物线的标准方程. 【训练1】 (1)设双曲线C的方程为x2a2-y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为
( ) A.x24-y24=1 B.x2-y24=1 C.x24-y2=1 D.x2-y2=1 (2)已知抛物线y2=2px(p>0)的焦点为F,点M(x0,66)x0>p2是抛物线上一点,以M为圆心的圆与直线x=p2交于A,B两点(A在B的上方),若sin∠MFA=57,则此抛物线的方程为________. 解析 (1)由y2=4x,知焦点坐标为(1,0),则过点(1,0)和点(0,b)的直线方程为x+yb=1. 易知x2a2-y2b2=1的渐近线方程为xa+yb=0和xa-yb=0. 由l与一条渐近线平行,与一条渐近线垂直,得a=1,b=1.故双曲线C的方程为x2-y2=1. (2)如图所示,过M点作CM⊥AF,垂足为C,交准线于D, ∴sin∠MFA=57=|MC||MF|. 由抛物线定义|MF|=|MD|=x0+p2,
∴|MC||MF|=x0-p2x0+p2=57, 得x0=3p. ∵点M(x0,66)x0>p2是抛物线上一点, ∴(66)2=2px0,36×6=6p2,∴p=6,∴y2=12x. 答案 (1)D (2)y2=12x 热点二 圆锥曲线的几何性质 【例2】 (1)已知F为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为________. (2)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条
渐近线分别交于A,B两点.若F1A→=AB→,F1B→·F2B→=0,则C的离心率为________. 解析 (1)设B(c,yB),因为B为双曲线C:x2a2-y2b2=1上的点,所以c2a2-y2Bb2=1,所以y2B=b4a2,则yB=b2a. 因为AB的斜率为3,
所以b2ac-a=3,则b2=3ac-3a2. 所以c2-a2=3ac-3a2,所以c2-3ac+2a2=0,解得c=a(舍去)或c=2a. 所以C的离心率e=ca=2.