大连理工大学大学物理作业5(静电场五)及答案详解
- 格式:doc
- 大小:315.00 KB
- 文档页数:4
第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。
对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。
静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。
5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。
通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。
只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。
5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。
由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。
但不能保证面内各局部空间无净电荷。
例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。
5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。
0lE dl⋅=⎰表示静电场的电场线不能闭合。
如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。
静电场的电势(参考答案)班级: 学号: 姓名: 成绩:一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qr q +πε;(C )r Q q 04πε+; (D ))(041R qQ r q -+πε;参考:电势叠加原理。
[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为: (A ))(21114r r Q--πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ --πε; (D ))(4120r r qQ--πε。
参考:电场力做功=势能的减小量。
A=W a -W b =q(U a -U b )。
[ C ]3.某电场的电力线分布情况如图所示,一负电荷从M 点移到N 点,有人根据这个图做出以下几点结论,其中哪点是正确的 (A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。
[ C ]r 2(-Q)Abr 1 B a (q )M※4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。
参考:如图,先用高斯定理可知导体内表面电荷为-q ,导体外表面无电荷(可分析)。
虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。
[ D ]二 填空题1.图中所示为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并比较他们的大小, E a = E b (填<、=、>)。
作业5 静电场五2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。
第5章静电学一、选择题1. 关于真空中两个点电荷间的库仑力[](A)是一对作用力和反作用力(B) 与点电荷的电量成正比,电量大的电荷受力大,电量小的电荷受力小 (C) 当第三个电荷移近它们时,力的大小方向一定会发生变化 (D) 只有在两点电荷相对静止吋,才能用库仑定律计算2. 将某电荷Q 分成q 和(0-q)两部分,并使两部分离开一定距离,则它们之间 的库仑力为最大的条件是3. 正方形的两对角处,各置点电荷Q,其余两角处各置点电荷q, 若某一 0所受合力为零,则0与g 的关系为 [](A)0=—2.也 (B)Q=2.切(C)Q=~2q (D)0=2g4. 两点电荷间的距离为d 时,其相互作用力为F ・当它们间的距T5-1-3国离增大到2〃时,其相互作用力变为FF —(D)—245. 关于静电场,下列说法中正确的是[] (A) 电场和检验电荷同时存在,同时消失(B) 由E 二F/g 知,电场强度与检验电荷电量成反比 (C) 电场的存在与否与检验电荷无关 (D) 电场是检验电荷与源电荷共同产生的 __ F6. 电场强度定义式E 二—的适用范围是q[](A)点电荷产生的场(B)静电场 (C)匀强电场(D)任何电场[](A)(B)g 二—°2(C) q = -^ (D)g 二—°4816[](A) 2F (B) 4F (C)7.由场强的定义式E —可知q[](A)E与F成正比,F越大E越大(B)E与g成反比,g越大E越小一一—e(C) E的方向与F的方向一致(D) E的大小可由尸/ g确定8.关于电场强度,以下说法中正确的是[](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E = F/q定出,其中q可正,可负(D)以上说法全不正确9.关于电场线,下列叙述中错误的是[](A)电场线出发于正电荷,终止于负电荷(B)除电荷所在处外,电场线不能相交(C)某点附近的电场线密度代表了该点场强的大小(D)每条电场线都代表了正的点电荷在电场中的运动轨迹10.关于电场线,以下说法屮正确的是[](A)电场线一定是电荷在电场力作用下运动的轨迹(B)电场线上各点的电势相等(C)电场线上各点的电场强度相等(D)电场线上各点的切线方向一定是处于各点的点电荷在电场力作用下运动的加速度方向11.在静电场屮,电场线为平行直线的区域内[](A)电场相同,电势不同(B)电场不同,电势相同(C)电场不同,电势不同(D)电场相同,电势相同12.一个带电体要能够被看成点电荷,必须是[](A)其线度很小(B)其线度与它到场点的距离相比足够小(C)其带电量很小(D)其线度及带电量都很小qr13. ______________________ 电场强度计算式E " 4兀0。
作业6 静电场六它们的静电能之间的关系是[ ]。
.A 球体的静电能等于球面的静电能 .B 球体的静电能大于球面的静电能 .C 球体的静电能小于面的静电能.D 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能 答案:【B 】解:设带电量为Q 、半径为R ,球体的电荷体密度为ρ。
