光纤布拉格光栅FBG
- 格式:ppt
- 大小:569.50 KB
- 文档页数:10
光纤布拉格光栅(FBG)的光学传感技术电子传感器数十年来一直作为测量物理与机械现象的标准机制。
尽管具有普遍性,却因为种种限制,在许多应用中显得缺乏安全、不切实际或无法使用。
基于光纤布拉格光栅(FBG)的光学传感技术,利用“光”作为介质取代“电”,使用标准光纤替代铜线,从而克服种种的挑战:由于光纤不导电且电气无源的良好特性,可以消除由电磁干扰(EMI)引起的噪声影响,并且能在少量损耗乃至不损耗信号完整性的前提下远距离传输数据。
此外,多个FBG传感器可沿一根光纤通过菊花链(daisy chain)方式连接,极大减少了测量系统的尺寸、重量和复杂性。
1.FBG 光学传感器基础1.1概述近几十年以来,电气传感器一直作为测量物理与机械现象的标准设备发挥着它的作用。
尽管它们在测试测量中无处不在,但作为电气化的设备,他们有着与生俱来的缺陷,例如信号传输过程中的损耗,容易受电磁噪声的干扰等等。
这些缺陷会造成在一些特殊的应用场合中,电气传感器的使用变得相当具有挑战性,甚至完全不适用。
光纤光学传感器就是针对这些应用挑战极好的解决方法,使用光束代替电流,而使用标准光纤代替铜线作为传输介质。
在过去的二十年中,光电子学的发展以及光纤通信行业中大量的革新极大地降低了光学器件的价格,提高了质量。
通过调整光学器件行业的经济规模,光纤传感器和光纤仪器已经从实验室试验研究阶段扩展到了现场实际应用场合,比如建筑结构健康监测应用等。
1.2光纤传感器简介从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。
非固有型 (混合型) 光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。
光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。
光纤主要由三个部分组成:纤芯(core),包层(cladding)和保护层(buffer coating)。
光纤布拉格光栅传感器测量温度和应变的原理光纤布拉格光栅传感器,简称FBG传感器,这可是个神奇的东西哦!它不仅可以测量温度,还能测量应变,简直就是个万能的小助手。
今天,我就来给大家聊聊这个神奇的小家伙是怎么工作的,让我们一起揭开它的神秘面纱吧!我们来了解一下FBG传感器的基本结构。
它是由一系列周期性折射率不同的光纤组成的,这些光纤就像一根根细细的琴弦,当光线通过它们时,会发生折射现象。
而这种折射现象正是FBG传感器测量温度和应变的关键所在。
FBG传感器是如何测量温度的呢?其实,这就要靠那些神奇的光纤了。
当阳光或者光源照射到光纤上时,光纤中的原子会吸收一部分光线,使得光线在光纤内部发生反射。
而反射回来的光线经过多次反射后,最终到达了FBG传感器的检测器。
检测器会根据反射光线的强度和时间变化来计算出光纤的温度。
是不是很厉害啊!我们再来聊聊FBG传感器是如何测量应变的。
其实,这也是利用了光纤的折射现象。
当FBG传感器受到外力作用时,光纤会发生形变,从而导致折射光线的变化。
而这种变化又被检测器捕捉到,从而计算出了应变的大小。
是不是感觉FBG传感器就像一个神奇的变形金刚一样,可以感知到周围的变化呢!FBG传感器有哪些应用呢?其实,它的应用范围非常广泛。
在建筑行业中,它可以用来检测混凝土的结构变化;在医疗行业中,它可以用来监测人体的生理指标;在汽车制造行业中,它可以用来检测车身的变形情况。
只要有需要测量温度和应变的地方,FBG传感器都可以派上用场哦!当然啦,虽然FBG传感器非常神奇,但它也有一些局限性。
比如说,它的灵敏度有限,不能用来检测非常微小的应变;而且,它的精度也有一定的误差。
随着科技的发展,相信这些问题都会得到解决的。
今天关于光纤布拉格光栅传感器测量温度和应变的原理就给大家介绍到这里了。
希望对大家有所帮助哦!下次再见啦!。
光纤布拉格光栅(fbg)反射谱和投射谱光纤布拉格光栅(Fiber Bragg Grating,简称FBG)是一种在光纤中制造的周期性折射率调制结构。
它可以实现对光信号的反射和透射控制,因此在光通信、光传感和光纤激光器等领域有着广泛的应用。
FBG的反射谱和投射谱是FBG的重要特性之一,下面将对其进行详细介绍。
1.反射谱FBG的反射谱是指当光信号入射到FBG上时,被FBG反射的光的频谱特性。
当光信号穿过光纤进入FBG后,根据FBG的周期性折射率变化,会发生部分光的反射。
这些反射光的波长取决于FBG的周期和折射率调制情况。
反射谱可以通过光谱仪或光频谱分析仪来测量和观察。
典型的FBG反射谱是一个窄带滤波器,其反射峰的位置和宽度与FBG的物理参数和环境条件相关。
由于FBG 的周期性调制结构,反射谱通常呈现出周期性重复的特点。
2.投射谱FBG的投射谱是指当光信号经过FBG时,透射到光纤另一侧的光的频谱特性。
由于FBG具有特定的反射特性,它可以作为一个选择性滤波器,在特定的波长范围内使光透射,而在其他波长处进行反射或吸收。
