-初中数学竞赛知识点
- 格式:doc
- 大小:1.05 MB
- 文档页数:44
数学竞赛一试知识点数学竞赛是一项对学生数学能力的综合考察,常常涉及到各个数学领域的知识点。
在这篇文章中,我们将介绍一些常见的数学竞赛知识点,包括数列与数列极限、函数与方程、概率与统计、解析几何等。
一、数列与数列极限数列是数学中常见的概念,它是由一系列按照一定规律排列的数所组成的。
数列的极限是指当数列中的数趋向于某个值时,这个值就是数列的极限。
在数学竞赛中,常常需要求解数列的极限,掌握数列的性质和求解方法是很重要的。
二、函数与方程函数是一种特殊的关系,它将一个变量的值映射到另一个变量的值。
在数学竞赛中,常常需要分析函数的性质,求解函数方程以及利用函数的性质解决问题。
掌握函数的性质、方程的求解方法以及函数图像的特点对于解题非常有帮助。
三、概率与统计概率与统计是数学中的一个分支,它研究的是随机事件和数据的规律。
在数学竞赛中,常常需要计算概率、分析统计数据以及利用概率和统计的方法解决问题。
掌握概率的计算方法、统计数据的分析技巧以及概率与统计在实际问题中的应用是很重要的。
四、解析几何解析几何是数学中的一个分支,它将几何问题转化为代数问题来求解。
在数学竞赛中,常常需要利用解析几何的方法解决几何问题,例如求解直线和曲线的交点、求解几何图形的面积和体积等。
掌握解析几何的基本概念、常见解析几何问题的求解方法以及解析几何在实际问题中的应用是很重要的。
五、数论与组合数学数论是研究整数性质的数学分支,组合数学是研究离散结构的数学分支。
在数学竞赛中,常常需要利用数论和组合数学的方法解决问题,例如证明数论定理、计算组合数等。
掌握数论和组合数学的基本概念、常见问题的解决方法以及数论和组合数学在实际问题中的应用是很重要的。
数学竞赛一试涵盖了数学的各个领域,包括数列与数列极限、函数与方程、概率与统计、解析几何、数论与组合数学等。
掌握这些知识点,并灵活运用于解题过程中,将有助于提高数学竞赛的成绩。
希望同学们能够加强对这些知识点的学习和理解,为数学竞赛的取得好成绩打下坚实的基础。
第26讲赋值法数统治着宇宙.——毕达哥拉斯知识方法扫描在解数学题时,将问题中的某些元素赋于适当的数值,把问题“数学化”,然后利用这些数值的大小、正负、奇偶及相互之间的运算结果等来进行推理解题的方法叫做赋值法.常见的赋值方式有:对点赋值、对字母赋值、对线段赋值、对小方格赋值、对区域赋值、对方向赋值.电子线路中的开、关;数理逻辑中的是、非……就常用1,0来表示,这其实就是赋值。
赋值法的好处是:将实际问题转化为数学问题的同时,还将抽象的推理转化为具体的计算.染色方法也是一种赋值法,只不过赋的是色不是数而已.凡是能用染色方法来解的题目,一般都可以用赋值法来解,只需将染成某一种颜色换成赋于某一数值就行了.因此,赋值法的适用范围更为广泛.经典例题解析1.染色问题例1在一个圆周上,依次排列n个点:A1,A2,…,An,对每个点任意染上白色或黑色.证明:在连接相邻两点的n条圆弧中,端点颜色不同的圆弧的条数必是偶数.证明我们简称端点颜色不同(相同)的圆弧为异色(同色)圆弧,用数代表颜色,白色记为1,黑色记为-1.任一点Ak(k=1,2,…,n)都唯一地对应一个数ak ,ak=1或ak=-1.为同色圆弧当且仅当ak·a1+k=1,显然,为异色圆弧当且仅当ak a1+k=-1.因为(a1a2)·(a2a3)·…·(ana1)=(a1a2…an)2=1,所以a1a2,a2a3,…,an a1这n个数中只能有偶数个-1.即这n条圆弧中必有偶数条异色圆弧.评注若将题中的圆周从A1,An之间剪开,并将圆周拉成直线,附加条件A1与An异色,则得到如下问题:在直线l 上依次排列着n 个点A 1,A 2,…,A n ,对每个点任意染上白色或黑色,若线段A i A 1+i 的两端异色,就称线段A i A 1+i 为标准线段,又已知A 1与A n 异色,证明:直线l 上共有奇数条标准线段.证法与例1类似.例2 将正方形ABCD 分割成n 2个相等的小方格(n 是正整数),把相对的顶点A 、C 染成红色,B 、D 染成蓝色,其交点染成红、蓝两色中任一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.分析与解 不妨将红色记为1,蓝色记为-1,并将小方格编号,分别记为1,2,…,n 2,记第i 个小方格四个顶点相应数字的乘积为A i ,若恰有三个顶点同色,则A i =-1,否则A i =1.在乘积A 1A 2…A 2n 中,正方形内部的交点各点相应的代表数重复了4次;边上非顶点各点相应的代表数重复了2次;A 、B 、C 、D 四点相应的代表数乘积为1,所以A 1A 2…A 2n =1.这说明A 1,A 2,…,A 2n 中-1的个数必为偶数,也就是恰有三个顶点同色的小方格数必为偶数.评注 上述两例都属于“两色分布”问题,这里我们将两种不同的颜色赋于+1,-1,使染色问题转化为对数值正负性的研究.对于例2也可以将红点记为0,蓝点记为1,并记第i 个小方格四个顶点相应数字之和为A (i =1,2,…,n 2).若恰有三个顶点同色,则A i =1或3,否则A i 为偶数,然后从考虑和A 1+A 2+…+A 2n 的奇偶性入手进行论证.例3 在一个圆上给定10个点,把其中6个点染成黑色的,余下的4个点染成白色的,它们把圆周划分为互不包含的弧段.我们规定:两端都是黑色的弧段标上数字2;两端白色的弧段标上数字21;两端异色的弧段标上数字1;把所有这些数字乘在一起,求它们的乘积.解 把黑点都标上2,白点都标上21,则每段弧所标数字恰好是它两端的数字的乘积.因此所有这些弧段所标数字的乘积就是所有点所标有的数字乘积的平方,即[(2)6(21)4]2=4.①评注 这个解法反映了题目的实质,即乘法满足交换律、结合律.对①中的20个数的乘积1282?· 2.?·22个个② 任意交换顺序,然后依次把两个两个作括号先结合,便对应着弧段上的一种染色方法.反过来,圆弧上的一种染色方法,也对应着②中的一次交换、结合过程.正因为解法反映了题目的本质,它不仅优美,而且推广立即成为可能:当黑点为m 个,白点为n 个时,答案为2n m -.2.棋盘问题例4 将8×8方格纸板的一角剪去一个2×2的正方形.问余下的60个方格能否剪成15块形如“”的小纸片?解 将8×8方格纸板余下的60个小方格分别标上+1或-1(如图所示),则任一符合要求的“四连格”中的数字之和,或者为2,或者为-2.假定这60个小方格能剪成15块符合要求的“四连格”,设其中数字之和为2的有x 块,数字之和为-2的有y 块,则⎩⎨⎧=-=+.022,15y x y x 解之得⎪⎪⎩⎪⎪⎨⎧==.215,215y x x 、y 不是整数,矛盾.因此,题中所给的60个小方格不可能剪成15块“四连格”小纸片.例5 如图是半张象棋盘.(1)一只马跳了n 步回到起点,证明:n 是偶数;(2)一只马能否跳遍这半张棋盘,每格都不重复,最后一步跳回起点?(3)证明:一只马不可能从位置B 出发,跳遍半张棋盘而每个格点只经过一次(不要求最后跳回起点);(4)一只车从位置A 出发,在这半张棋盘上每步走一格,走了若干步后到了位置B ,证明:至多有一个格点没有被走过,或被走过不止一次.解 在棋盘上打“×”号的格点记为+1,打“○”号的格点记为-1.(1)根据马的跳法,它每跳一步其符号改变一次,跳了n 步,符号改变了n 次.而它最后又回到了最初出发的地方,也就是经过n 次改变以后,其符号还与当初一样.显然,n 是偶数.(2)不可能.图中共有45个格点,马要想跳遍这半张棋盘,它要跳45次.这与结论(1)矛盾,由此得证.(3)图中有22个“×”,23个“○”,即有22个+1,有23个-1,所有这些数的和为-1,马是从B 处出发的,即从+1出发,以后反复经过-1和+1,不。
