第7讲两边夹逼+至精至简的数学思想方法
- 格式:pdf
- 大小:6.25 MB
- 文档页数:4
数学常用的数学思想方法有哪些初中数学涉及到的思想方法很多,在此仅仅谈谈常见的八种思想方法:一、用字母表示数的思想这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。
实际上就是通过“形”来反映数据扮布情况,发展趋势等。
实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想(化归思想) 在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.四、分类思想有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
七年级数学中常见的思想方法一、思想方法1. 数形结合思想.2. 整体思想.二、知识要点:1. 数形结合思想数形结合思想是通过构建数与形之间的对应关系,在二者的对应和互助中,来分析研究问题并解决问题的一种思想. 常见的数形结合的途径有三种:以形助数、以数助形和数形互助.数轴是数与形结合的桥梁,数与形结合的工具,具有多方面的功能.(1)利用数轴能形象地表示有理数,使抽象的数变得具体.例如有理数的分类,在数轴上,原点右边的是正数,原点左边的是负数,原点是表示0的点,它是正、负数的分界点.(2)利用数轴能直观地解释相反数,能从运动变化的观点说明互为相反数的点,具有关于原点对称的特征.(3)利用数轴理解︱a-b︱的意义,绝对值的定义是从几何角度给出的,即︱a︱是表示数a的点到原点的距离,而原点所对应的数为0,故︱a︱也写成︱a-0︱的形式,它反映了数轴上两点间的距离. 这样自然会想到数轴上任意两点的距离如何表示呢?如图所示,数a、b分别对应点A、B,从数轴的定义,我们知道线段OB、OA的数值分别等于b、a,即OB=b,OA=a. 从BA=OA-OB=a -b,知B点到A点的距离为︱a-b︱.(4)利用数轴上的点的有序性,可以把复杂的数量关系表示得简明、形象、便于观察解答. 例如,在比较有理数大小的时候,可以把有理数在数轴上表示出来,依据数轴上右边的数总比左边的数大进行比较.2. 整体思想在研究问题时不是以某个或某些组成部分为着眼点,而是有意识地放大考虑问题的视角,将要解决的问题看成一个整体,通过研究问题的整体形式、整体结构或作整体处理后,达到顺利而又简洁地解决问题的目的.【典型例题】例1. (1)数轴上的点A表示数2,将点A向左平移5个单位长度得点B,则点B表示的数是__________.(2)(湖南怀化)2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是()A. 伦敦时间2008年8月8日11时B. 巴黎时间2008年8月8日13时C. 纽约时间2008年8月8日5时D. 汉城时间2008年8月8日19时分析:(1)表示数2的点A向左平移2个单位到原点,再向左平移3个单位到数-3,所以将点A向左平移5个单位长度得到的点B所表示的数是-3. (2)如图所示,纽约、伦敦、巴黎、北京、汉城五城市的时差可以通过它们对应的数字计算出来,北京时间2008年8月8日20时,伦敦时间是2008年8月8日12时;巴黎时间是2008年8月8日13时;纽约时间是2008年8月8日7时;汉城时间是2008年8月8日21时.解:(1)-3(2)B评析:数轴是数形结合思想解题的桥梁.例2. 已知︱a︱<︱b︱,a>0,b<0,把a、b、-a、-b按由小到大的顺序排列.分析:从︱a︱<︱b︱,及a>0,b<0知正数a在原点右侧,负数b在原点左侧,且表示数a的点到原点的距离小于表示数b的点到原点的距离,如图所示. 另一方面,a与-a,b与-b互为相反数,由于︱a︱=︱-a︱,︱b︱=︱-b︱,故数轴上表示这四个数从左到右的顺序是b,-a,a,-b.解:b<-a<a<-b.例3. 如图所示,阴影部分的面积是正方形面积的()A. B. C.D.分析:阴影部分的面积不能求出,考虑把阴影部分通过切割、折叠等方法拼成一个可求面积的图形. 把正方形沿图中对角线对折,阴影部分面积等于三角形面积,等于正方形面积的一半.解:D评析:求图形面积时,常用割补、折叠等方法把不规则的图形拼成一个可求面积的规则图形.例4. 