光纤布拉格光栅(FBG)-基础与应用
- 格式:ppt
- 大小:2.07 MB
- 文档页数:8
光纤光栅的原理以及在电力系统中的运用1.光纤光栅的原理光纤布拉格光栅(简称FBG)是在单模光纤的纤芯内通过紫外刻写技术在光纤上产生周期性折射率的调制而形成的一种全光纤器件(图1)。
图1 光纤光栅制备当宽带光波通过光纤光栅时,对满足Bragg条件的入射光产生强烈的发射,并沿原传输光纤返回,而其他波长的光波可以无损耗的通过。
透射过去的其他波长光波可以继续传输给其他具有不同中心波长的光纤光栅阵列,其中相应中心波长的窄带光系列将被逐一发射,全部沿原传输光纤返回,由此可实现多个光纤光栅传感器的波分复用,实现分布式测量。
光纤光栅反射的中心波长由光栅周期决定,反射光谱如图2所示;当外界物理量引起光栅周期改变时,反射光谱中心波长随之变化,由此光纤光栅可以作为传感元件。
光纤光栅可以串联或并联,通过解调仪进行解调。
图2光纤光栅反射谱光纤光栅反射的中心发射波长值随光纤光栅所受环境温度和应力的变化而变化,并具有一定良好的线性关系。
同时光纤光栅温度/应变传感器是以光的波长为最小计量单位的,而目前对光纤光栅Bragg波长移动的探测达到了pm量级的高分辨率,因而具有测量灵敏度高的特点,而且只需要探测到光纤中光栅波长分布图中波峰的准确位置,与光强无关,对光强的波动不敏感,比一般的光纤传感器具有更高的抗干扰能力。
使用光纤布拉格光栅这一光纤传感技术来实现输电线杆塔倾斜、舞动、覆冰、负荷监测温度对比等状态监测时,利用光纤布拉格光栅上应力变化引起的波长位移信息,得到光栅所感应到的应力变化信息,从而对应得到杆塔的倾斜状态信息,实现对杆塔倾斜状态的检测。
为了使光纤布拉格光栅能够准确地反映输电线杆塔的倾斜状态变化,必须使光纤布拉格光栅与杆塔同步变形。
所以需要对光栅进行封装,即用金属材料对光栅进行封装,使得金属封装所感应的应力变化能够反应在光栅上。
为了使封装以后的传感器更加方便地固定在输电线塔杆的表面,在金属封装的两端各留钻孔,这样可以用螺母将封装好的光栅固定在输电线杆塔的表面,而且能够保证两者之间同步变形,使得有效地实现倾斜监测成为可能。
FBG传感器应用及设计实例FBG(Fiber Bragg Grating)传感器是一种基于光纤布拉格光栅原理设计的光纤传感器。
光纤布拉格光栅是通过在光纤内部引入一定的折射率改变周期性的折射率变化结构,形成的一种反射光栅。
FBG传感器利用光纤布拉格光栅的特性,可以对环境中的温度、应变等物理量进行测量。
FBG传感器具有体积小、抗干扰能力强、测量范围广等优点,因此被广泛应用于各个领域。
以下是几个FBG传感器的应用及设计实例:1.建筑结构监测:FBG传感器可以用来监测建筑结构的应变情况。
通过将多个FBG传感器布置在建筑结构上,可以实时监测结构的应变情况,及时发现结构的变形、开裂等问题,提前采取修复措施,保证建筑结构的安全性。
2.油气管道监测:FBG传感器可以用来监测油气管道的变形和温度变化。
将FBG传感器安装在油气管道上,可以实时监测管道的应变和温度变化,及时发现管道的变形、破损等问题,避免事故的发生。
3.地下水监测:FBG传感器可以用来监测地下水位的变化。
将FBG传感器固定在井口或地下水管道中,通过测量光纤的折射率变化来判断地下水位的变化情况。
这对于地下水资源的合理利用和保护具有重要意义。
4.航天器结构监测:FBG传感器可以用来监测航天器的结构应变情况。
将FBG传感器布置在航天器的关键结构上,可以实时监测结构的应变情况,判断航天器的工作状态是否正常,及时发现结构的变形和疲劳损伤,提高航天器的运行安全性。