B 第17讲勾股定理几何学有两大珍宝,其一是毕达哥拉斯定理,另一个是分一线段为中外比。
前者我们可比之为黄金,后者,我们可称之为贵重的宝石。
——开普勒知识方法扫描勾股定理:直角三角形两直角边的平方和等于斜边的平方。
勾股定理的逆定理:即如果一个三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形。
勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用。
它沟通了形与数,将几何论证转化为代数计算是一种重要的数学方法。
勾股定理的逆定理常用来证明两条直线互相垂直。
经典例题解析例1.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.证明由勾股定理得AD2=AC2+CD2,BE2=BC2+CE2,所以AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2例2.(1988年上海市初三数学竞赛题)如图,在凸四边形ABCD中,已知AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠DAB的度数是_____ .解连结AC,设AB=2k,则BC= 2k,CD=3k,DA=k.在Rt△ABC 中,2222)2()2(kkBCABAC+=+=,22k=.45,=∠=∠∴=BCABACBCAB在△ACD中.222222)3()22(CDkkkADAC==+=+,.90︒=∠∴CAD︒︒=+=∠+∠=∠∴1354590CABDACDAB例3.(2001我爱数学初中生夏令营试题)点D、E分别为△ABC的边AC 和BC上,∠C为直角,DE∥AB,且3DE=2AB,AE=13,BD=9,那么,ABFE 的长等于________。
解 由DE ∥AB ,得 32===CA CD CB CE AB DE 记32=CB CE =k ,32=CA CD =m ,则有 CE =2k ,CB =3k ,CD =2m ,CA =3m 。
初中奥数知识点归纳初中奥数是一种培养学生逻辑思维和解决问题能力的数学竞赛,是学生在初中阶段接触到的一门重要学科。
初中奥数的题目难度相对较高,涉及的知识点较多。
下面将对初中奥数常见的知识点进行归纳和概述。
1. 基本运算和数学运算规律:初中奥数的第一步当然是对基本的加减乘除法进行熟练掌握,包括带括号的运算和逐步求解。
此外,还需要掌握数学运算规律,如分配律、交换律和结合律等。
2. 平方根与立方根:初中奥数中常常会涉及到对平方根和立方根的计算问题。
学生需要熟悉这些运算方法,包括如何简化开平方根和开立方根的步骤。
3. 分数与小数的运算:初中奥数中,分数与小数的转化和运算是常见的题型。
学生需要掌握将分数转化为小数,以及小数转化为分数的方法,并能够进行分数和小数的四则运算。
4. 百分数与比例:初中奥数中,百分数和比例常常用来描述和比较物体的相对大小。
学生需要掌握百分数和比例的相互转化,并能够进行相关的计算。
5. 方程与不等式:初中奥数中,方程和不等式的解是常见的题型。
学生需要熟练运用二次方程和一元一次方程的解法,并能够解决一些复杂的方程和不等式问题。
6. 公式与代数式:初中奥数中,公式和代数式通常用来描述一些规律和关系。
学生需要熟练记忆和灵活运用各种公式,如平方差公式、和差化积公式等。
7. 几何相关知识:初中奥数中的几何题目涉及到了图形的性质、相似、全等等概念,以及直角三角形的性质、面积和体积的计算。
学生需要了解和掌握这些几何知识,并能够运用到实际问题中。
8. 抽象推理与逻辑思维:初中奥数中的一些题目需要学生进行抽象推理和逻辑思考。
学生需要培养自己的观察力和逻辑思维能力,能够从题目中找到规律、推理解题。
9. 组合与概率:初中奥数中,组合和概率常常涉及到对事件的计数和概率的计算。
学生需要熟练掌握排列组合的基本原理,并能够应用到实际问题中计算概率。
10. 数列与函数:初中奥数中,数列与函数是常见的题型。
学生需要了解数列的概念,掌握数列的通项公式和求和公式,以及函数的定义和性质。
数学竞赛知识点资料初中数学联赛竞赛知识点1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。
初中数学竞赛计算知识点归纳1,C ;2,m=1,n=6 或 m=3,n=2 或 m=6,n=1;3,a=17,4,a=12,x1=1,x2=-2,x3=-28,或a=39,x1=-1,x2=-565,就是第四题的变形。
a=12,或 39过程:1,因为这些数据成对出现,且每一对都是互为倒数,所以只要求出x=2007和x=1/2007的值,就可以知道结果了。
你去求吧。
2,二次函数与横轴的两个交点间的距离等于根号下(b^2-4ac)再除以a的绝对值。
因此有:根号下[(3-mt)^2+12mt]≥(2t+n)的绝对值化简后有:(m^2-4)t^2+(6m-4n)t+9-n^2≥0也就是有:y=(m^2-4)t^2+(6m-4n)t+9-n^2的图象与横轴最多只有一个交点,即有判别式小于或等于0,则得:(mn-6)^2小于或等于0,即mn=6余下的你可做了。
竞赛数学知识点总结竞赛数学,是指各种数学竞赛中需要掌握的一些数学知识和解题技巧。
同时,竞赛数学也是一种对数学思维和解题能力的锻炼。
通过参加竞赛数学的学习和训练,可以提高学生的数学水平,培养学生的数学兴趣和数学思维能力。
下面,我将对竞赛数学常用的知识点进行总结,供学生参考。
一、基本数学知识1. 数论数论是研究整数性质的学科。
在数学竞赛中,常常会涉及到数论知识。
比如,质数、合数、最大公因数、最小公倍数、同余数、循环小数等知识点都是数论中的重要内容。
掌握这些知识对于解决一些数论题目是非常有帮助的。
2. 代数代数是数学的一个重要分支,它研究的是数与文字之间的相互关系。
在数学竞赛中,代数知识通常包括多项式、方程、不等式、函数、数列等内容。
解决代数题目需要熟练掌握各种代数知识,灵活运用各种代数运算法则。
3. 几何几何是研究空间和图形的形状、大小、相对位置等性质的学科。
在数学竞赛中,几何题目通常涉及到直角三角形、相似三角形、圆的性质、平行四边形、多边形等几何图形的性质和计算。
解决几何题目需要清楚地掌握几何图形的性质和变换规律。
4. 概率与统计概率与统计是数学中的一门新兴学科,它研究的是随机事件的规律性和统计数据的分析方法。
在数学竞赛中,通常会涉及到概率的计算、统计数据的分析、抽样调查等内容。