若代数式2y2+3y+7的值为2,则代数式-6y-4y2+9的值为()A. -1B. 19C. 9D. -9分析:因为2y2+3y+7=2,所以-6y-4y2+9=-2(2y2+3y+7)+23=-2×2+23=19.解:B评析:将所给条件不对字母进行分离求值,而是视其为一个整体,直接将其整个代入要求值的式子,然后计算求值.例5. 当x>0,y<0,且︱x︱<︱y︱时,化简︱2x-3y︱-︱3x+3y︱.分析:把2x-3y、3x+3y各看作一个“整体”,先确定出这个“整体”的符号,然后再去掉其绝对值符号.解:由x>0,y<0,且︱x︱<︱y︱可知2x>0,-3y>0,x+y<0.故2x-3y>0,3x+3y<0,因此,原式=(2x-3y)-[-(3x+3y)]=2x-3y+3x+3y=5x.评析:“整体法”是合并同类项时常用的一种方法,同学们要通过细心观察才能够灵活运用此法.。
备注:所有的思想方法都是要注重理解它本身的含义,因为同一个知识点的学习过程中,是可能含有多个思想方法的。
1.数形结合思想:像函数或平面几何等需要作图辅助研究知识或题目的一般都有该思想。
范围很宽泛,就像小学学习行程问题,都要画线段行程图,也是体现数形结合思想。
故重点是画图解题。
例如:一次函数、二次函数、反比例函数、几何类的知识一般都有数形结合思想。
正数和负数、数轴等
2.转化与化归思想:本身直接考察的是A知识点,但为了让题目分析起来更简单,可以转化为B知识点来进行辅助求解,都体现了该思想方法。
例如:解分式方程(A知识点)时,本身考察的是分式方程,但求解过程是先通过左右两边同乘最简公分母,转化成求解整式方程(B知识点)
3.特殊与一般思想:通过大量的具体数据或问题来研究知识,发现共同规律或特征,而用一个统一公式、法则、性质、概念等来表示这一知识点。
(公式类、运算法则类一般都有该思想)
例如:有理数加法、有理数乘除法、二次根式、完全平方公式、整式加减(例如合并同类项)等。
4.函数与方程思想:只要知识涉及的是函数或方程问题,就是体现该思想方法。
例如:一元一次方程、一元二次方程、分式方程、二元一次方程(组)、函数等。
5.分类与整合思想:研究知识时,不能统一化研究,需要在不同的情况下,得到不同的结论,即需要分类最后综合。
像有理数分类,实数分类,三角形分类、四边形分类等都体现该思想。
例如:有理数、绝对值、直线射线与线段、三角形,二次根式等
6.推理思想:凡是涉及证明题(有证明过程)的都有推理思想。
例如:三角形相似和全等的推导和应用,平行四边形性质的推导和证明等。
中学数学⼗种最常⽤的解题思想⽅法让数学更简单!数学是⼀种⽐较抽象的学科。
不少中学同学觉得数学太难,不会独⽴思考解题。
其实,数学没有想象中的那么难,只要学习⽅法、思维技巧得当,所有的学习问题都不是问题。
下⾯给同学们分享中学数学⼗种最常⽤的解题思想⽅法:1、数形结合思想⽅法根据数学问题的已知条件与题⽬结论之间的内在联系,同时分析其代数含义和⼏何意义,把很题⽬相关的数量关系和图形巧妙地结合起来去思考问题。
通过利⽤这种结合分析疲劳,推想出解题思路,使数学问题得到解决。
2.转化的思想⽅法事物之间是⼀般都会存在某种内在联系,可以相互转化。
解决数学问题时,常遇到⼀些问题直接求解较为困难,通过观察、分析、类⽐、联想等思维过程,选择运⽤恰当的数学⽅法进⾏变换,将原问题转化为⼀个新问题(相对来说,对⾃⼰较熟悉的问题),通过新问题的求解,达到解决原问题的⽬的。
常⽤的转化思想⽅法有:2.1直接转化法:直接把新的知识转化为前续学过的知识。
作⽤已学过的知识去理解新知识,获取新的知识,接着把新的知识吸收,继续解决新的问题.2.2 构造法:就是构造⼀个数学情境,建⽴⼀个数学模型,把问题溶⼊进去,使问题简单化,直观化,从⽽达到求解的过程.2.3 数与形的转化:这个主要⽤于函数问题的解答和某些图型中的某些量的关系.数形结合是数学学习的⼀种重要的思想.2.4 换元法:这个重要是把⼀些繁杂的,但⼜有重复性的题⽬简单化,更直观.这个主要⽤于⽅程的解答。
3.分类讨论的思想⽅法分类讨论在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法.分类讨论是⼀种逻辑⽅法,是⼀种重要的数学思想,同时也是⼀种重要的解题策略,它体现了化整为零。
4.待定系数法待定系数法是⼀种求未知数的⽅法。
将⼀个多项式表⽰成另⼀种含有待定系数的新的形式,这样就得到⼀个恒等式。
