大连理工大物作业答案
- 格式:pdf
- 大小:683.29 KB
- 文档页数:10
大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:y a qy23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
作业3(静电场三)1.电场中某区域内电场线如图所示,将一点电荷从M 移到N 点则必有[ ]。
.A 电场力的功0M N A >.B 电势能M N W W >.C 电势M N U U >.D 电势M N U U <答案:【C 】解:由于静电场的无旋性,电场强度的线积分与路径无关,由M 点到N 点的线积分(即M 点与N 点之间的电势差),可以取任意路径。
现取积分路径为:由M 点到O 点,处处与电场线(电场强度方向)垂直;由O 点到N 点,处处沿着电场线。
则0=⋅=-⎰O M O M l d E U U,0>=⋅=-⎰⎰NONON O Edl l d E U U因此,M 点与N 点的电势差为0)()(>=⋅+⋅=-+-=⋅=-⎰⎰⎰⎰NONOOMN O O M N MN M Edl l d E l d E U U U U l d E U U所以,C 正确,D 错误。
由M 点到O 点,电场力所作的功为(设移动电荷量为q )⎰⋅=-=N MN M N M l d E q U U q A)( 尽管0>⋅⎰N Ml d E,但不知q 的正负,无法判断NMA 的正负。
当0>q ,即移动正电荷时,电场力作功为正,0>NM A ;如果移动的是负电荷,电场力作功为负,0<NMA 。
电势能是静电场中的带电粒子与电场共同拥有的能量。
定义为,点电荷q 在静电场中M 点时,系统拥有的电势能为:从M 点移动电荷q 到电势零点的过程中,电场力所作的功,MM M M qUl d E q A W =⋅==⎰→0,静电势能等于电荷量与电荷所在点电势的乘积。
电场力所作的功等于静电势能的减少,静电场中M 点与N 点系统的电势能之差,等于移动点电荷q 由M 点到N 点的过程中电场力所作的功)(NM NM N M N M UU q l d E q A W W -=⋅==-⎰→尽管0>-N M U U ,但电势能之差还与电荷q 有关,不能判断N M W W -的正负。
2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。
大连理工大学软件学院大学物理作业及答案作业11.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:y a qy23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
作业二十五 稳恒磁场(一)11225-1. 7.210(T)B j −=×GG129.6107.21120(T)B j i −−=×−×G G G25-2.00I 2B Lπ=,方向与水平线成45度角,指向右上方。
25-3.(1)04I 2112(R R R R B μ−=,方向垂直纸面向外。
(2)2221()R 2Im R π=−,方向垂直纸面向内。
25-4.(1)02IB R(2μπ=2−,方向垂直纸面向内。
(2)0062I IB R R(2μμπ=2+2A m )×610(T)−,方向垂直纸面向内。
25-6.2412.55(T )9.3410(B m −==25-7. ,方向垂直纸面向外。
6.37B =×作业二十六 稳恒磁场(二)26-1. I02μB x π=,Φ=0。
26-2. 222m v e B πΦ=26-3. I l 0μ=B d ⋅∫KK 。
26-4.6()Wb −2.1910Φ=×26-5. 2202200(()2()2I r a )()()r a B a r b a I r μπμπ⎧⎪⎪−⎪=≤⎨−⎪⎪≥⎪⎩r b r b ≤≤ 26-6.解:(1)2211)())r D 00(20(NI B D r r μπ⎧⎪⎪=<⎨⎪>⎪⎩D r D << ;2(2)d d Bh r Φ=B 01d ln 2NIh D ND μπΦΦ=∫Φ= 226-7. 用安培环路定理,可以证明图中B 1=B 2;用高斯定理,可以证明图中 B ′1=B ′2。
B 命题得证作业二十七 稳恒磁场(三)27-1. 2R IB M = 方向竖直向上27-2. 02afe Iv πμ=4(/d v m − 27-3.(1)ab 两点间的电势差,b 点电势高。
(2) 1.0710)s ∴=×2835.8410(m )−=×。
2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。
作业5 静电场五2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。
大连理工大学软件学院大学物理作业及答案作业11.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:j y a qyE 23220)(2+=πε,2/a y ±=[解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==y a qyE y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
I.作业33答案1、什么叫波动光学?什么叫几何光学?什么情况下可以用几何的方法研究光学问题?答:波动光学是以波动理论来研究光的干涉、衍射等现象的光学分支;几何光学是以光线为基础,研究光的传播和成像规律的光学分支。
在光学中,可以忽略波长,即相当于λ→0极限情况的这一分支,通常称为几何光学,因为在这种近似处理下,光学定律可以用几何学的语言来表述。
2、费马原理的数学表达式为 Nnd l <Mnd l ,请说明“<”两边积分式的物理意义。
答:左边是光程,右边是光学长度,光线沿光学长度最短的路径传播。
3、光在折射率为n (x )的空间沿直线从P 1(x 1)传播到P 2(x 2),写出这段光程的数学表示式。
答:δ= x 2x 1n (x )dx4、图33-1中的P 是物P 经薄透镜L 所成的像。
(1)请用作图法画出入射平行光经透镜后的像;(2)简单写出步骤和理由。
解:(1)(2)先利用两条特殊光线a ,b 确定焦点位置,再作出焦平面;这束平行光中过透镜中心的光线与焦平面交点P ,则该平行光汇聚在P 点。
5、如图33-2所示,F 、F 分别是薄透镜L 的物空间和像空间的焦点。
请用作图法分别求物P 的像(用P 表示)。
6、杨氏双缝实验,己知d=0.3mm,D=1.2m ,测得两个第7级暗条纹中心的间距为22.78mm ,求入射单色光的波长,并说明其颜色。