了解概率与统计知识对于解决一些概率与统计题目是很有帮助的。
二、解题技巧1. 分析题目解决数学竞赛题目的第一步是分析题目。
要仔细阅读题目,理解题目的要求,确定题目的难点和重点。
分析题目的条件和限制,清楚题目的求解目标。
2. 形成思路在分析题目的基础上,要形成解题思路。
可以通过举例、画图、列式等方法进行思维导图,找到解题的突破口。
在形成解题思路之前,可以适当进行头脑风暴,提出不同的解题思路。
3. 灵活运用知识在解题的过程中,要灵活运用所学的数学知识。
可以根据题目的要求,适当地引入数论、代数、几何、概率与统计等相关知识,使解题过程更加得心应手。
第28讲 反证法欧几里德最喜欢用的反证法,是数学家最精良的武器。
它比起棋手所用的任何战术还要好:棋手可能需要牺牲一只兵或其它棋,但数学家用的却是整个游戏。
——哈代反证法是一种间接证法,当正向求解有一定的困难,则可以考虑问题的反面.对于存在性问题,唯一性命题,否定性命题,用反证法一般比较方便,与无限有关的命题,“至多”、“至少”等形式的命题,也可以考虑用反证法。
反证法证题的一般步骤为:1、假设结论的反面成立;2、在假设的基础上利用已知条件和定理、公理、定义进行推理得出与题设或与公理、定理、定义及日常常识相矛盾的结果;3、矛盾源于假设,从而肯定原命题成立。
经典例题解析先看一个著名的例子.例1 伽利略妙用反证法1589年,意大利25岁的科学家伽利略(Galilei),为了推翻古希腊哲学家亚里斯多德的“不同重量的物体从高空下落的速度与其重量成正比”的错误论断,他除了拿两个重量不同的铁球登上著名的比萨斜塔当众做实验来说明外,还运用反证法证明如下:假设亚里斯多德的论断是正确的.设有物体A 、B ,且重A >重B ,则A 应比B 先落地。
现把A 与B 捆在一起成为物体A +B ,则()重B A +>重A ,故A +B 比A 先落地;又因A 比B 落得快,A ,B 在一起时,B 应减慢A 的下落速度,所以A +B 又应比A 后落地,这样便得到了自相矛盾的结果.这个矛盾之所以产生,是由亚里斯多德的论断所致,因此这个论断是错误的.评注 伽利略所采用的证明方法是反证法.一般地,在证明一个命题时,从命题结论的反面入手,先假设结论的反面成立,通过一系列正确的逻辑推理,导出与已知条件、已知公理、定理、定义之一相矛盾的结果或者两个相矛盾的结果,肯定了“结论反面成立”的假设是错误的,从而达到了证明结论正面成立的目的,这样一种证明方法就是反证法.反证法对大家来说并不陌生,它是一种最常见的证明方法.成语故事:“自相矛盾”中,“以子之矛攻子之盾”,正是采用了反证法.例2 (2002年北京市初中数学竞赛试题)已知abc ≠0,证明:四个数abc c b a 3)(++,abc a c b 3)(--,abc b a c 3)(--,abcc b a 3)(--中至少有一个不小于6.证明 abc c b a 3)(+++abc a c b 3)(--+abc b a c 3)(--+abcc b a 3)(-- =abcc b a b a c a c b c b a ])()[(])()[(3333--+--+--+++ =abcac c b a b ac c b a b )633(2)633(2222222-++-+++ =abcabc 24=24.(*) 如果abc c b a 3)(++<6,abc a c b 3)(--<6,abc b a c 3)(--<6,abcc b a 3)(--<6,则abc c b a 3)(+++abc a c b 3)(--+abc b a c 3)(--+abcc b a 3)(--<24. 与(*)式矛盾. 所以, 四个加数abc c b a 3)(++,abc a c b 3)(--,abcb ac 3)(--, abcc b a 3)(--中至少有一个不小于6. 例3(1997年山东省初中数学竞赛试题)设a 、b 、c 为互不相等的非零实数,求证三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都有两个相等的实数根.证明 用反证法。
上海市初中数学竞赛知识点整理*1.3组合恒等式*6.图论一.正整数A 的p 进制表示:012211a pa pa pa Am mm m,其中1,,2,1},1,,2,1,0{mi p a i且01ma 。
而m 仍然为十进制数字,简记为p mm a a a A)(021。
二.整除在数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
定义:设b a ,是给定的数,0b,若存在整数c ,使得bc a则称b 整除a ,记作a b |,并称b 是a 的一个约数(因子),称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a记作ba 。
由整除的定义,容易推出以下性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b 即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv aub 。
更一般,若n a a a ,,,21都是b 的倍数,则)(|21n a a a b 。
或着i b a |,则ni i i b c a 1|其中n i Z c i,,2,1,;(3)若a b |,则或者0a,或者||||b a ,因此若a b |且b a |,则b a;(4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p 21|,则p 能整除n a a a ,,,21中的某一个;特别地,若p 是质数,若na p |,则a p |;(6)(带余除法)设b a ,为整数,0b,则存在整数q 和r ,使得r bqa,其中b r,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r称为a 被b 除得的余数。
注意:r 共有b 种可能的取值:0,1, (1)。
若0r,即为a 被b 整除的情形;易知,带余除法中的商实际上为ba (不超过ba 的最大整数),而带余除法的核心是关于余数r 的不等式:b r。
初中的奥数知识点整理奥数是指数学奥林匹克竞赛,是一项面向中学生的数学竞赛活动。
它旨在培养学生的数学兴趣、创新思维和解决问题的能力。
在初中阶段,学生接触到的奥数知识点较为基础,但也是后续深入学习高级数学的基础。
本文将整理初中阶段常见的奥数知识点,帮助学生更好地理解和应用这些知识。