使⽤待定系数法解题的⼀般步骤是:(1)确定所求问题含待定系数的⼀般解析式;(2)根据条件,列出⼀组含待定系数的⽅程;(3)解⽅程或消去待定系数,从⽽使问题得到解决。
数学思想方法所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,是分析处理和解决数学问题的根本方法,也是对数学规律的理性认识。
下面是店铺帮大家整理的数学思想方法推荐,希望大家喜欢。
一、数形结合的思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。
例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。
从而感知5的某些具体意义。
再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。
这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。
二、对应思想方法利用数量间的对应关系来思考数学问题,就是对应思想。
寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。
在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。
例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。
解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。
初中数学中的主要数学思想方法初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“ 形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度.(3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4) 函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用.除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:( 1 )几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;( 2 )几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;( 3 )几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
总结数学思想的方法数学思想是一种抽象的、逻辑的思维方式,用于解决复杂问题的方法和技巧。
在学习数学过程中,掌握一些数学思想的方法,能够提高我们的数学思维能力和解题能力。
下面我们来总结一下数学思想的几种常用方法。
第一种方法是抽象思维。
数学是一门高度抽象的学科,通过从具体事物中抽取出一般规律,建立数学模型,从而研究和解决问题。
在解决数学问题的过程中,我们要学会运用抽象思维,将问题转化为数学符号和概念的形式,进而利用数学工具进行分析和推导。
通过抽象思维,我们能够提高问题的处理能力和灵活性,更好地理解和应用数学知识。
第二种方法是归纳思维。
归纳是从个别到一般的思维过程,通过观察和总结特殊情况的特点和规律,得到一般情况的结论或规律。
在解决数学问题时,我们可以通过归纳思维,逐步总结出问题中的共性和规律,从而找到解决问题的方法。
归纳思维可以帮助我们更好地理解和应用数学知识,提高数学问题的解决能力。
第三种方法是演绎思维。
演绎是从一般到个别的思维过程,通过运用数学定理和规则,从已有的条件推导出新的结论。
在解决数学问题时,我们可以运用演绎思维,通过给定的条件和已知信息,运用数学定理和推理方法,得到问题的解答。
演绎思维可以帮助我们分析和解决复杂的数学问题,加深对数学知识的理解和掌握。
第四种方法是创造性思维。
创造是指通过创新性的思考和方法,找到解决问题的新途径和新思路。
数学是一门富于创造性的学科,需要我们具备一定的创新能力。
在解决数学问题时,我们可以尝试多种方法和思路,挖掘问题的内在规律和特点,从而找到解决问题的新思路和方法。
创造性思维可以帮助我们突破传统思维的限制,提高解决问题的效率和准确性。
综上所述,掌握数学思想的方法对于提高数学思维和解题能力非常重要。