投射谱的形状和特性取决于FBG的设计和制备参数,包括周期、折射率调制情况等。
通过调整这些参数,可以实现不同的投射谱特性,如带通滤波、带阻滤波、多通道滤波等。
3.应用FBG的反射谱和投射谱在许多应用中发挥着重要作用:-光通信:FBG可用作光纤传感器,通过测量反射谱变化来检测温度、压力、形变等物理量。
-光纤传感:利用FBG的反射谱特性,可以实现对光纤周围环境的监测,如油气管道的泄漏检测、结构的应力监测等。
-光纤激光器:FBG可用作激光器的频率选择性元件,调节反射谱特性来实现激光器的单模操作和波长选择。
总之,FBG的反射谱和投射谱是FBG的重要特性之一,它们描述了FBG对光信号的反射和透射特性。
通过测量和分析反射谱和投射谱,可以实现对FBG的性能和应用进行评估和优化,为光纤通信、光传感和光纤激光器等领域的应用提供基础支持。
光纤光栅与光纤布拉格光栅的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 概述光纤光栅(FBG)和光纤布拉格光栅(FFBG)都是光纤传感器中常见的元件,它们在光通信、光传感等领域发挥着重要作用。
光纤布拉格光栅(FBG)介绍1 介绍FBG是Fiber Bragg Grating的缩写,即光纤布拉格光栅。
在纤芯内形成的空间相位周期性分布的光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
利用这一特性可制造出许多性能独特的光纤器件。
这些器件具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。
目前应用主要集中在光纤通信领域(光纤激光器、光纤滤波器)和光纤传感器领域(位移、速度、加速度、温度的测量)。
近年来,随光纤光栅的重要性被人们所认识,各种光纤光栅的制作方法层出不穷,这些方法各有其优缺点,下面分别进行评述。
2光纤光栅制作方法2.1光敏光纤的制备采用适当的光源和光纤增敏技术,可以在几乎所有种类的光纤上不同程度的写人光栅。
所谓光纤中的光折变是指激光通过光敏光纤时,光纤的折射率将随光强的空间分布发生相应的变化,如这种折射率变化呈现周期性分布,并被保存下来,就成为光纤光栅。
光纤中的折射率改变量与许多参数有关,如照射波长、光纤类型、掺杂水平等。
如果不进行其它处理,直接用紫外光照射光纤,折射率增加仅为(10的负4次方)数量级便已经饱和,为了满足高速通信的需要,提高光纤光敏性日益重要,目前光纤增敏方法主要有以下几种:1)掺入光敏性杂质,如:锗、锡、棚等。
2)多种掺杂(主要是B/Ge 共接)。
3)高压低温氢气扩散处理。
4)剧火。
2.2成栅的紫外光源光纤的光致折射率变化的光敏性主要表现在244nm紫外光的错吸收峰附近,因此除驻波法用488nm可见光外,成栅光源都是紫外光。
大部分成栅方法是利用激光束的空间干涉条纹,所以成栅光源的空间相干性特别重要。
目前,主要的成栅光源有准分子激光器、窄线宽准分子激光器、倍频Ar离子激光器、倍频染料激光器、倍频OPO激光器等,根据实验结果,窄线宽准分子激光器是目前用来制作光纤光栅最为适宜的光源。
FBG布拉格光纤光栅传感技术及其优势FBG(Fiber Bragg Grating)布拉格光纤光栅传感技术是一种基于光纤传感器原理的测量技术。
它通过在光纤的光学纤芯中添加一个周期性折射率改变的光栅结构,实现了对光波的波长选择性反射,从而实现对光波的测量和传感。
FBG光栅传感技术具有很多优势,本文将详细介绍。
首先,FBG光栅传感技术具有很高的灵敏度和精度。
光纤光栅结构的周期性折射率改变能够引起光波的波长选择性反射,从而使得传感器能够在不同的波长上进行测量。
由于光栅的周期性结构可以通过微调光栅的制备参数进行优化,因此光栅传感器可以在特定的波长上实现极高的灵敏度和精度。
其次,FBG光栅传感技术具有很高的可重复性和稳定性。
光纤材料具有优良的化学稳定性和热稳定性,使得光纤光栅传感器在长期使用中能够保持良好的性能。
此外,由于光栅结构是在光纤材料中编写的,因此它不会受到外界环境的干扰,如机械振动、电磁干扰等,从而进一步保证了传感器的可靠性和稳定性。
第三,FBG光栅传感技术具有很高的兼容性和可扩展性。
光纤光栅结构可以与光纤的各种特性相结合,如单模光纤、多模光纤、光纤喇叭片等,从而可以实现对不同物理量的测量,如温度、应力、压力、湿度等。
同时,由于光栅结构是分布式传感器,因此可以在一根光纤上实现多个光栅结构,从而实现多参数的测量,具有很高的可扩展性。
第四,FBG光栅传感技术具有很高的抗干扰能力和远程监测能力。
光栅传感器的工作原理是通过测量被反射回来的光强来获取待测物理量信息,这种工作方式使得光栅传感器能够抵抗外界的光强波动和光纤传输损耗等因素的影响。
此外,光栅传感器可以与光纤网络相结合,实现远程监测和网络传输,从而实现对远程目标的实时监测和控制。
最后,FBG光栅传感技术具有很高的经济性和应用潜力。
光纤光栅传感器的制备工艺相对简单和成熟,制备成本相对较低,从而降低了传感器的成本。
此外,光栅传感器的应用领域非常广泛,包括航空航天、电力、交通、石油化工等行业,具有很大的市场潜力。