第四章传统传感器原理及应用
- 格式:ppt
- 大小:6.47 MB
- 文档页数:255
传感器原理及应用温度传感器一、传感器原理传感器是将非电信号转化为电信号的装置,它通过测量其中一被测量物理量(如温度、压力、湿度等)的变化,并将其转换为可用的电信号输出。
温度传感器是一种用来测量温度的传感器,它通常由敏感元件和信号处理电路组成。
敏感元件接受来自被测对象的温度变化,并将其转化为电信号,信号处理电路进一步处理该电信号并输出。
常见的温度传感器有热电偶、热电阻、半导体温度传感器等。
1.热电偶:热电偶是利用两种不同金属的热电极在温度差下产生热电势的原理进行温度测量的。
当两个不同金属的连接点分别处在不同温度下时,会在连接点间产生热电势,称为温差电动势,通过对热电势的测量,可以得到被测温度。
热电偶具有响应快、测量范围广、结构简单等优点,常用于高温环境下的温度测量。
2.热电阻:热电阻是利用材料的电阻随温度变化的特性进行温度测量的。
热电阻通常由金属或半导体材料制成,在不同温度下,其电阻值会发生变化,通过测量电阻值的变化,可以得到被测温度。
常见的热电阻有铂电阻,具有精度高、稳定性好等特点,广泛应用于精密温度测量领域。
3.半导体温度传感器:半导体温度传感器是利用半导体材料的电阻随温度变化的特性进行温度测量的。
半导体温度传感器通常由硅基芯片制成,其电阻值随温度变化呈现一定的规律。
通过测量电阻值,可以得到被测温度。
半导体温度传感器具有体积小、响应快、价格低等优点,广泛应用于家电、电子产品等领域。
二、温度传感器应用温度传感器在各个行业和领域有着广泛的应用。
1.工业领域:温度传感器在工业领域中被广泛应用于监测加热设备、冷却系统、炉温控制等。
它可以帮助实时监测设备的温度变化,避免因温度过高或过低导致设备故障或损坏。
2.电子产品:温度传感器在电子产品中应用广泛,如智能手机、电脑、平板电脑等。
它可以用于监测设备的温度,防止设备因温度过高而损坏。
3.汽车行业:温度传感器在汽车行业中被用于发动机温度的监测,以及空调系统、冷却系统等的温度控制。
《传感器原理与应用》 , 第58页第四章电感式传感器电感式传感器是利用电磁感应把铰测的物理量加位移、压力、流量、振动等转换成线圈的自感系数人或互感系数AJ的变化,再由涵量电路转换为电压或电流的变化量输出,实现非电量到电量的转换。
电感式传感器具有以下特点:(1)结构简单,传感器无活动电触点,因此工作可靠寿命长;(2)灵敏度和分辨率高,能测出0.01Pm酌位移变化。
传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出;(3)线性度和重复性都比较好,在一定位移范围几十微米至数毫米内.传感器非线性误差可做到0.05%一0.1%,并且稳定性也较好。
同时.这种传感器能实现信息的远距离传辖、记录、显示和控制,它在上业自动控制系统中广泛被采用;但是它台频率响应较低,不宜快速动态测控等缺点。
电感式传感器种类很多,本章主要介绍自感式、互感式和涡流式三种传感器。
变磁阻式传感器变磁阻式传感器的结构如图4—1所示。
它由线圈、铁芯和衔铁三部分组成。
铁芯利衔铁都由导磁材料如硅钢片或坡莫合金制成。
在铁芯和活动衔铁之间有气隙,气隙厚度为8。
传感器的运动部分与衔铁相连,当衔铁移动时,气院厚度6发生变化,从而使磁路中磁配变化.导致电感线圈的电感值变化,这样可以籍以判别被tIg量的位移大小。
线圈的电感值L可按下列电工学公式计算:式中贝——线圈匝数;RN——单位长度上磁路的总磁阻磁路总磁阻可写为式中 Rf——铁芯磁阻;R6——空气气隙磁阻式(4—3)中第一项为铁芯磁阻v第二项为衔铁磁阻;Ll一一磁通通过铁芯助长度(m);4l——铁芯横截面积(m’);Al——铁芯材料的导磁率(H/m);乙——磁通通过衔铁的长度(m);A2——衔铁横截面积(m2);A:——衔铁材料的导磁率(H/m);j一—气隙厚度(m);A一—气隙横截面积(m’);P。
——空气的导磁率(4n×10“H/m)。
由于及f《Rj,常常忽略Rf,因此,可得线圈电感为《传感器原理与应用》 , 第59页由式(4—5)可知,当线圈匝数确定后,只要改变j和4均可导致电感的变化,因此v变碰阻式传感器又可分为变气隙厚度6的传原器和变气隙面积4的传感器。
传感器原理及应用王化祥传感器是一种能够感知、检测和接收外部信息,并将这些信息转换成可用信号的装置。
它在现代科技领域中起着至关重要的作用,广泛应用于工业、医疗、军事、环保等领域。