5.生物医学应用:FBG传感器可以用于生物医学领域中的温度、压力和拉伸等参数的测量。
例如,可以将FBG传感器固定在医用器械上,实时测量医用器械的温度和应变情况,确保医疗操作的安全性。
以上是几个FBG传感器的应用及设计实例。
随着光纤技术的不断发展,FBG传感器将在更多的领域发挥更大的作用,为人们的生活和工作带来更多便利和安全。
第08卷 第5期 中 国 水 运 Vol.8 No.5 2008年 5月 China Water Transport May 2008收稿日期:2008-04-01 作者简介:姜志刚(1977-),男,武汉理工大学材料科学与工程学院,硕士,主要从事光纤传感技术研究及其应用研究。
FBG 光纤光栅的原理和应用姜志刚(武汉理工大学 材料科学与工程学院,湖北 武汉 430070)摘 要:简要介绍了FBG 光纤光栅通过测量波长的漂移实现对被测量的检测原理及抗干扰能力强且易于在同一根光纤内集成多个传感器复用;以及FBG 光纤光栅在高精度测温、高分辨率应变测量液、位测量领域的应用。
关键词:FBG 光纤光栅;应力传感;温度传感中图分类号:TP212.14 文献标识码:A 文章编号:1006-7973(2008)05-0128-02一、前言光传感以其独特的技术特点,飞速发展,特别是光纤传感技术,利用其质轻、径细、抗电磁干扰、抗腐蚀、耐高温、信号衰减小、集信息传感与传输于一体等特点,可以解决常规检测技术难以完全胜任的测量问题,被广泛应用于医学、生物、电力工业、化学、环境、军事和智能结构等领域而布拉格光纤光栅传感器除了具有普通光纤传感器的抗电磁干扰和原子辐射、径细、质软、重量轻、绝缘、耐高温、耐腐蚀等诸多优点外,与其他传感器相比还有其独自的优点——传感信号为波长调制,这就使它还有许多独特的优势:1.避免了一般干涉型传感器中相位测量的不清晰和对固有参考点的需要;2.可以使用波分复用技术在一根光纤中串接多个光栅进行分布式测量;二、布拉格光纤光栅传感的基本原理图1 布拉格光纤光栅结构图布拉格光纤光栅是通过改变光纤芯区折射率,使其产生小的周期性调制而形成。
由于周期性折射率的扰动仅会对较窄的一段光谱产生影响(典型光谱宽度为0.05-0.3nm),因此,当宽带光波在光栅中传输时,入射光将在相应的频率上被反射回来,其余的透射光波则几乎不受影响。
光纤布拉格光栅(FBG)介绍1 介绍FBG是Fiber Bragg Grating的缩写,即光纤布拉格光栅。
在纤芯内形成的空间相位周期性分布的光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
利用这一特性可制造出许多性能独特的光纤器件。
这些器件具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。
目前应用主要集中在光纤通信领域(光纤激光器、光纤滤波器)和光纤传感器领域(位移、速度、加速度、温度的测量)。
近年来,随光纤光栅的重要性被人们所认识,各种光纤光栅的制作方法层出不穷,这些方法各有其优缺点,下面分别进行评述。
2光纤光栅制作方法2.1光敏光纤的制备采用适当的光源和光纤增敏技术,可以在几乎所有种类的光纤上不同程度的写人光栅。
所谓光纤中的光折变是指激光通过光敏光纤时,光纤的折射率将随光强的空间分布发生相应的变化,如这种折射率变化呈现周期性分布,并被保存下来,就成为光纤光栅。
光纤中的折射率改变量与许多参数有关,如照射波长、光纤类型、掺杂水平等。
如果不进行其它处理,直接用紫外光照射光纤,折射率增加仅为(10的负4次方)数量级便已经饱和,为了满足高速通信的需要,提高光纤光敏性日益重要,目前光纤增敏方法主要有以下几种:1)掺入光敏性杂质,如:锗、锡、棚等。