解:单色光杨氏双缝干涉实验中,暗条纹的位置为x k =(2k −1)Dλ2d ∆x =x 7−x −7=13Dλd所以λ=∆xd 13D =22.78×10−3×0.3×10−313×1.2m =438nm光的颜色为紫色7、如图33-4所示,洛埃镜长2cm ,观察屏与镜边相距l 1=1.6cm ;线光源S 离镜面的高度为h=0.5mm ,到镜另一边的水平距离l 2=2cm ,实验用准单色光波长为600nm ,(1)求屏上干涉条纹的间距;(2)标出屏幕上的相干区域;(3)计算最多能出现的明条纹数目。
作业6 静电场六它们的静电能之间的关系是[ ]。
.A 球体的静电能等于球面的静电能 .B 球体的静电能大于球面的静电能 .C 球体的静电能小于面的静电能.D 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能 答案:【B 】解:设带电量为Q 、半径为R ,球体的电荷体密度为ρ。
由高斯定理,可以求得两种电荷分布的电场强度分布022επQ E r S d E S==⋅⎰⎰,2002r Q E επ=对于球体电荷分布:03223402031>==ερεπρπr rr E ,(R r <);2022r Q E επ=,(R r >)。
对于球壳电荷分布:0/1=E ,(R r <);20/22rQ E επ=,(R r >)。
可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分布无电场。
静电场能量密度2021E εω=两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电荷分布,也是场分布,故也有静电能。
所以球体电荷分布时,球内的静电场能量,大于球面电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布时,球外的静电场能量。
2.1C 和2C 两空气电容器串联起来接上电源充电,然后将电源断开,再把一电介质板插入1C 中,如图6-1所示,则[ ]。
.A 1C 两端电势差减少,2C 两端电势差增大.B 1C 两端电势差减少,2C 两端电势差不变 .C 1C 两端电势差增大,2C 两端电势差减小 .D 1C 两端电势差增大,2C 两端电势差不变答案:【B 】解:电源接通时,给两个串联的电容器充电。
充电量是相同的,是为Q 。
则两个电容器的电压分别为11C Q U =,22C Q U = 电源断开后,1C 插入电介质,两个电容器的电量不变,仍然都是Q 。
但1C 的电容增大,因此1C 两端的电压降低;而2C 不变,因此,2C 两端的电压不变。
作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内得静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外得线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。
这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。
那么,就是[ ]。
该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。
注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。
3.一不带电得导体球壳半径为,在球心处放一点电荷。
大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:j y a qyE 23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
作业11.g R t /2=(R 为圆环的半径)与θ角无关,质点沿任何弦下滑所用的时间都一样。
2.0v =G ;12sin(2)v v a t vθ∆=⋅∆∆GG 。
3.(1)(1)29v t s i j ==+G G G ;(2)21239r r v i j t −==+∆G G G G G ,2136v v a j t −==∆G G G G 。
4.质点A 运动的轨道方程为 3182y x =−,直线;质点B 运动的轨道方程为 29417x y −=,抛物线;质点C 运动的轨道方程为 1622=+y x ,圆; 质点D 运动的轨道方程为 16522=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛y x ,椭圆.。
5.(1)s t 1=、s t 2=时刻的速度和加速度分别为(1s)3(m/s)v t ==,2(1)3(m/s )a t s ==−(2s)6(m/s)v t ==−,2(2)15(m/s )a t s ==−;(2)第2秒内质点的平均加速度为第2秒内质点的平均加速度为2(2s)(1s)9(m/s )v t v t a t=−===−∆第2秒内质点所通过的路程为[( 1.5s (1s))][( 1.5s)(2s)] 2.25(m)S y t y t y t y t ==−=+=−==。
6. (1)火箭的速度函数为 d ln(1)d x v u bt t ==−−;火箭的加速度函数为 d d 1v uba t bt==−; (2)(0s)0v t == 31(100) 4.1610ms v t s −==×;(3)2(0)22.5ms a t s −== 2(100)90ms a t s −==;7. (1) 质点的运动轨道 82+=x y (轨道曲线略);(2) m j i r G G G 1221+=,m j i r G G G 2442+=;2182−+=ms j i v G G G,22162−+=ms j i v G G G ;2218−==ms j a a G GG .8. n a 增大,t a 不变,a 增大;tn a a=αtan ,由于n a 增大,t a 不变,所以α增大。
作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内的静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外的线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。
这样,空间电场强度分布r r qr E ˆ4)(201πε=,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+= ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπε则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。
那么,E 是[ ]。
.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。