抽象思维帮助我们将问题转化为数学符号和概念的形式,增强解决问题的灵活性;归纳思维可以帮助我们发现规律和共性,提高问题的分析能力;演绎思维帮助我们通过已有的条件和知识推导出新的结论,提高问题的解决能力;创造性思维可以帮助我们挖掘问题的潜在规律和新思路,提高解题的创新能力。
掌握数学思想方法数学思想方法是解决数学问题的灵魂,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能的关键。
在解数学综合题时,尤其需要用数学思想方法来统帅,去探求解题思路,优化解题过程,验证所得结论。
在初三这一年的数学学习中,常用的数学方法有:消元法、换元法、配方法、待定系数法、反证法、作图法等;常用的数学思想有:转化思想,函数与方程思想、数形结合思想、分类讨论思想。
转化思想就是把待解决或难解决的问题,通过某种转化手段,使它转化成已经解决或比较容易解决的问题,从而求得原问题的解答。
转化思想是一种最基本的数学思想,如在运用换元法解方程时,就是通过“换元”这个手段,把分式方程转化为整式方程,把高次方程转化为低次方程,总之把结构复杂的方程化为结构简单的方程。
学习和掌握转化思想有利于我们从更高的层次去揭示、把握数学知识、方法之间的内在联系,树立辩证的观点,提高分析问题和解决问题的能力。
函数思想就是用运动变化的观点,分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系表示出来并加以研究,从而使问题得到解决。
方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。
方程思想在解题中有着广泛的应用,解题时要善于从题目中挖掘等量关系,能够根据题目的特点选择恰当的未知数,正确列出方程或方程组。
数形结合思想就是把问题中的数量关系和几何图形结合起来,使“数”与“形”相互转化,达到抽象思维与形象思维的结合,从而使问题得以化难为易。
具体来说,就是把数量关系的问题,转化为图形问题,利用图形的性质得出结论,再回到数量关系上对问题做出回答;反过来,把图形问题转化成一个数量关系问题,经过计算或推论得出结论再回到图形上对问题做出回答,这是解决数学问题常用的一种方法。
分类讨论思想是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。
数学思想方法概述数学是一门探索规律和解决问题的科学,它有着独特的思维方式和方法。
数学思想方法的发展经历了漫长的历史,经过数学家们的探索和总结,形成了一套独特而有效的解题思路和方法。
本文将概述数学思想方法的主要内容,以及它们在实际问题中的应用。
一、归纳法归纳法在数学中起着重要的作用,它是从特例到一般的推理方法。
通过找出并总结一系列特例的规律,可以得到一般情况的结论。
数学中很多定理的证明都采用了归纳法,如数列的递推关系、数学归纳法等。
例如,对于一个等差数列,我们可以通过观察其中的特例(如前几项),发现每一项与前一项之间的差值是相同的,根据这个规律,可以应用归纳法得出该等差数列的通项公式。
二、演绎法演绎法是从一般的已知条件出发,通过逻辑推理得到特殊的结论。
演绎法在数学证明中经常使用,它包括假设、推理和结论三个基本步骤。
例如,在几何学中,我们可以通过已知的几何定理和公理,应用演绎法来推导出新的结论。
通过一系列严密的逻辑推理,我们可以得到几何图形间的相互关系、面积公式等。
三、逆向思维逆向思维是一种重要的解题方法,它与一般的思维方式相反。
在解决难题时,我们可以尝试从结果出发,逆向推理,找到问题的关键。
例如,在解方程时,如果我们难以通过正向的代数运算求解,就可以考虑逆向思维,设定一个未知数的值,反推出满足方程的条件。
逆向思维有时能够帮助我们发现问题的本质和解决的方向,从而得到更简洁的解法。
四、形象思维数学是一门抽象的学科,但在解决问题时,形象思维起着重要的作用。
通过将抽象的数学概念用具体的形象来表示,可以加深对问题的理解,找到解决问题的关键。
例如,在解决几何问题时,我们可以通过画图来加深对几何性质的理解,从而找到问题的解决思路。
形象思维还可以通过数字转化为图形、实物模型等形式来帮助解决问题。
五、推广与应用数学思维方法不仅局限于纯数学领域,它们在各个领域中都有广泛的应用。
数学思维方法能够帮助我们理清问题的逻辑关系,提高分析和解决问题的能力。