2)多种掺杂(主要是B/Ge 共接)。
3)高压低温氢气扩散处理。
4)剧火。
2.2成栅的紫外光源光纤的光致折射率变化的光敏性主要表现在244nm紫外光的错吸收峰附近,因此除驻波法用488nm可见光外,成栅光源都是紫外光。
大部分成栅方法是利用激光束的空间干涉条纹,所以成栅光源的空间相干性特别重要。
目前,主要的成栅光源有准分子激光器、窄线宽准分子激光器、倍频Ar离子激光器、倍频染料激光器、倍频OPO激光器等,根据实验结果,窄线宽准分子激光器是目前用来制作光纤光栅最为适宜的光源。
FBG布拉格光纤光栅传感技术及其优势FBG(Fiber Bragg Grating)布拉格光纤光栅传感技术是一种基于光纤传感器原理的测量技术。
它通过在光纤的光学纤芯中添加一个周期性折射率改变的光栅结构,实现了对光波的波长选择性反射,从而实现对光波的测量和传感。
FBG光栅传感技术具有很多优势,本文将详细介绍。
首先,FBG光栅传感技术具有很高的灵敏度和精度。
光纤光栅结构的周期性折射率改变能够引起光波的波长选择性反射,从而使得传感器能够在不同的波长上进行测量。
由于光栅的周期性结构可以通过微调光栅的制备参数进行优化,因此光栅传感器可以在特定的波长上实现极高的灵敏度和精度。
其次,FBG光栅传感技术具有很高的可重复性和稳定性。
光纤材料具有优良的化学稳定性和热稳定性,使得光纤光栅传感器在长期使用中能够保持良好的性能。
此外,由于光栅结构是在光纤材料中编写的,因此它不会受到外界环境的干扰,如机械振动、电磁干扰等,从而进一步保证了传感器的可靠性和稳定性。
第三,FBG光栅传感技术具有很高的兼容性和可扩展性。
光纤光栅结构可以与光纤的各种特性相结合,如单模光纤、多模光纤、光纤喇叭片等,从而可以实现对不同物理量的测量,如温度、应力、压力、湿度等。
同时,由于光栅结构是分布式传感器,因此可以在一根光纤上实现多个光栅结构,从而实现多参数的测量,具有很高的可扩展性。
第四,FBG光栅传感技术具有很高的抗干扰能力和远程监测能力。
光栅传感器的工作原理是通过测量被反射回来的光强来获取待测物理量信息,这种工作方式使得光栅传感器能够抵抗外界的光强波动和光纤传输损耗等因素的影响。
此外,光栅传感器可以与光纤网络相结合,实现远程监测和网络传输,从而实现对远程目标的实时监测和控制。
最后,FBG光栅传感技术具有很高的经济性和应用潜力。
光纤光栅传感器的制备工艺相对简单和成熟,制备成本相对较低,从而降低了传感器的成本。
此外,光栅传感器的应用领域非常广泛,包括航空航天、电力、交通、石油化工等行业,具有很大的市场潜力。
光纤光栅传感器的工作原理和应用实例一、本文概述光纤光栅传感器作为一种先进的光学传感器,近年来在多个领域中都得到了广泛的应用。
本文旨在全面介绍光纤光栅传感器的工作原理及其在各领域中的应用实例。
我们将详细阐述光纤光栅传感器的基本原理,包括其结构、光学特性以及如何实现传感功能。
接着,我们将通过一系列应用实例,展示光纤光栅传感器在结构健康监测、温度测量、压力传感以及安全防护等领域的实际应用。
通过本文的阅读,读者将能够对光纤光栅传感器有一个全面深入的了解,并理解其在现代科技中的重要地位。
二、光纤光栅传感器的基本概念和原理光纤光栅传感器,也被称为光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器,是一种基于光纤光栅技术的传感元件。
其基本概念源于光纤中的光栅效应,即当光在光纤中传播时,遇到周期性折射率变化的结构(即光栅),会发生特定波长的反射或透射。