一、整数与有理数1. 整数的概念与性质2. 正整数、负整数、零的概念及其相互关系3. 整数的加法、减法、乘法和除法规则4. 有理数的概念与性质5. 有理数的加法、减法、乘法和除法规则二、代数式与方程式1. 代数式的概念与性质2. 利用代数式进行运算,如合并同类项、提取公因式等3. 一元一次方程式的概念与解法4. 利用一元一次方程式解决实际问题5. 二元一次方程组的概念与解法三、几何图形的性质与计算1. 点、线、面的基本概念与性质2. 直线的性质,如平行线、垂直线等3. 角的概念与性质4. 三角形的性质与分类5. 四边形的性质与分类6. 圆的概念与性质7. 利用几何图形的性质解决问题,如面积计算、相似与全等判定等四、概率与统计1. 概率的概念与性质2. 基本事件、对立事件、必然事件和不可能事件的概念3. 计算概率的方法,如等可能原则、试验频率法等4. 数据统计的概念与方法,如频数、频率、平均值等5. 数据的表示与分析,如直方图、折线图、条形图等五、数列与函数1. 数列的概念与性质2. 等差数列的概念与计算3. 等比数列的概念与计算4. 递推数列的概念与计算5. 函数的概念与性质6. 一次函数与二次函数的概念与图像特征以上整理的是初中阶段常见的奥数知识点,每个知识点都是学习数学的基础,也是参加奥数竞赛的重要内容。
掌握这些知识点可以帮助学生更好地理解和应用数学,拓展思维,培养解决问题的能力。
此外,参加奥数竞赛不仅可以增加数学知识的广度和深度,还可以培养学生的团队合作精神和竞争意识,提高学生的自信心和动手能力。
在学习奥数知识的过程中,同学们可以通过解题的方式提升自己的能力。
初中数学竞赛辅导讲义---图表信息问题21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求.图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题.图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题.表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题.【例题求解】【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达6地;(2)快车追上慢车需小时,慢车、快车的速度分别为千米/时;(3)A、B两地间的路程是.思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程.注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取.【例2】已知二次函数c=2的图象如图,并设M=by++bxax++-+2,-+2+-a-bacabcba则( )A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0思路点拨由抛物线的位置判定a、b、c的符号,并由1x,推出相应y值的正负性.=±注:函数图象选择题是广泛见于各地中考试卷中的一种常见问题,解此类问题的基本思路是:由图象大致位置确定解析式中系数符号特征,进而再判定其他图象的大致位置,在解题中常常要运用直接判断、排除筛选、分类讨论、参数吻合等方法.【例3】某人租用一辆汽车由A城前往B城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米所需要的平均费用为1.2元.试指出此人从A城出发到B城的最短路线.(2003年全国初中数学竞赛题)思路点拨从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城,(2)从A城出发到达B城,不经过O城.【例4】我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米/秒的时间共约160天,其中日平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:根据上面的数据回答:(1)若这个发电厂购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为千瓦·时;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10 Array台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案.思路点拨对于(1),注意“平均风速不小于3米/秒”的时间区分;对于(2),利用购置费用和发电总量分别列出不等式.【例5】一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y与上市时间x的关系可用图1的一条线段表示;它的种植成本2y与1上市时间x的关系可用图2抛物线的一部分来表示,假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?思路点拨由图象提供的信息,求出直线、抛物线的解析式,利用市场售价与成本价相等建立时间x的方程.注:本例综合运用一次函数和二次函数的有关知识,涉及信息量大,题中呈现信息的方式不仅是文字和符号,还包括表格.解图象信息问题的关键是化“图象信息”为“数学信息”,具体包括:(1)读图找点;(2)看图确定系数符号特征;(3)见形(图象形态)想式(解析式),建模求解.学历训练1.如图,是某出租车单程收费y (元)与行驶路程x(千米)之间的函数关系的图象,请根据图象回答以下问题:(1)当行驶8千米时,收费应为;(2)从图象上你能获得哪些正确的信息(请写出2条)①;②.(3)收费y (元)与行驶x(千米)( x≥3)之间的函数关系式为.2.甲、乙两人(甲骑自行车,乙骑摩托车)从A 城出发到B 地旅行,如图表示甲、乙两人离开A 城的路程与时间之间的函数图象。
初中数学竞赛重点难点剖析及解题技巧数学作为一门广泛而深入的学科,一直是初中学生竞赛的重点。
在学习数学的过程中,随着难度的逐步加深,竞赛的要求也逐步提高。
对于初中数学竞赛,不仅需要明确各种数学知识点的概念,还需要深入理解学习中的难点和重点,并且运用多种解题技巧进行比赛。
本文将重点分析初中数学竞赛的难点和重点,并介绍一些解题技巧,希望对初中学生竞赛有所帮助。
1.方程分类方程是数学竞赛中常见的难点之一。
方程可以分为线性方程和非线性方程两大类。
线性方程,就是指未知数只有一次幂的方程。
线性方程常见的形式:ax+b=c,其中a,b,c都是实数,a不等于0,x为未知数。
解方程的关键在于将方程两边运算保持平衡。
对于类似于ax+b=c的方程,我们需要将常数项b移到等式右边,并将a移到等式左边,用c-b代替等式右边的c,带入等式便可求出x。
非线性方程是指未知数有多次幂的方程,包括二次方程、三次方程和高次方程。
许多非线性方程的解题都需要用到数学公式,例如针对二次方程,可以用求根公式解决,而针对立方方程,可以运用因式分解法、圆锥曲线法、绝不相等法等方法进行求解。
这些方法需要在学习中仔细掌握并找到运用的门径。
2.三角函数和三角形在初中阶段,三角函数和三角形的概念和基本性质是重点和难点之一。
学习三角函数时,需要学习三角函数的定义、性质和应用。
比如sin,cos,tan分别代表三角函数的正弦、余弦、正切值,当时,需要明确什么是同角三角函数和倒数三角函数。
学习三角形时,需要掌握三角形的重心、垂心、外心、内心等特点,并了解勾股定理的应用,还要特别关注等腰三角形、等边三角形等特殊三角形的性质和计算方法。
