第7章 热力学基础
- 格式:doc
- 大小:293.77 KB
- 文档页数:7
第七章统计热力学基础一、选择题1、统计热力学主要研究()。
(A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热力学函数值无影响:( )(A) U (B) S (C) G (D) H4、统计热力学研究的主要对象是:()(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:()(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理6、以0到9这十个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:()(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系9、对于定域子体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒子的能级 1, 2, ....., i一定,但简并度g1, g2, ....., g i及总微观状态数 不确定。
第七章 热力学基础基 本 要 求一、理解功和热量的概念以及准静态过程。
二、掌握热力学第一定律;能熟练地分析、计算理想气体各等值过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环过程的效率。
三、理解摩尔热容量的定义,并会用它来计算等压、等容过程中的热量。
四、了解热力学第二定律及其统计意义。
内 容 提 要一、准静态过程平衡态 不受外界影响时,系统的宏观性质不随时间改变的状态。
准静态过程 由无数个平衡态组成的过程,即系统的每个中间态都是平衡态。
准静态过程是一个理想化的过程,是实际过程的近似。
实际过程仅当进行得无限缓慢时才可看作是准静态过程 。
二、热力学第一定律W E E Q +-=12对于一元过程:dW dE dQ +=符号规定:Q > 0系统吸热;W > 0系统对外界做正功; ∆E >0系统内能增加。
热力学第一定律适用于任何系统(固、液、气)的任何过程(非准静态过程亦成立)。
三、功、内能、热量的数学表达式和意义功 通过做功可以改变系统的状态。
功是过程量,是分子的有规则运动能量和分子的无规则运动能量的转化和传递。
⎰=21V V PdV W内能 内能是状态的函数。
对于一定质量的某种气体,内能一般是T 、V 或P 的函数;对于刚性分子的理想气体,内能只是T 的函数,即T C RT iE V νν==2)(12T T C E V -=∆ν热量 传热也可改变系统的状态,其条件是系统和外界的温度不同。
Q=νC (T 2 –T 1) 其中C 为摩尔热容量。
四、气体的摩尔热容量摩尔热容量 一摩尔物质温度升高一度所吸收的热量,即⎪⎭⎫ ⎝⎛=dT dQ C ν1 理想气体等容摩尔热容量 R i C V 2=理想气体等压摩尔热容量 R C R R iC V P +=+=2泊松比 12>+==ii C C V P γ 对刚性理想气体单原子分子,i = 3,γ = 1.67; 对刚性理想气体双原子分子,i = 5,γ = 1.40; 对刚性理想气体多原子分子,i = 6,γ = 1.33。
大学物理电子教案ch7热力学基础教案内容:一、教学内容本节课的教学内容选自大学物理教材第七章,热力学基础。
本章主要介绍了热力学的基本概念、定律和应用。
具体内容包括:温度、热量、内能的概念及它们之间的关系;热力学第一定律和第二定律;热力学常见现象和应用。
二、教学目标1. 理解温度、热量、内能的概念及它们之间的关系。
2. 掌握热力学第一定律和第二定律的基本内容。
3. 能够运用热力学知识解释一些日常生活中的现象。
三、教学难点与重点1. 教学难点:热力学第二定律的内涵及应用。
2. 教学重点:热力学第一定律和第二定律的理解和应用。
四、教具与学具准备1. 教具:黑板、粉笔、PPT投影仪。
2. 学具:教材、笔记本、三角板、计算器。
五、教学过程1. 实践情景引入:讨论冬季取暖和夏季降温的原理,引导学生思考热量传递的过程。
2. 概念讲解:介绍温度、热量、内能的概念,并通过示例解释它们之间的关系。
3. 定律讲解:讲解热力学第一定律和第二定律的内容,并通过实例演示其应用。
4. 例题讲解:分析生活中的一些热力学现象,如热机效率、制冷原理等,引导学生运用热力学知识进行解释。
5. 随堂练习:布置一些与本节课内容相关的练习题,让学生现场解答,巩固所学知识。
6. 知识拓展:介绍热力学在现代科技领域中的应用,如空调、冰箱等。
六、板书设计板书内容主要包括:温度、热量、内能的概念及关系;热力学第一定律和第二定律的公式及解释;热力学现象及应用。
七、作业设计1. 作业题目:(1)解释温度、热量、内能的概念及它们之间的关系。
(2)运用热力学第一定律和第二定律,分析一个热力学现象。
(3)讨论热力学在现代科技领域中的应用。
2. 答案:(1)温度是物体分子平均动能的度量;热量是热能的传递;内能是物体所有分子的动能和势能之和。
它们之间的关系是:温度升高,热量增加,内能增加。
(2)示例:分析热水沸腾的过程,应用热力学第一定律,解释水蒸气产生的原因。
第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