光纤光栅传感器的工作原理基于光纤中的光栅对光的反射作用。
在制造过程中,通过在光纤芯部形成周期性的折射率变化,即形成光栅,当入射光满足布拉格条件时,即入射光的波长等于光栅周期的两倍与光纤有效折射率的乘积时,该波长的光将被反射回来。
当外界环境(如温度、压力、应变等)发生变化时,光纤光栅的周期或折射率会发生变化,从而改变反射光的波长,通过对这些波长变化的检测和分析,就可以实现对环境参数的测量。
光纤光栅传感器具有许多独特的优点,如抗电磁干扰、灵敏度高、测量范围大、响应速度快、能够实现分布式测量等。
这使得它在许多领域,如结构健康监测、航空航天、石油化工、环境监测、医疗设备、智能交通等,都有广泛的应用前景。
光纤光栅传感器的工作原理决定了其可以通过测量光栅反射光的波长变化来感知外界环境的变化。
因此,在实际应用中,通常需要将光纤光栅传感器与光谱分析仪、解调器等设备配合使用,以实现对环境参数的精确测量。
光纤光栅传感器的基本概念和原理为其在各种应用场景中的广泛应用提供了坚实的基础。
热再生光纤布拉格光栅一、引言随着科技的进步,光纤通信技术在现代信息社会中发挥着越来越重要的作用。
作为光纤通信的关键元件,光纤布拉格光栅(FBG)因其独特的性能和广泛的应用前景而备受关注。
近年来,热再生光纤布拉格光栅作为一种新型的光纤布拉格光栅,在许多领域展现出巨大的潜力。
本文将对热再生光纤布拉格光栅进行深入探讨。
二、热再生光纤布拉格光栅的原理光纤布拉格光栅的基本原理是利用光在光纤中的干涉效应形成特定的反射光谱。
通过在光纤中引入周期性的折射率变化,光在满足特定条件的光波长上产生反射。
热再生光纤布拉格光栅在此基础上,利用热敏材料对温度的敏感性,实现对光栅的写入和擦除,从而达到动态可调的目的。
三、热再生光纤布拉格光栅的结构热再生光纤布拉格光栅主要由裸光纤、热敏材料和保护层组成。
其中,裸光纤作为光的传输通道;热敏材料一般为聚合物或液晶材料,其折射率随温度变化而变化;保护层则起到保护光栅免受外界环境影响的作用。
通过加热改变热敏材料的折射率,可以实现对光栅的写入和擦除。
四、热再生光纤布拉格光栅的优势1.动态可调:热再生光纤布拉格光栅的最大特点是其动态可调性。
通过改变温度,可以实时改变光栅的反射光谱,实现快速响应和精确控制。
2.稳定性高:由于热敏材料具有较高的稳定性,热再生光纤布拉格光栅在温度变化时仍能保持较好的性能。
这使得其在极端环境和长期使用中仍具有可靠性。
3.可重复性强:由于热敏材料的可逆性,热再生光纤布拉格光栅可以在相同条件下进行多次擦写操作,从而大大提高了其实用性和灵活性。
4.应用广泛:由于热再生光纤布拉格光栅具有良好的可调性和稳定性,它可以广泛应用于光纤传感、光谱分析、激光雷达等领域。
五、热再生光纤布拉格光栅的应用1.光纤传感:热再生光纤布拉格光栅作为传感元件,可以用于温度、压力、应变等物理量的测量。
由于其高灵敏度和宽测量范围,热再生光纤布拉格光栅在石油和天然气勘探、航空航天、土木工程等领域具有广阔的应用前景。
光纤布拉格光栅介绍光纤布拉格光栅(Fiber Bragg Grating, FBG)是一种利用光纤自身制作的光学滤波器,具有狭窄的光频选择性和温度、应变等参数的灵敏度。
它在光通信、传感、光谱等领域有着广泛的应用。
本文将对光纤布拉格光栅的工作原理、制备方法以及应用进行详细介绍。
光纤布拉格光栅是通过在光纤的折射率分布中形成周期性的折射率变化来实现的。
这种周期性变化的折射率分布可以实现光的反射,产生一个特定的波长范围内的反射光谱特征。
光纤布拉格光栅的工作原理可以用光波的布拉格反射(Bragg reflection)来解释。