在掌握这些知识的基础上,可以更轻松的判断和计算三角形相关问题,并在竞赛中发挥优越的技能。
3.函数函数的概念是初中数学学习的重中之重,也是竞赛的重点之一。
学习函数需要知道什么是函数的定义、性质,掌握函数的图像、零点、单调性、奇偶性等基本特点。
初中奥数知识总结初中奥数是指面向初中生的数学竞赛活动,主要包括数学奥林匹克竞赛(简称为奥赛)和中学生数学联赛(简称为联赛)两大类。
这些竞赛旨在提高学生的数学素养、思维能力和问题解决能力,培养学生对数学的兴趣和热爱。
在初中奥数竞赛中,学生需要掌握一些基础的数学知识和技巧。
以下是对初中奥数常见知识点的总结。
1.质数与合数质数是只能被1和自身整除的数,例如2、3、5、7等;合数则是能够被其他数整除的数,例如4、6、8、9等。
学生需要了解质数与合数的概念,能够判断一个数是质数还是合数,并能找出一定范围内的质数。
2.最大公约数与最小公倍数最大公约数是指能够同时整除两个或多个数的最大的正整数,最小公倍数则是指能够同时被两个或多个数整除的最小的正整数。
学生需要学会求解两个数的最大公约数和最小公倍数的方法,能够灵活运用到实际问题中。
3.整式与分式整式是指系数和字母的乘积之和,例如3x + 2y + 5;分式是指两个整式的比值,例如(3x + 2y)/ 5。
学生需要了解整式与分式的概念,能够进行整式的加减乘除运算,化简和展开分式。
4.代数方程与方程组代数方程是含有未知数的等式,例如2x + 5 = 10;方程组是包含多个代数方程的一组等式,例如2x + y = 103x - 2y = 5学生需要学会解代数方程和方程组的方法,能够求解未知数的值,解决实际应用问题。
5.平面几何与立体几何平面几何是研究平面上的图形及其性质的数学分支,如直线、三角形、四边形等;立体几何是研究三维空间中的图形及其性质的数学分支,如立方体、圆锥体、球体等。
学生需要了解平面几何和立体几何的基本概念和定理,能够判断图形的性质,计算面积和体积。
6.概率与统计概率是研究随机事件发生可能性的数学分支,统计是研究数据收集、整理和分析的学科。
学生需要了解概率和统计的基本概念,能够计算概率和处理统计数据,分析和解释统计结果。
7.数列与数列求和数列是按照一定规律排列的一系列数的集合,例如1,3,5,7,9...;数列求和是将数列中的数相加得到的和。
初中数学竞赛辅导讲义---锐角三角函数古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等.正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的sin 、cos 、tg 、ctg 的通用形式. 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质:1.单调性;2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tg α=ααcos sin ,ctg α=ααsin cos ; 倒数关系:tg αctg α=1.【例题求解】【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB=2,AB=29cm , 则S △ABC = .思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=135=AC CD ,tanB=2=BDCD,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值.注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R CcB b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3D .23-思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=1312,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明; (2) sinC=ACAD=1312,引入参数可设AD=12k ,AC =13k .【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件;(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数p 、q 应满足的条件.学历训练1.已知α为锐角,下列结论①sin α+cos α=l ;②如果α>45°,那么sin α>cos α;③如果cos α>21,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 .2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB135,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .4.化简(1)263tan 27tan 22-+οο= .(2)sin 2l °+sin 22°+…+sin 288°+sin 289°= .5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )A .甲的最高B .丙的最高C .乙的最低D .丙的最低6.已知 sin αcos α=81,且0°<α<45°则co α-sin α的值为( )A .23 B .23- C .43 D .43-7.如图,在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( )A .3B .32C .23 D .43 8.如图,在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( )A .2B .2C . 1D .229.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.10.如图,D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=43,求AE 的长. 11.若0°<α<45°,且sin αcon α=1673,则sin α= .12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .14.设α为锐角,且满足sin α=3cos α,则sin αcos α等于( ) A .61 B .51 C .92 D .103 15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( ) A .2 B .23C .1D .2116.如图,在△ABC 中,∠A =30°,tanB=23,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .29 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.18.如图,已知AB=CD=1,∠ABC =90°,∠CBD °=30°,求AC 的长.19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 (精确到0.1,π=3.14)(2)设△ABC 滚动240°,C 点的位置为C ˊ,△ABC 滚动480°时,A 点的位置在A ˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1-tanα·tanβ),求出∠CACˊ+∠CAAˊ的度数.参考答案。