本文将介绍传感器的原理及其在各个领域中的应用。
首先,我们来了解一下传感器的工作原理。
传感器的工作原理主要分为两个部分,感知部分和信号处理部分。
感知部分是指传感器对外部信息进行感知和检测的部分,它可以通过物理、化学、生物等方式来感知不同的信息。
而信号处理部分则是将感知到的信息转换成电信号,以便于传输和处理。
这两部分共同作用,使得传感器能够准确地感知外部信息并将其转换成可用的信号。
在工业领域中,传感器被广泛应用于自动化生产线上。
比如压力传感器可以用来监测管道中的液体或气体的压力变化,温度传感器可以用来监测设备的温度变化,光电传感器可以用来检测产品的位置和颜色等。
这些传感器的应用,可以实现生产过程的自动化控制,提高生产效率和产品质量。
在医疗领域中,传感器也发挥着重要作用。
例如血压传感器可以用来监测患者的血压情况,心率传感器可以用来监测患者的心率变化,体温传感器可以用来监测患者的体温情况等。
这些传感器的应用,可以帮助医生及时了解患者的身体情况,为患者提供更好的医疗服务。
在环保领域中,传感器也扮演着重要角色。
比如空气质量传感器可以用来监测空气中的污染物含量,水质传感器可以用来监测水中的污染物含量,土壤湿度传感器可以用来监测土壤的湿度情况等。
这些传感器的应用,可以帮助环保部门及时监测环境的污染情况,采取相应的措施进行治理。
总的来说,传感器作为一种能够感知、检测和接收外部信息的装置,在现代科技领域中发挥着至关重要的作用。
它在工业、医疗、环保等领域中都有着广泛的应用,为人们的生产生活带来了诸多便利。
随着科技的不断进步,相信传感器的应用领域将会更加广泛,其在各个领域中的作用也将会更加突出。
传感器原理及应用教程专用学习教案一、教学内容本教案依据《传感器原理及应用》教材第四章“压力传感器”展开。
详细内容包括:压力传感器的工作原理、类型及应用场景;压力传感器的性能参数及其影响;压力传感器在工程实践中的安装与调试。
二、教学目标1. 理解压力传感器的工作原理,掌握不同类型的压力传感器及其应用场景。
2. 学会分析压力传感器的性能参数,并了解其影响因素。
3. 能够在实际工程中正确安装和调试压力传感器。
三、教学难点与重点教学难点:压力传感器性能参数的理解与分析。
教学重点:压力传感器的工作原理、类型及其应用场景。
四、教具与学具准备1. 教具:压力传感器实物、PPT课件、实验设备。
2. 学具:笔记本、教材、实验报告册。
五、教学过程1. 实践情景引入(10分钟):通过展示压力传感器在生活中的应用案例,激发学生的学习兴趣。
2. 理论知识讲解(25分钟):介绍压力传感器的工作原理、类型及其应用场景。
3. 例题讲解(20分钟):讲解一个压力传感器性能参数分析的例题,指导学生掌握分析方法。
4. 随堂练习(15分钟):让学生独立分析一个压力传感器性能参数的实例,巩固所学知识。
5. 实验演示与操作(20分钟):演示压力传感器的安装与调试过程,并指导学生进行实际操作。
六、板书设计1. 压力传感器工作原理2. 压力传感器类型及应用场景3. 压力传感器性能参数及其影响因素4. 压力传感器的安装与调试方法七、作业设计1. 作业题目:分析一个具体应用场景,选择合适的压力传感器,并说明原因。
答案:根据实际应用场景,选择合适的压力传感器,分析其性能参数,并解释选择该传感器的原因。
2. 作业题目:简述压力传感器在工程实践中的安装与调试步骤。
答案:步骤包括:传感器选型、安装位置确定、连接线路、调试传感器至最佳工作状态。
八、课后反思及拓展延伸本节课通过实践情景引入、理论知识讲解、例题讲解、随堂练习等环节,使学生掌握了压力传感器的工作原理、类型、性能参数及其应用。
第四章 思考题与习题1、简述磁电感应式传感器的工作原理。
磁电感应式传感器有哪几种类型?答:磁电感应式传感器是以电磁感应原理为基础的,根据法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通量变化时,线圈中所产生的感应电动势e 的大小取决于穿过线圈的磁通φ的变化率,即:dtd Ne Φ-= 根据这个原理,可将磁电感应式传感器分为恒定磁通式和变磁通式两类。
2、某些磁电式速度传感器中线圈骨架为什么采用铝骨架?答:某些磁电式速度传感器中线圈采用铝骨架是因为线圈在磁路系统气隙中运动时,铝骨架中感应产生涡流,形成系统的电磁阻尼力,此阻尼起到衰减固有振动和扩展频率响应范围的作用。
