(完整版)微积分基本公式
- 格式:ppt
- 大小:671.17 KB
- 文档页数:45
dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。
这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。
f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。
(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。
微积分计算公式微积分是研究可以量化连续变化的数学分支,主要包括积分、微分及函数的求导、求积等内容。
与其他的数学学科不同的是,微积分把求解过程和求解结果联系在一起,其结果可以表示为一个方程,即公式。
微积分公式是这一学科的核心内容,也是最重要的知识点,正确的掌握和应用公式是这一学科取得成功的关键所在。
首先,最基本的微积分公式,也就是微分的基本公式,是:f′(x)=limh→0f(x+h)f(x)h 。
这个公式表明,函数 f(x)点 x的导数,等于函数在点 x+h的取值与函数在点 x的取值的差值,除以此时的h。
在这个基本的微分公式之上,还有一些常用的微分公式,例如:微分 y= ax n公式为:Dy=nax n1 。
积分也是微分的一个重要方面,其最基本的公式是:∫f(x)dx=F(x)+C这里 F(x)示函数 f(x)积分,C示积分常数。
积分是用来求取函数的积分面积,而积分公式是进行函数求积的基本公式。
此外,还有许多其它的常用的微积分公式,例如积分微分公式,椭圆积分公式,余弦积分公式等。
积分微分公式是将微分操作和积分操作结合起来的公式,椭圆积分公式是根据椭圆来求解函数积分的公式,余弦积分公式是使用余弦函数求解函数积分的公式。
此外,微积分还有一种特殊情况,也是其重要分支,即积分变换。
积分变换是把分析问题变换成数学模型,并使用积分来求解这些模型的解决方案的一种方法。
积分变换的基本思想是,根据原始问题,利用积分的运算建立合适的模型,并解决这些模型,从而得到最终的结果。
总之,以上就是微积分中常用的公式。
对于学习微积分,要牢记这些公式,并熟练应用在实际的问题中,才能取得更好的学习成果。
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
微积分的全部公式微积分是数学的一个重要分支,研究函数的变化规律和各种变化量之间的关系。
微积分的公式是研究微积分的基础,下面将介绍一些微积分的重要公式。
1. 导数的定义公式:导数可以理解为函数在某一点上的变化率,用数学符号表示为f'(x)或者dy/dx。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x)是函数,h是无穷小的增量。
2. 导数的基本公式:导数具有一些基本的运算规则,包括常数因子法则、求和法则、乘积法则和商法则。
这些公式可以简化对函数的导数计算。
- 常数因子法则:如果f(x)是一个函数,k是一个常数,则有(d/dx)(k*f(x)) = k*(d/dx)f(x)- 求和法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)+g(x)) = (d/dx)f(x) + (d/dx)g(x)- 乘积法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)*g(x)) = f(x)*(d/dx)g(x) + g(x)*(d/dx)f(x)- 商法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)/g(x)) = [g(x)*(d/dx)f(x) - f(x)*(d/dx)g(x)] / [g(x)]^23. 积分的定义公式:积分可以理解为函数在区间上的累积和,用数学符号表示为∫f(x)dx。
积分的定义公式为:∫f(x)dx = F(x) + C其中,F(x)是函数f(x)的原函数,C是常数。
4. 积分的基本公式:积分也具有一些基本的运算规则,包括常数法则、线性法则、分部积分法和换元积分法。
这些公式可以简化对函数的积分计算。
- 常数法则:∫k*f(x)dx = k*∫f(x)dx,其中k是一个常数- 线性法则:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx- 分部积分法:∫f(x)*g(x)dx = f(x)*∫g(x)dx - ∫[f'(x)*∫g(x)dx]dx- 换元积分法:如果u = g(x)是一个可导函数,则有∫f(g(x))g'(x)dx = ∫f(u)du5. 泰勒级数公式:泰勒级数是用一组多项式逼近函数的方法,可以将复杂的函数近似表示为多项式的形式。
以下是常用的微积分公式大全,包括导数、积分和极限的公式:导数公式:1. 常数函数导数:(c)' = 02. 幂函数导数:(x^n)' = nx^(n-1)3. 指数函数导数:(e^x)' = e^x4. 对数函数导数:(ln(x))' = 1/x5. 三角函数导数:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)6. 反三角函数导数:(arcsin(x))' = 1/√(1-x^2), (arccos(x))' = -1/√(1-x^2), (arctan(x))' = 1/(1+x^2)7. 链式法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)积分公式:1. 幂函数积分:∫(x^n) dx = (x^(n+1))/(n+1) + C,其中C 是常数2. 指数函数积分:∫(e^x) dx = e^x + C3. 对数函数积分:∫(1/x) dx = ln|x| + C4. 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C, ∫sec^2(x) dx = tan(x) + C5. 反三角函数积分:∫(1/√(1-x^2)) dx = arcsin(x) + C, ∫(-1/√(1-x^2)) dx = arccos(x) + C, ∫(1/(1+x^2)) dx = arctan(x) + C极限公式:1. 极限定义:lim(x→a) f(x) = L,表示当x 趋近于a 时,f(x) 趋近于L2. 基本极限:lim(x→0) (sin(x)/x) = 1, lim(x→∞) (1/x) = 0, lim(x→0) (e^x - 1)/x = 1这只是一些常用的微积分公式,还有更多的公式和规则可用于不同的函数和问题。