第七章 统计热力学基础7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω ≈ ln W D,max ,所以,S = k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
本章7.2主要考点7.2.1统计系统的分类:独立子系统与相依子系统:粒子间无相互作用或相互作用可忽略的系统,称为独立子系统,如理想气体;粒子间相互作用不可忽略的系统,称为相依子系统。
第7章 热力学基础7.16 一摩尔单原子理想气体从270C 开始加热至770C (1)容积保持不变;(2)压强保持不变;问这两过程中各吸收了多少热量?增加了多少内能?对外做了多少功?(摩尔热容11,11,78.20,46.12----⋅=⋅=K mol J C K mol J C m P m V )解(1)是等体过程,对外做功A =0。
J T C U Q m V 623)2777(46.12,=-⨯=∆=∆= (2)是等压过程,吸收的热量J T C Q m p 1039)2777(78.20,=-⨯=∆=J T C U m V 623)2777(46.12,=-⨯=∆=∆J U Q A 4166231039=-=∆-=7.17 一系统由如图所示的a 状态沿acb 到达状态b ,有334J 热量传入系统,而系统做功126J 。
(1)若沿adb 时系统做功42J ,问有多少热量传入系统?(2)当系统由状态b 沿曲线ba 返回态a 时,外界对系统做功84J ,试问系统是吸热还是放热?传递热量是多少? (3)若态d 与态a 内能之差为167J ,试问沿ad 及db 各自吸收的热量是多少? 解:已知J A J Q acb acb 126.334== 据热力学第一定律得内能增量为J A Q U acb acb ab 208126334=-=-=∆(1) 沿曲线adb 过程,系统吸收的热量J A U Q adb ab adb 25042208=+=+∆=(2) 沿曲线baJ A U A U Q ba ab ba ba ba 292)84(208-=-+-=+∆-=+∆=, 即系统放热292J(3) J A A A adb ad db 420=== J A U Q ad ad ad 20942167=+=+∆=J U U A U Q ad ab db db db 41167208=-=∆-∆=+∆=,即在db 过程中吸热41J.7.18 8g 氧在温度为270C 时体积为34101.4m -⨯,试计算下列各情形中气体所做的功。
(1)气体绝热地膨胀到33101.4m -⨯;(2)气体等温地膨胀到33101.4m -⨯;再等容地冷却到温度等于绝热膨胀最后所达到的温7.17题示图度。
已知氧的RC m V 5,=。
解:已知 K T 300273270=+=,340101.4m V -⨯=,kg g M 31088-⨯== 由理想气体状态方程RT MpV μ=得Pa V RT MP 640001052.1101.430031.8328/⨯=⨯⨯⨯==-μ(1) 绝热膨胀到 331101.4m V -⨯= , 由绝热过程方程 γγ00V P PV = 得γγV V P P 100= 而 4.1,,,,=+==mV m V m m p C C R C C γγ 则气体所做功⎰⎰-===-101111100001V V V V V V V V P dV V V P PdV A γγγγγ)(11101100γγγγ----=V V V P []J 938)101.4()101.4()101.4(1052.14.1114.044.034.146=⨯-⨯⨯⨯⨯⨯-=----- (2)气体等温膨胀后等容的冷却到 332101.4m V -⨯=⎰⎰=⨯⨯⨯⨯⨯====---2021435101.4101.4ln 101.41052.1ln 143460200002V V V V J V V V P dV V V P PdV A7.19 为了测定气体的γ值,有时用下面的方法,一定量的气体,初始温度、压强和体积分别为T 0、P 0和V 0,用通有电流的铂丝加热。
设两次加热相等,第一次使体积V 0不变,而T 0、P 0分别变为T 1、P 1;第二次使压强P 0不变,而T 0、V 0分别变至T 2、V 2,试证明02001)()(P V V V P P --=γ 证明:)(),(02,201,1T T C Q T T C Q m P m V -=-=νν 由题知21Q Q =)()(02,01,T T C T T C m P m V -=-∴有则 0201,,T T T T C C mV m P --==γ 又2121P P T T =(等体), 0202V V T T = (等压)。
00200100020001)()()/()(P V V V P P T T V V T T P P --=--=∴γ有 7.20 如图表示理想气体的某一过程曲线,当气体自态1过渡到态2时气体的P 、T 如何随V 变化?在此过程中气体的摩尔热容C m 怎样计算?解:由图知,P =kV (k 是常数,此过程也是1-=n 的多方过程) 由理想气体状态方程可得2V RkR PV T ==(1摩尔气体) VdV R k C dT C dQ m m m 2==, VdV RkC dT C dU m V m V 2,,==kVdV PdV dA == 由热力学第一定律得:kVdV VdV R k C VdV RkC m V m+=22, 由此得 2/212,,R C R C R C m V m V m +=+= 7.21一用绝热壁做成的圆柱形容器,在容器中间放置一无摩擦的绝热可动活塞,活塞两侧各有ν摩尔理想气体,开始状态均为P 0、V 0、T 0,今将一通电线圈放到活塞左侧气体中,对气体缓慢加热,左侧气体膨胀,同时右侧气体被压缩,最后使右方气体的压强增加为0827P 。