布拉格反射是指当光波从两个折射率不同的介质交界面垂直入射时,会产生一定的反射光。
而在光纤布拉格光栅中,通过周期性的折射率变化,可以形成类似的反射波。
当光波传输到光纤布拉格光栅中时,一部分光波会被布拉格光栅反射,形成特定波长的反射光谱特征。
这个特定波长与布拉格光栅的周期性折射率变化以及入射光波的角度和波长等因素有关。
制备光纤布拉格光栅的方法有多种,常见的方法包括干涉法、相位控制法、光刻法等。
其中,干涉法是最常用的一种方法。
该方法使用两束光波的干涉产生布拉格光栅的周期性折射率变化。
通过调节其中一束光波的频率或角度,可以实现所需的布拉格波长。
相位控制法则是通过对光纤进行局部加热或拉长控制相位的变化,从而形成周期性的折射率变化。
光刻法是将光敏感材料涂覆在光纤表面,利用光的曝光和显影过程形成布拉格光栅。
光纤布拉格光栅在光通信领域的应用非常广泛。
它可以用作滤波器,实现波分复用技术,将多个波长的光信号传输在同一根光纤中。
同时,光纤布拉格光栅还可以用于光纤传感。
由于其具有温度、应变等参数的灵敏度,可以通过监测光纤布拉格光栅的反射光谱变化,实现对环境参数的实时监测。
光纤布拉格光栅传感技术已广泛应用于温度、压力、应变、流速、湿度等传感领域。
除了光通信和传感领域,光纤布拉格光栅在其他领域也有重要的应用。
例如,在激光器中,光纤布拉格光栅可以用作模式锁定元件,实现激光的稳定输出。
光纤布拉格光栅之工作原理与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言光纤布拉格光栅是一种广泛应用于光通信、传感、激光等领域的重要光学器件。
光纤布拉格光栅(FBG)的光学传感技术电子传感器数十年来一直作为测量物理与机械现象的标准机制。
尽管具有普遍性,却因为种种限制,在许多应用中显得缺乏安全、不切实际或无法使用。
基于光纤布拉格光栅(FBG)的光学传感技术,利用“光”作为介质取代“电”,使用标准光纤替代铜线,从而克服种种的挑战:由于光纤不导电且电气无源的良好特性,可以消除由电磁干扰(EMI)引起的噪声影响,并且能在少量损耗乃至不损耗信号完整性的前提下远距离传输数据。
此外,多个FBG传感器可沿一根光纤通过菊花链(daisy chain)方式连接,极大减少了测量系统的尺寸、重量和复杂性。
1.FBG 光学传感器基础1.1概述近几十年以来,电气传感器一直作为测量物理与机械现象的标准设备发挥着它的作用。
尽管它们在测试测量中无处不在,但作为电气化的设备,他们有着与生俱来的缺陷,例如信号传输过程中的损耗,容易受电磁噪声的干扰等等。
这些缺陷会造成在一些特殊的应用场合中,电气传感器的使用变得相当具有挑战性,甚至完全不适用。
光纤光学传感器就是针对这些应用挑战极好的解决方法,使用光束代替电流,而使用标准光纤代替铜线作为传输介质。
在过去的二十年中,光电子学的发展以及光纤通信行业中大量的革新极大地降低了光学器件的价格,提高了质量。
通过调整光学器件行业的经济规模,光纤传感器和光纤仪器已经从实验室试验研究阶段扩展到了现场实际应用场合,比如建筑结构健康监测应用等。
1.2光纤传感器简介从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。
非固有型 (混合型) 光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。
光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。
光纤主要由三个部分组成:纤芯(core),包层(cladding)和保护层(buffer coating)。