初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。
初中数学竞赛辅导讲义---转化灵活的圆中角角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来.熟悉以下基本图形、基本结论.注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.【例题求解】【例1】 如图,直线AB 与⊙O 相交于A ,B 再点,点O 在AB 上,点C 在⊙O 上,且∠AOC =40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有 个.思路点拨 在直线AB 上使DE=DO 的动点E 与⊙O 有怎样的位置关系?分点E 在AB 上(E 在⊙O 内)、在BA 或AB 的延长线上(E 点在⊙O 外)三种情况考虑,通过角度的计算,确定E 点位置、存在的个数.注: 弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.【例2】 如图,已知△ABC 为等腰直角三形,D 为斜边BC 的中点,经过点A 、D 的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①∠FMC=45°;②AE+AF =AB ;③BCBA EF ED ;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正确结论的个数是( )A .2个B .3个C .4个D .5个思路点拨 充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.【例3】 如图,已知四边形ABCD 外接⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ×AC ,BD =8,求△ABD 的面积.思路点拨 由条件出发,利用相似三角形、圆中角可推得A 为弧BD 中点,这是解本例的关键.【例4】 如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是AB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .(1)求证:AC 2=AG ×AF ;(2)若点E 是AD(点A 除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.思路点拨 (1)作出圆中常用辅助线证明△ACG ∽△AFC ;(2)判断上述结论在E 点运动的情况下是否成立,依题意准确画出图形是关键.注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】 如图,圆内接六边形ABCDEF 满足AB=CD=EF ,且对角线AD 、BE 、CF 相交于一点Q ,设AD 与CF 的交点为P .求证:(1)EC AC ED QD =;(2)22CE AC PE CP =.思路点拨 解本例的关键在于运用与圆相关的角,能发现多对相似三角形.(1) 证明△QDE ∽△ACF ;(2)易证DEQC PE CP =,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:(1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定.学历训练1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2= .3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为y,AB的长为x,用x的代数式表示y,y= .5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于( )A.120°B.136°C.144°D.150°6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于( ) A.20°B.30°C.40°D.50°7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=3,BC=2,则∠D的度数为( )A.60°B.120°C.135°D.150°8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是( )A.1 B.2 C.3 D.49.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;⌒⌒(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)求证:FB2=FAFD;(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APB·tan∠CPD=.12.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=a,则四边形ABCD 的面积为.13.如图,圆内接四边形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,则BC= .14.如图,AB是半圆的直径,D是AC的中点,∠B=40°,则∠A等于( ) A.60°B.50°C.80°D.70°15.如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB 和DC,它们相交于P,若∠APD=60°,则⊙O的面积为( )A.25πB.16πC.15πD.13π(2001年绍兴市竞赛题)⌒16.如图,AD 是Rt △ABC 的斜边BC 上的高,AB=AC ,过A 、D 两点的圆与AB 、AC 分别相交于点E 、F ,弦EF 与AD 相交于点G ,则图中与△GDE 相似的三角形的个数为( )A .5B .4C .3D .217.如图,已知四边形ABCD 外接圆⊙O 的半径为2,对角线AC 与BD 的交点为E ,AE=EC ,AB=2AE,且BD=32,求四边形ABCD 的面积.18.如图,已知ABCD 为⊙O 的内接四边形,E 是BD 上的一点,且有∠BAE=∠DAC . 求证:(1)△ABE ∽△ACD ;(2)ABDC+AD ·B C =AC ·BD .19.如图,已知P 是⊙O 直径AB 延长线上的一点,直线PCD 交⊙O 于C 、D 两点,弦DF ⊥AB 于点H ,CF 交AB 于点E .(1)求证:PA ·PB=PO ·PE ;(2)若DE ⊥CF ,∠P=15°,⊙O 的半径为2,求弦CF 的长.20.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程01cos 42=+-B x x 有两个相等的实数根,D 是劣弧AC 上任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F .(1)求∠B 的度数;(2)求CE 的长;(3)求证:DA 、DC 的长是方程02=⋅+⋅-DF DE y DE y 的两个实数根.⌒参考答案。