设气体的定容摩尔热容C v ,m 为常数,γ=1.5。
求(1)对活塞右侧气体做了多少功;(2)右侧气体的终温是多少;(3)左侧气体的终温是多少;(4)左侧气体吸收了多少热量。
解:两边压强相等为021827P P P ==(1)右侧是一绝热压缩过程,满足γγ00V P PV =由此得010)(V P P V γ= ,dP P V P dV )11(0101+--=γγγ∴ 对活塞右侧气体所做的功 ⎰⎰---==-=202110101010/11111P P P P P V P dP P V P PdV A γγγγγγγ00/1100/110/110/1001)827(11)827(11V P V P P P P V =⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=---γγγγγγ (2)由绝热过程方程γγγγ--=100122P T P T 得 右侧气体的终温 005.1/)5.11(0/)1(2025.1)278()(T T T P P T ===--γγ (3)由(1)中05.1/10)(V PP V = 得右侧终态体积为 005.1/10/120294278V V V P P V =⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=γ7.20题示图则左侧终态体积 02020019142)(V V V V V V V =-=-+= 由理想气体状态方程111000T V P T V P =得 00000111421914827T T T V P V P T =⨯== (4)由(1)知 00V P A =0,01,417)(T C T T C U m V m V νν=-=∆ 由热力学第一定律得左侧气体所吸收的热量00,000,417417RT T C V P T C A U Q m V m V ννν+=+=+∆= m V m V m P C C C ,,,5.1==ν R C C C m V m V m P ==-,,,5.0 R C m V 2,=∴000219217RT RT RT Q ννν=+=∴ 7.22 如图所示的是一理想气体循环过程图,其中d c b a →→和为绝热过程,c b →为等压过程,a d →为等容过程,已知T a 、T b 、T c 和T d 及气体的热容比γ,求循环过程的效率。
解:在该理想气体循环过程的ab 和cd 分过程是绝热过程,与外界不交换热量,而在bc 过程中放热)(,2c b m P T T C Q -=ν 在da 过程吸热 )(,1d a m V T T C Q -=ν 则此循环过程的效率为da c bd a m V c b m P T T T T T T C T T C Q Q Q Q Q Q A ---=---=-=-==γννη1)()(11,,121211 7.23设有以理想气体为工质的热机,其循环如图所示,试证明其效率。
⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛--=1/112121P P V V γη 证明:在等体过程ab 中,从外界吸收热量)(1)(2221,,1V P V P C RT T C U Q m V a b m V -=-=∆=ν在绝热过程bc 中与外界不交换热量。
在等压过程ca 中放出热量)(1)(212,,2V V P RC T T C Q mP a c m P -=-=ν7.22题示图7.23题示图则效率 )1/()1(1)()(1)()(1112121212212212,21,212---=---=---=-=P P V V P P V V V P P P V C RV V C P R Q Q m V m P γγη7.24理想气体做卡诺循环,设热源温度为1000C ,冷却器温度为00C 时,每一循环做净功8kJ ,今维持冷凝器温度不变,提高热源温度,使净功增为10kJ ,若两个循环都工作于相同的两条绝热线之间,求(1)此时热源温度应为多少?(2)这时效率为多少?解:(1)在两个等温线间的绝热过程做功大小相等,故在卡诺循环过程中系统对外所做的功等于两等温过程系统对外所做的功即:)ln ln(432121V V T V V T R A -=ν 由绝热过程方程可得4312V V V V =4321ln )(V VT T R A -=∴ν 由题知 810212'1=--T T T T 125)(810212'1=-⨯=-T T T T K3981252751252'1=+=+=∴T T K(2) %4.31398273111'12'12=-=-=-=T T Q Q η 7.25从锅炉进入蒸汽机的蒸气温度C t 01210=,冷却器温度C t 0240=,问消耗4.18kJ 的热以产生蒸气,可得到的最大功为多少?解:在相同的高温热源的低温热源间的所有热机以卡诺热机的效率最大为%2.354833131112=-=-=T T η 则 kJ Q A 47.118.4%2.351=⨯=≤η。
即得到的最大功为1.47kJ7.26(1)在夏季为使室内保持凉爽,须将热量以s J /2000的散热率排至室外,此冷却用致冷机完成,设室温为270C ,室外为370C ,求致冷机所需要的最小功率。