3、何谓磁电式速度传感器的线圈磁场效应,如何补偿?答:线圈磁场效应是指磁电式速度传感器的线圈中感应电流产生的磁场对恒定磁场作用,而使其变化。
如公式v BlN e 0-=知,由于B 的变化而产生测量误差。
补偿方法通常是采用补偿线圈与工作线圈串接,来抵消线圈中感应电流磁场对恒定磁场的影响。
4、为什么磁电感应式传感器在工作频率较高时的灵敏度,会随频率增加而下降? 答:由理论推到可得传感器灵敏度与频率关系是:42020220220)(1)(1)2()1()(ωωωωξωωξωωωω-===+-=NBl v e k v NBl e v 取 当振动频率低于传感器固有频率时,这种传感器的灵敏度是随振动频率变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。
5、变磁通式传感器有哪些优缺点?答:变磁通式传感器的优点是对环境条件要求不高,能在-150—+900C 的温度条件下工作,而不影响测量精度,也能在油、水雾、灰尘等条件下工作。
缺点主要是它的工作频率下限较高,约为50Hz ,上限可达100kHz ,所以它只适用于动态量测量,不能测静态量。
传感器原理与应用
传感器是一种能够将非电信号转化为电信号的设备。
它通过感知某种特定的物理量或化学量,并将其转化为可测量的电信号,从而实现对环境和物体的感知和测量。
传感器的工作原理包括以下几种:
1. 电阻传感器:利用电阻的变化来测量被测量物理量的变化,如温度传感器、光敏电阻等。
2. 容抗传感器:利用电容值的变化来测量被测量的物理量的变化,如压力传感器、湿度传感器等。
3. 电感传感器:利用电感值的变化来测量被测量物理量的变化,如液位传感器、接近传感器等。
4. 磁阻传感器:利用磁阻值的变化来测量被测量物理量的变化,如磁场传感器、位置传感器等。
5. 光电传感器:利用光电效应来测量被测量物理量的变化,如光电传感器、光纤传感器等。
传感器在各个领域有广泛的应用,包括但不限于以下几个方面:
1. 工业自动化:传感器被广泛应用于工业领域,用于监测和控制各种物理量,如温度、湿度、压力、流量等。
2. 环境监测:传感器被用于监测环境中的各种污染物、气体浓度、温度、湿度等物理量,以保障环境质量。
3. 医疗健康:传感器被应用于医疗设备中,如心率传感器、血氧传感器、体温传感器等,用于监测患者的生理参数。
4. 智能家居:传感器被应用于智能家居系统中,用于感知环境的状态和人的行为,实现自动控制和智能化。
5. 汽车领域:传感器被广泛应用于汽车中,用于检测车辆状态、驾驶行为、环境条件等,实现安全监控和驾驶辅助功能。
6. 物联网:传感器是物联网的重要组成部分,通过感知和收集各种物理量的数据,实现设备间的通信和数据交互。
传感器原理及应用传感器是一种能够感知、检测某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
它在现代科技领域中起着至关重要的作用,广泛应用于工业控制、环境监测、医疗诊断、智能家居等领域。
本文将从传感器的原理及其应用展开介绍。
首先,传感器的原理是基于物理效应或化学效应实现的。
常见的传感器类型包括光电传感器、压力传感器、温度传感器、湿度传感器、气体传感器等。
光电传感器利用光电效应,将光信号转化为电信号,常用于光电开关、光电编码器等设备中。
压力传感器则是利用压电效应或电阻应变效应来检测压力变化,广泛应用于汽车制动系统、工业自动化等领域。
温度传感器则是利用热电效应、热敏电阻效应等原理来感知温度变化,常见于电子设备、空调系统等。
湿度传感器则是利用介电常数变化或电阻变化来检测湿度变化,应用于气象观测、农业温室等领域。
气体传感器则是利用气体的化学反应来检测气体浓度,常见于环境监测、工业安全等领域。
其次,传感器的应用非常广泛。
在工业控制领域,传感器常用于测量温度、压力、流量、液位等参数,用于实现自动化生产、设备监测等功能。
在环境监测领域,传感器被广泛应用于大气污染监测、水质监测、土壤湿度监测等方面,为环保工作提供重要数据支持。
在医疗诊断领域,传感器被用于测量体温、血压、心率等生理参数,为医生提供诊断依据。
在智能家居领域,传感器被用于感知人体活动、光照强度、温湿度等信息,实现智能灯光、智能门锁、智能空调等功能。
总之,传感器作为现代科技的重要组成部分,其原理和应用已经深入到人们的生活和工作中。
随着科技的不断发展,传感器的种类和性能将会不断提升,应用领域也将会不断拓展,为人们的生活和生产带来更多便利和可能。
希望本文能够为读者对传感器有更深入的了解提供一些帮助。