大学数学微积分基本公式
- 格式:pdf
- 大小:236.74 KB
- 文档页数:15
高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
微积分公式与运算法则 Jenny was compiled in January 2021微积分公式与运算法则1.基本公式(1)导数公式(2)微分公式(xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx(a x)ˊ=a x lnad(a x)=a x lnadx(loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx(sinx)ˊ=cosxd(sinx)=cosxdx(conx)ˊ=-sinxd(conx)=-sinxdx(tanx)ˊ=sec2xd(tanx)=sec2xdx(cotx)ˊ=-csc2xd(cotx)=-csc2xdx(secx)ˊ=secx·tanxd(secx)=secx·tanxdx(cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx(arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx(arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx(arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx(arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx(sinhx)ˊ=coshxd(sinhx)=coshxdx(coshx)ˊ=sinhxd(coshx)=sinhxdx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)=αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)=(υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx=fˊ[ψ(x)]·ψˊ(x)所以复合函数的微分为dy=fˊ[ψ(x)]·ψˊ(x)dx由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。
微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。
2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。
-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。
-函数有界,且极限存在,则函数必定有极大值和极小值。
3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。
- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。
- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。
- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。
四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。
2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = nx^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。
-三角函数的导数:- d/dx(sin(x)) = cos(x)。
- d/dx(cos(x)) = -sin(x)。
- d/dx(tan(x)) = sec^2(x)。
-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。
- d/dx(arccos(x)) = -1/√(1-x^2)。
- d/dx(arctan(x)) = 1/(1+x^2)。
微积分的基本公式微积分是数学中的一个分支,主要研究连续变化的对象,如函数、曲线和曲面等。
微积分的基本公式是应用广泛且重要的数学工具,包括导数、积分、微分方程等。
下面将对微积分的基本公式进行详细介绍。
一、导数导数是微积分中的基本概念之一,用于描述函数在其中一点上的变化率。
导数的定义如下:对于函数y = f(x),其在特定点x处的导数表示为f'(x)或dy/dx,定义为函数曲线在该点处的切线斜率。
导数的几何意义是函数曲线在其中一点的切线斜率的极限值。
导数的基本公式包括:1.常数导数公式:如果f(x)=k,其中k是常数,则f'(x)=0。
2. 幂函数导数公式:对于f(x) = x^n,其中n是实数,则f'(x) = nx^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,其中e是自然对数的底,则f'(x)=e^x。
4. 对数函数导数公式:对于f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5. 三角函数导数公式:对于f(x) = sin(x),则f'(x) = cos(x);对于f(x) = cos(x),则f'(x) = -sin(x)。
二、积分积分是微积分中的另一个基本概念,用于计算曲线下面的面积或者曲线长度。
积分的定义如下:对于函数y = f(x),其在区间[a, b]上的积分表示为∫f(x)dx,定义为区间[a, b]上函数曲线与x轴之间的面积。
积分的基本公式包括:1. 不定积分公式:如果F(x)是f(x)的一个原函数,则∫f(x)dx =F(x) + C,其中C是常数。
这是积分的基本公式,也称为不定积分。
2. 定积分公式:如果f(x)是在区间[a, b]上连续函数,且F(x)是其原函数,则∫[a, b]f(x)dx = F(b) - F(a),其中F(a)表示F(x)在点a处的值,F(b)表示F(x)在点b处的值。
微积分公式sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + Csin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 xsin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+Ctan -1 x dx = x tan -1 x-½ln (1+x 2)+C cot -1 x dx = x cot -1 x+½ln (1+x 2)+C sec -1 x dx = x sec -1x- ln|x+12-x |+Ccsc -1x dx = x csc -1x+ ln |x+12-x |+Ctanh coth sinh x dx = cosh x + Ccosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln |xx e e 211---+| + Cd uv = u d v + v d ud uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θsinh -1 x dx = x sinh -1 x-21x ++ Ccosh -1 x dx = x cosh -1 x-12-x + Ctanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ Ccoth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1 x + C csch -1 x dx = x csch -1 x+ sinh -1x + C sin 3 a bc α β γ R= ⎰∞+-+01)1(nm m x x d x希腊字母大写 小写 读音 大写 小写 读音 大写 小写 读音 Α α alpha Ι ι iota Ρ ρ rho Β β beta Κ κ kappa Σ σ, ς sigma Γ γ gamma Λ λ lambda Τ τ tau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Ν ν nu Φ φ phi Ζ ζ zeta Ξ ξ xi Χ χ khi Η η eta Ο ο omicron Ψ ψ psi ΘθthetaΠπpiΩωomega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; 顺位高d 顺位低 ;0*=∞1 * =∞∞ = 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一:对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数顺位三: 指数; 三角(双曲)。
微积分数学公式微积分数学公式是数学领域中很重要的概念,它是高等数学中最核心的部分,可以用来解决许多复杂的数学问题。
它是用来求解特定空间函数的极限问题及各种多元函数的一系列公式。
以下将介绍一些常见的微积分数学公式。
一、求和公式求和公式是一组描述数列求和的公式,其中的一些定义是无穷的。
求和公式描述了当我们有一系列数字,想要知道它们总和的时候,可以用求和公式来求出总和。
1、求和常数的求和:S=a+a+a+…+a其中,S为被加数,a为加数。
2、求和平方和:n^2=1^2+2^2+3^2+…+n^2这个公式用来求1到n之间所有正整数的平方和。
二、积分公式积分公式是一类描述求积分的公式。
当我们想要求积分的时候,可以用它们来得到答案,而不用计算每一项。
1、基本积分:∫f(x)dx=F(x)+C其中,f(x)为原函数,C为任意常数,F(x)为原函数的积分函数。
2、复合函数的积分:∫f(g(x))dx=F(g(x))+C其中,f(g(x))为复合函数,C为任意常数,F(g(x))为复合函数的积分函数。
三、微分公式微分公式用于求微分面积,它是用来描述求微分问题的一类公式。
1、基本微分:y=f(x)其中,y为原函数的导数,f(x)为原函数的导函数。
2、解微分方程:dy/dx=f(x)其中,f(x)为微分方程的左边。
以上就是关于微积分数学公式的介绍,它们可以用来解决许多复杂的数学问题,有时是高等数学的核心问题,所以学习它们非常重要。
只有深入掌握微积分数学公式,我们才能在数学领域有所作为。