数学竞赛知识点数学竞赛知识点数学竞赛是一种旨在测试学生数学能力和创造力的活动。
为了在竞赛中获得好成绩,学生需要掌握一定的数学知识点。
下面将介绍一些常见的数学竞赛知识点。
1.整数与实数:整数是自然数、零和负整数的组合,实数是整数、分数和无理数的组合。
在数学竞赛中,学生需要熟练掌握整数和实数的性质、运算规则和应用。
2.代数与方程:代数是研究未知量和它们之间关系的一门学科。
在数学竞赛中,代数的基本知识包括平方、二次方程、三角函数等。
学生需要熟练掌握解方程的方法和技巧,包括因式分解、配方法、二次函数图像等。
3.几何:几何是研究图形和空间的一门学科。
在数学竞赛中,几何的基本知识包括角度、三角形、四边形、圆等。
学生需要熟练掌握几何定理、证明和计算方法,包括相似三角形、勾股定理、面积计算等。
4.概率与统计:概率是研究随机事件发生可能性的一门学科,统计是研究数据收集、分析和解释的一门学科。
在数学竞赛中,学生需要掌握概率的基本概念、计算方法和应用,包括排列组合、事件独立性等。
同时,他们还要了解统计的基本知识,包括数据收集、描述统计和推断统计等。
5.数列与函数:数列是由一系列数字按照一定规律排列的序列,函数是一种关系,它将一个数集中的每个元素映射到另一个数集中的一个元素。
在数学竞赛中,学生需要熟练掌握数列和函数的性质、计算方法和应用。
比如,等差数列、等比数列、二次函数等。
6.数论:数论是研究整数性质的一门学科。
在数学竞赛中,数论问题通常涉及素数、整除性、同余等概念。
学生需要掌握数论的基本知识和解题方法,包括欧几里得算法、费马小定理等。
总之,数学竞赛知识点包括整数与实数、代数与方程、几何、概率与统计、数列与函数、数论等。
通过熟练掌握这些知识点,学生可以提高数学竞赛的成绩,培养解决问题的能力和创造力。
奥数初一知识点总结归纳奥数是指奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO),是世界上最具代表性和影响力的数学竞赛之一。
而初一是指初中一年级的学生,他们正处于数学学科的起步阶段。
本文将对奥数初一知识点进行总结归纳。
一、整数整数是数学中最基础的概念之一。
初一阶段,奥数要求学生掌握整数的基本性质,包括整数的四则运算、绝对值、约数与倍数等概念。
此外,需注意整数的特殊性质,如质数、合数以及素数的判定方法。
二、分数分数也是初一阶段奥数的重点内容。
学生需要学会分数的加减乘除运算,以及分数的化简、比较大小等操作。
此外,还需理解分数的分解、约分、通分以及分数与整数的转化等知识点。
三、小数小数是实际生活中常见的数表示形式之一。
在奥数初一阶段,学生需要掌握小数的加减乘除运算,并理解小数的循环小数和无限不循环小数的概念。
此外,还需要将小数与分数相互转化,以及将小数化为百分数等能力。
四、代数代数是数学中的重要分支,奥数初一阶段教学重点侧重于一元一次方程的求解和代数式的化简。
学生需要学会利用代数方法解决实际问题,掌握解方程的基本步骤,以及代数式的因式分解与展开。
五、几何几何是数学的另一个重要分支,奥数初一阶段的几何内容主要包括图形的性质与计算、平行线与垂直线、三角形的性质等。
学生需要学习到不同图形的定义和特性,以及计算周长、面积等基本运算。
六、概率与统计概率与统计是数学中较为实用的内容。
奥数初一阶段,学生需要了解概率的基本概念、事件的排列组合等内容,并能够应用概率解决实际问题。
此外,还需要学会统计数据的收集与整理,以及图表的制作和数据的分析。
综上所述,奥数初一阶段的知识点包括整数、分数、小数、代数、几何以及概率与统计。
在学习过程中,学生需要注重掌握基础知识,不断练习和巩固。
只有建立扎实的基础,才能在奥数竞赛中取得好成绩。
希望本文对初一学生在奥数学习中起到一些帮助和指导作用。
初中数学竞赛知识点归纳一、数的整除(一)如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除.①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001100-2=98(能被7整除)又如7007700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001100-1=99(能11整除)又如102851028-5=1023102-3=99(能11整除)二、倍数.约数1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2 因为0除以非0的任何数都得0,所以0被非0整数整除。
0是任何非0整数的倍数,非0整数都是0的约数。
如0是7的倍数,7是0的约数。
3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。
4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。
例如6的约数是±1,±2,±3,±6。
5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。
7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除。
三、质数.合数1正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
2根椐质数定义可知①质数只有1和本身两个正约数,②质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
四、零的特性一,零既不是正数也不是负数,是介于正数和负数之间的唯一中性数。
零是自然数,是整数,是偶数。
1,零是表示具有相反意义的量的基准数。
例如:海拔0米的地方表示它与基准的海平面一样高收支衡可记作结存0元。
2,零是判定正、负数的界限。
若a >0则a是正数,反过来也成立,若a是正数,则a>0记作a>0 ⇔a是正数读作a>0等价于a是正数b<0 ⇔ b 是负数c≣0 ⇔c是非负数(即c不是负数,而是正数或0)d≤0 ⇔d是非正数(即d不是正数,而是负数或0)e≠0 ⇔e不是0(即e不是0,而是负数或正数)3,在一切非负数中有一个最小值是0。
例如绝对值、平方数都是非负数,它们的最小值都是0。