数学中的思想方法数学是一门独特的学科,具有独特的思想方法。
数学的思想方法是数学家在解决问题时所采用的思考方式和严密的逻辑推理过程。
下面我将从抽象化、逻辑性、严谨性、综合性、创造性和实用性六个方面阐述数学的思想方法。
首先,数学的思想方法之一是抽象化。
数学家经常将具体的实际问题抽象成符号、代数或几何结构,通过对符号和结构的处理,寻找问题的普遍性规律。
例如,代数方程是将实际问题抽象成符号形式,通过方程求解来得出问题的解。
其次,数学的思想方法是逻辑性。
数学家通过逻辑推理来得出结论,推导每一步都必须符合严格的逻辑规则,确保推导的正确性。
数学的推理过程严密而明确,每一步都有清晰的证明和推导。
逻辑性是数学思维的基础,也是数学的精髓所在。
第三,数学的思想方法是严谨性。
数学家在解决问题时要求严谨,在每一步推理中都符合逻辑规则和数学定义,不留任何疑点。
严谨性是数学的基本要求之一,它保证了数学的正确性和可靠性。
第四,数学的思想方法是综合性。
数学家在解决问题时需要综合运用多个数学概念和方法,将各种方法和工具结合起来进行分析和求解。
数学的综合性要求数学家具备广泛的数学知识和技能,能够从多个角度去分析和解决问题。
第五,数学的思想方法是创造性。
数学家在解决问题时需要具备创造力,创造新的概念、方法和定理。
数学建立在已有知识的基础上,但新的数学成果往往需要创造性的思维和灵感。
创造性是数学家解决复杂问题和推动数学发展的核心。
最后,数学的思想方法是实用性。
虽然数学具有一定的抽象性和理论性,但数学的应用非常广泛。
数学在物理、工程、经济、计算机等领域都有重要的应用。
数学家通过各种数学模型和方法,对实际问题进行分析和求解,提供实用的解决方案。
综上所述,数学具有独特的思想方法,包括抽象化、逻辑性、严谨性、综合性、创造性和实用性。
这些思想方法使得数学能够独立思考和解决问题,推动数学的发展和应用。
数学思维方法的训练和培养是数学教育的重要目标,也是培养学生逻辑思维和创新能力的关键。
数学的思想方法有哪些数学的思想方法有哪些一、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。
集合思想作为一种思想,在小学数学中就有所体现。
在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。
让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。
利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
二、对应的思想方法对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
三、数形结合的思想方法数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。
“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。
我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
四、函数的思想方法恩格斯说:“数学中的转折点是笛卡儿的变数。
有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。
”我们知道,运动、变化是客观事物的本质属性。
函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。
学生对函数概念的理解有一个过程。
初中数学思想方法初中数学思想方法:培养数学思维的重要途径初中数学是数学学习的基础阶段,掌握一定的数学思想方法对于今后的数学学习和实际应用都具有重要意义。
本文将介绍几种常见的初中数学思想方法,并阐述其在实际学习中的应用。
一、代数思想方法代数思想方法是初中数学中最基本的思想方法之一,主要包括方程思想、函数思想、建模思想等。
方程思想是通过建立方程来解决问题的方法,例如解决应用题中的数量关系问题、几何问题中的面积、体积计算等。
函数思想是通过函数的概念和性质来解决问题的方法,例如一次函数、二次函数、正反比例函数等。
建模思想是通过建立数学模型来解决问题的方法,例如解决实际问题中的最优问题、概率问题等。
二、几何思想方法几何思想方法是初中数学中的重要思想方法之一,主要包括公理法、综合法、分析法等。