高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
微积分的公式大全1.导数公式:- 限定义导数:f'(a) = lim[h->0] (f(a+h)-f(a))/h-幂函数的导数:(x^n)'=n*x^(n-1)-指数函数的导数:(e^x)'=e^x- 对数函数的导数:(ln(x))' = 1/x-三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)-反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)2.积分公式:- 不定积分的基本公式:∫[f(x)+g(x)]dx = ∫f(x)dx + ∫g(x)dx - 幂函数的积分:∫x^n dx = x^(n+1)/(n+1) + C (其中C为常数) - 指数函数的积分:∫e^x dx = e^x + C- 对数函数的积分:∫1/x dx = ln,x, + C (其中C为常数)-三角函数的积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln,cos(x), + C-反三角函数的积分:- ∫1/√(1-x^2) dx = arcsin(x) + C- ∫-1/√(1-x^2) dx = arccos(x) + C- ∫1/(1+x^2) dx = arctan(x) + C3.基本定理:- 第一基本定理:∫[a, b] f'(x)dx = f(b) - f(a) (即导函数的积分等于原函数在区间上的差)- 第二基本定理:∫[a, b] f(x)dx = F(b) - F(a) (即函数的积分等于其原函数在区间上的差)4.微分方程:- 一阶线性ODE通解:y = ∫[a, x] f(t)*e^(∫[a, t] p(u)du) dt + Ce^(∫[a, x] p(t)dt)-二阶常系数齐次线性ODE通解:y=C1e^(r1x)+C2e^(r2x)-二阶常系数非齐次线性ODE通解:- 非齐次线性ODE的特解:y = yp- 齐次线性ODE的通解:y = yp + C1e^(r1x) + C2e^(r2x)5.极限公式:- 极限定义:lim[x->a] f(x) = L (当x趋近于a时,f(x)趋近于L) -极限的四则运算法则:- lim[x->a] [f(x) + g(x)] = lim[x->a] f(x) + lim[x->a] g(x) - lim[x->a] [f(x) - g(x)] = lim[x->a] f(x) - lim[x->a] g(x) - lim[x->a] [f(x) * g(x)] = lim[x->a] f(x) * lim[x->a] g(x) - lim[x->a] [f(x) / g(x)] = lim[x->a] f(x) / lim[x->a] g(x) (其中g(a)不等于0)- 极限函数的连续性:如果lim[x->a] f(x) = f(a)和lim[x->a]g(x) = g(a),则lim[x->a] [f(x) + g(x)] = f(a) + g(a)和lim[x->a] [f(x) * g(x)] = f(a) * g(a)。
微积分常用公式及运算法则上微积分是数学中的一个重要分支,广泛应用于物理、工程、经济学等领域。
在学习微积分的过程中,掌握常用的公式和运算法则是非常重要的。
下面是微积分中常用的公式和运算法则的详细介绍。
一、常用公式1.导数公式(1)常数的导数:若c为常数,则d/dx(c)=0。
(2)乘方函数的导数:若y=x^n,则dy/dx=nx^(n-1)。
(3)指数函数的导数:若y=e^x,则dy/dx=e^x。
(4)对数函数的导数:若y=ln(x),则dy/dx=1/x。
(5)三角函数的导数:(a)若y=sin(x),则dy/dx=cos(x)。
(b)若y=cos(x),则dy/dx=-sin(x)。
(c)若y=tan(x),则dy/dx=sec^2(x)。
(d)若y=cot(x),则dy/dx=-csc^2(x)。
(e)若y=sec(x),则dy/dx=sec(x)tan(x)。
(f)若y=csc(x),则dy/dx=-csc(x)cot(x)。
2.积分公式(1)不定积分:若F(x)是f(x)的一个原函数,则∫f(x)dx=F(x)+C,其中C为常数。
(2)定积分:若f(x)在区间[a, b]上可积,则∫[a, b]f(x)dx是f(x)在[a, b]上的定积分。
3.常用等式(1)和差化积:(a+b)(a-b)=a^2-b^2(2)完全平方差:a^2-2ab+b^2=(a-b)^2(3)二次方程的根:若ax^2+bx+c=0(a≠0)有实根,则判别式D=b^2-4ac≥0。
(4)勾股定理:在直角三角形ABC中,设∠C=90°,则a^2+b^2=c^2,其中a、b为直角边,c为斜边。
二、运算法则1.四则运算法则(1)加法法则:(f+g)'=f'+g'。
(2)减法法则:(f-g)'=f'-g'。
(3)乘法法则:(f*g)'=f'*g+f*g'。