记作:|a|≣0,当a=0时,|a|的值最小,是0,a2≣0,a2有最小值0(当a=0时)。
4,在一切非正数中有一个最大值是0。
例如-|X|≢0,当X=0时,-|X|值最大,是0,(∵X≠0时都是负数),-(X-2)2≤0,当X=2时,-(X-2)2的值最大,是0。
二,零具有独特的运算性质1,乘方:零的正整数次幂都是零。
2,除法:零除以任何不等于零的数都得零;零不能作除数。
从而推出,0没有倒数,分数的分母不能是0。
3,乘法:零乘以任何数都得零。
即a×0=0,反过来如果ab=0,那么a、b中至少有一个是0。
要使等式xy=0成立,必须且只需x=0或y=0。
4,加法互为相反数的两个数相加得零。
反过来也成立。
即a 、b 互为相反数⇔a+b=05, 减法 两个数a 和b 的大小关系可以用它们的差的正负来判定,若a-b=0,则a=b; 若a-b >0,则a >b; 若a-b <0,则a <b 。
反过来也成立,当a=b 时,a-b=0;当a>b 时,a-b>0;当a<b 时,a-b<0.三,在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米; 后者表示精确到0.01米(即1厘米),误差不超过5毫米。
可用不等式表示其值范围如下:1.55≤近似数1.6<1.65 1.595≢近似数1.60<1605五、a n 的个位数.1. 整数a 的正整数次幂a n ,它的个位数字与a 的末位数的n 次幂的个位数字相同。
例如20023与23的个位数字都是8。
2. 0,1,5,6,的任何正整数次幂的个位数字都是它们本身。
例如57的个位数是5,620的个位数是6。
4k+1与21,24K +2与22,24K +3与23,24K +4与24的个位数是相同的(K 是正整数)。
3和7也有类似的性质。
4. 4,8,9的正整数次幂的个位数,可仿照上述方法,也可以用4=22,8=23,9=32转化为以2、3为底的幂。
5. 综上所述,整数a 的正整数次幂的个位数有如下的一般规律:a 4K +m 与a m 的个位数相同(k,m 都是正整数)六、数学符号数学符号是表达数学语言的特殊文字。
每一个符号都有确定的意义,即当我们把它规定为某种意义后,就不再表示其他意义。
数学符号一般可分为:1, 元素符号:通常用小写字母表示数,用大写字母表示点,用⊙和△表示园和三角形等。
2, 关系符号:如等号,不等号,相似∽,全等≌,平行∥,垂直⊥等。
3, 运算符号:如加、减、乘、除、乘方、开方、绝对值等。
4, 逻辑符号:略5, 约定符号和辅助符号:例如我们约定正整数a 和b 中,如果a 除以b 的商的整数部份记作Z (b a ),而它的余数记作R (ba ), 那么Z (310)=3,R (310)=1;又如设[]x 表示不大于x 的最大整数,那么[]2.5=5,[]2.5-=-6,⎥⎦⎤⎢⎣⎡32=0,[]3-=-3。
正确使用符号的关健是明确它所表示的意义(即定义)对题设中临时约定的符号,一定要扣紧定义,由简到繁,由浅入深,由具体到抽象,逐步加深理解。
在解题过程中为了简明表述,需要临时引用辅助符号时,必须先作出明确的定义,所用符号不要与常规符号混淆。
七、用字母表示数1, 用字母表示数最明显的好处是能把数量间的关系简明而普遍地表达出来,从具体的数字计算到用抽象的字母概括运算规律上,是一种飞跃。
2, 用字母表示数时,字母所取的值,应使代数式有意义,并使它所表示的实际问题有意义。
例如①写出数a 的倒数 ②用字母表示一切偶数解:①当a ≠0时, a 的倒数是a1 ②设n 为整数, 2n 可表示所有偶数。
3, 命题中的字母,一般要注明取值范围,在没有说明的情况下,它表示所学过的数,并且能使题设有意义。
例题① 化简:⑴|x -3|(x<3) ⑵| x+5|解:⑴∵x<3,∴x -3<0,∴|x -3|=-(x -3)=-x +3⑵当x ≣-5时,|x +5|=x +5,当x <-5时,|x +5|=-x -5(本题x 表示所有学过的数)例② 己知十位上的数是a,个位数是b ,试写出这个两位数解:这个两位数是10a+b(本题字母a 、b 的取值是默认题设有意义,即a 表示1到9的整数,b 表示0到9的整数)4, 用字母等式表示运算定律、性质、法则、公式时,一般左边作为题设,所用的字母是使左边代数式有意义的,所以只对变形到右边所增加的字母的取值加以说明。
例如用字母表示:①分数的基本性质 ②分数除法法则 解:①分数的基本性质是am bm a b =(m ≠0),ma mb a b ÷÷= (m ≠0) a 作为左边的分母不另说明a ≠0, ②dc a b cd a b ⨯=÷(d ≠0) d 在左边是分子到了右边变分母,故另加说明。
5, 用字母等式表示运算定律、性质、法则、公式,不仅可从左到右顺用,还可从右到左逆用;公式可以变形,变形时字母取值范围有变化时应加说明。
例如:乘法分配律,顺用a(b+c)=ab+ac, =⨯-)178********(8121724172-=1712 逆用5a+5b=5(a+b), 6.25×3.14-5.25×3.14=3.14(6.25-5.25)=3.14路程S=速度V ×时间T , V=T S (T ≠0), T=VS (V ≠0) 6, 用因果关系表示的性质、法则,一般不能逆用。
例如:加法的符号法则 如果a>0,b>0, 那么 a+b>0,不可逆绝对值性质 如果a>0,那么|a|=a 也不可逆(若|a|=a 则a ≣0)7, 有规律的计算,常可用字母表示其结果,或概括成公式。
例1:正整数中不同的五位数共有几个?不同的n 位数呢?解:不同的五位数可从最大 五位数99999减去最小五位数10000前的所有正整数,即99999-9999=90000.推广到n 位正整数,则要观察其规律一位正整数,从1到9共9个, 记作9×1二位正整数从10到99共90个, 记作9×10三位正整数从100到999共900个, 记作9×102四位正整数从1000到9999共9000个, 记作9×103 (指数3=4-1)…… ……∴n 位正整数共9×10 n-1个例2 _____________________________________________________A C D E B在线段AB 上加了3个点C 、D 、E 后,图中共有几条线段? 加n 点呢?解:以A 为一端的线段有: AC 、AD 、AE 、AB 共4条以C 为一端的线段有:(除CA 外) CD 、CE 、CB 共3条以D 为一端的线段有:(除DC 、DA 外) DE 、DB 共2条以E 为一端的线段有:(除ED 、EC 、EA 外) EB 共1条共有线段1+2+3+4=10 (条) 注意:3个点时,是从1加到4, 因此如果是n 个点,则共有线段1+2+3+……+n+1= n n 211++=2)2(+n n 条 八、抽屉原则1, 4个苹果放进3个抽屉,有一种必然的结果:至少有一个抽屉放进的苹果不少于2个(即等于或多于2个);如果7个苹果放进3个抽屉,那么至少有一个抽屉放进的苹果不少于3个(即的等于或多于3个),这就是抽屉原则的例子。
2, 如果用{n m 表示不小于n m 的最小整数,例如{}37=3,{}236= 。