公理法是通过公理体系来推导几何定理的方法,例如欧几里得几何公理体系。
综合法是通过综合已知的定理来推导出新的定理的方法,例如通过勾股定理、平行四边形定理等推导出三角形的面积公式。
分析法是通过分析几何图形的性质来解决问题的方法,例如解决几何证明题、几何计算题等。
三、数学归纳法数学归纳法是一种特殊的归纳方法,适用于证明关于自然数的一些属性。
其基本思路是通过有限次的验证来推断无限次的结论,这种方法在数学、科学和工程领域都有广泛的应用。
例如,通过数学归纳法可以证明阶乘公式、斐波那契数列等。
四、转化思想方法转化思想方法是初中数学中常用的思想方法之一,其基本思路是将复杂问题转化为简单问题,将未知问题转化为已知问题。
例如,在解决一些复杂的一次方程或二次方程时,可以通过转化将其转化为简单的线性方程或一元二次方程。
在解决一些较为复杂的几何问题时,可以通过转化将其转化为简单的三角形问题或四边形问题等。
五、数形结合思想方法数形结合思想方法是将数字和图形结合起来解决问题的方法,这种方法可以将抽象的问题形象化、具体化,有助于加深对问题的理解。
例如,在解决一些代数问题时,可以通过画出相应的图形来帮助解决问题。
数学思想方法数学思想方法是数学家们为了解决问题而采用的一系列思考方法和策略。
这些方法和策略涉及到逻辑推理、归纳和演绎、分类和比较、抽象和具体、观察和实验、模型和推广等方面。
首先,逻辑推理是数学思想方法中的重要组成部分。
在数学中,逻辑推理是通过合乎逻辑的推导和推理来得出结论。
数学家会使用各种推理方法,如直接推理、间接推理、反证法等来证明定理和解决问题。
其次,归纳和演绎也是数学思想方法中常用的推理方法。
归纳是通过观察已有的例子或情况得出一般规律或结论。
数学家通过对特殊情况的研究和总结,逐步提炼出普遍规律。
演绎则是从一般规律出发,通过逻辑推理得出特殊情况或结论。
另外,分类和比较是数学思想方法中一种重要的策略。
数学家通过将问题或对象进行分类,找出其中的共性和差异,进而解决问题。
比较不同的对象或方法,可以更好地理解数学概念和定理,并找到解题的思路。
此外,抽象和具体也是数学思想方法中的关键因素。
数学家常常通过抽象来简化问题,将其转化为更容易处理的形式。
同时,数学家也会通过具体的例子或实验来验证和巩固理论和结论。
还有,观察和实验也是数学思想方法中的重要环节。
观察可以帮助数学家发现问题的特征和规律,实验则可以验证和验证数学家的猜想和推论。
最后,模型和推广是数学思想方法中的重要策略。
数学家经常使用模型来描述和分析现实世界中的问题,从而得到理论和结论。
然后,数学家还会尝试将已有的理论和结论推广到更一般的情况,以便解决更复杂的问题。
总之,数学思想方法包括逻辑推理、归纳和演绎、分类和比较、抽象和具体、观察和实验、模型和推广等多个方面。
这些方法和策略有助于数学家解决问题、发现规律和推导定理。
初中数学思想方法大全教学的本质到底是什么?很显然,教学最本质的东西就是传授知识,提高素质,培养能力。
那么,数学教学的本质又是什么呢?众所周知:“数学是思维的体操。
”数学思想方法是数学的精髓,它是数学中最本质最有价值的东西。
它是知识转化为能力的桥梁。
所以从某种意义上说,数学教学的本质就是数学思想方法的教学,在数学教学中,教师除了基础知识和基本技能的教学外,更应重视数学思想方法的参透,注意对学生进行数学思想方法的培养。
一、数学思想方法是什么?数学思想方法是什么呢?其实它包换两个方面,即思想和方法。
所谓数学思想,是指人们对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提练上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。
所谓数学方法,则是在数学提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。
它具有过程性、层次性和可操作性等特点。
数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。
因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响,使学生终生受益。
正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。
加强数学思想方法教学,必然对提高数学教学的质量起到至关重要的作用。
二、初中阶段主要的数学思想方法有哪些?纵观初中新课标教材,涉及到的数学思想方法大体可分为三种类型。
第一类是技巧型思想方法(也称低层次数学思想方法),包括消元、降次、换元、配方、待定系数法等,这类方法具有一定的操作步骤。
比较容易为学生所接受。
第二类是逻辑型的思想方法(也称较高层次数学思想方法),包括类比、抽象、概括、归纳、分析、综合、演绎、特殊化方法、反证法等,这类方法都具有确定的逻辑结构,是普通适用的逻辑推理论证模型。
如何掌握数学思想方法数学方法是数学思想在数学认识活动中的具体反映和体现,是研究问题、解决问题的数学工具、手段、方式或程序。
数学思想和方法是数学中的精髓。
任何数学事实的理解,数学概念的掌握,数学理论的建立都是数学思想和方法的体现和应用。
历史表明,一个重大数学成果的取得往往是与数学思想和方法的突破分不开的。
数学思想和方法寓于数学知识之中。
所以在数学教学中应该把数学思想和方法的培养与数学知识的教学融为一体。
不仅教给学生数学知识,即概念、性质、定理、法则、公式等结果,而且更重要的是如何得到这些知识的过程。
这个过程的实质就是发现数学和运用数学,是比数学知识本身即结果更重要、更为宝贵的数学思想和方法。
数学教学中始终注意的是运用的是什么数学思想和数学方法?告诉学生这种思想或方法的好处在哪里等等。
标签:数学方法;数学思想;数学内容数学思想方法是数学的灵魂,学习数学也意味着学习相应的数学思想方法。
《全日制义务教育数学课程标准》明确要求:“人人学有价值的数学,不同的人在数学上得到不同的发展.”数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法。
它能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,它能把知识的学习与培养能力、发展智力有机地统一起来。
随着科技的发展和人文科学的进步,对数学教职人员的教学方法、教学理念有了更进一步的要求。
在数学教学方面,教师不仅要教授数学知识,更要渗透掌握数学思想方法才能将教学做得淋漓尽致。
如何掌握数学思想方法成为越来越多的数学教师关注和思考的问题。
一、中学数学中的主要数学思想和方法数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。
由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。
数学专家认为,在中学数学中应予以重视的数学思想主要有3个,即集合思想、化归思想和对应思想。
初中数学思想方法初中数学思想方法是指在解决数学问题时所运用的思维方式和方法论。
初中数学内容相对简单,但思想方法却是数学学习中最为重要的一部分。
正确的思想方法可以帮助学生快速解决问题,提高数学学习的效果。
下面我将从几个方面介绍初中数学的思想方法。
首先,初中数学思想方法要注重理解。
数学是一门抽象的学科,很多概念和定理都需要通过逻辑推理来理解。
因此,学生在学习数学时应该注重理解概念的本质和定理的证明过程。
只有真正理解了数学的本质,才能更好地应用数学知识解决问题。
其次,初中数学思想方法要注重归纳总结。
数学知识是有规律可循的,学生应该通过归纳总结,找出其中的规律,并加以应用。
比如,学习等差数列时,可以通过观察数列的前几项找到其通项公式,从而可以快速求解问题。
因此,学生在学习数学时应该注重总结规律,提高问题解决的效率。
再次,初中数学思想方法要注重抽象思维。
数学是一门抽象的学科,它可以将具体的问题抽象为一般的模式,从而解决更加复杂的问题。
比如,学习方程时,可以将问题中的未知数抽象为x,从而转化为一般的方程求解。
因此,学生在学习数学时应该注重培养抽象思维能力,将具体问题抽象为一般模式,从而解决更加复杂的问题。
最后,初中数学思想方法要注重实践应用。
数学是一门实践性很强的学科,只有通过实践应用才能真正理解和掌握数学知识。
因此,学生在学习数学时应该注重实践应用,通过做题、解题等方式将数学知识应用到实际问题中,从而提高数学解决问题的能力。
总之,初中数学思想方法是数学学习中最为重要的一部分。
正确的思想方法可以帮助学生快速解决问题,提高数学学习的效果。
初中数学思想方法包括注重理解、归纳总结、抽象思维和实践应用等方面。
通过培养这些思想方法,学生可以更好地掌握数学知识,提高解决问题的能力。