由高斯定理,可以求得两种电荷分布的电场强度分布022επQ E r S d E S==⋅⎰⎰,2002r Q E επ=对于球体电荷分布:03223402031>==ερεπρπr rr E ,(R r <);2022r Q E επ=,(R r >)。
对于球壳电荷分布:0/1=E ,(R r <);20/22rQ E επ=,(R r >)。
可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分布无电场。
静电场能量密度2021E εω=两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电荷分布,也是场分布,故也有静电能。
所以球体电荷分布时,球内的静电场能量,大于球面电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布时,球外的静电场能量。
2.1C 和2C 两空气电容器串联起来接上电源充电,然后将电源断开,再把一电介质板插入1C 中,如图6-1所示,则[ ]。
.A 1C 两端电势差减少,2C 两端电势差增大.B 1C 两端电势差减少,2C 两端电势差不变 .C 1C 两端电势差增大,2C 两端电势差减小 .D 1C 两端电势差增大,2C 两端电势差不变答案:【B 】解:电源接通时,给两个串联的电容器充电。
充电量是相同的,是为Q 。
则两个电容器的电压分别为11C Q U =,22C Q U = 电源断开后,1C 插入电介质,两个电容器的电量不变,仍然都是Q 。
但1C 的电容增大,因此1C 两端的电压降低;而2C 不变,因此,2C 两端的电压不变。
大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ](A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ;(C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。
作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内得静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外得线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。
这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。
那么,就是[ ]。
该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。
注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。
3.一不带电得导体球壳半径为,在球心处放一点电荷。
2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A
0σε' .B 02σε' .C 0r σεε' .D r
σε' 答案:【A 】
解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/
εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立
答案:【B 】
解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。
答案:r D 2πλ=
, r
2E r 0επελ= 解:如图,取柱面高斯面。
根据对称性,柱面(高
斯面)的上下底上,电位移矢量D
与高斯面法线
方向垂直;柱面(高斯面)的侧面上,电位移矢量D
处处大小相等,并与高斯面法线方向平行。
由高斯定理,得到
0Q S d D S
=⋅⎰⎰ ,λπl rlD =2,r D 2πλ= 电场强度为 r
D
E r r
επελ
εε002=
=
5.一带电量q 、半径为R 的金属球壳,壳内充满介电常数为ε的各向同性均匀电介质,壳外是真空,则此球壳的电势U = 。
答案:
R
q 04πε
解:由高斯定理,可以求得球壳外电场强度
2
04r q E πε=
取无限远处电势为零,则
R
q ds E U R
04cos πεθ=
=⎰∞
6.两个点电荷在真空中相距为1r 时的相互作用力等于在某一“无限大”均匀电介质中相距为2r 时的相互作用力,则该电介质的相对介电常数r ε= 。
答案:22
2
1r r r =ε
解:在真空中,两个点电荷之间的作用力(库仑力)为2
102
14r Q Q F πε=
点电荷1Q 在“无限大”电介质中产生的电场强度为2
01
/14r
Q E r επε= 点电荷2Q 受到的库仑力为2
2
021/
12/4r Q Q E Q F r επε== 依题F F =/
2
20212102144r Q Q r Q Q r επεπε= ⇒ 22
2
1r r r =ε 7.有一同轴电缆,内、外导体用介电系数分别为1ε和2ε的两层
电介质隔开。
垂直于轴线的某一截面如图5-2所示。
求电缆单位长度的电容。
解:取高斯面为柱面。
柱面的半径为r 、长度为l ,对称轴为同轴电缆的对称轴,柱面在同轴电缆的两极之间。
由对称性,高斯面上的上下底面电位移矢量与高斯面法线方向垂直;侧面上,电位移矢量处处大小相等,并且与高斯面平行。
由高斯定理,有
l q rlD S d D S
λπ===⋅⎰⎰02 , r r D ˆ 2πλ
= ,31R r R << 则同轴电缆的两极之间的电场强度为
r r
D E ˆ211
1πελε=
=
,21R r R <<;r r
D
E ˆ222
2πελ
ε=
= ,32R r R << 同轴电缆的两极之间的电势差为
)ln 1ln 1(22ˆ22
3
212121113
2
2
1
32
21
21
R R R R r d r r d r r r d E r d E l d E U R R
R R R R R R R R εεπλπελπελ+=
⋅+⋅=⋅+⋅=⋅=⎰⎰
⎰⎰⎰
单位长度的高斯面包围的自由电荷量为λ=0q
则单位长度的同轴电缆的电容为:2
3112
22
100ln
ln 2R R R U
U q C εεεεπελ+===
8.在一平行板电容器的两极板上,带有等值异号电荷,两极间的距离为5.0mm ,充以3
r ε=
的介质,介质中的电场强度为61
1.010V m -⨯⋅。
求:()1介质中的电位移矢量;()2平板上的自由电荷面密度;()3介质中的极化强度;
()4介质面上的极化电荷面密度;()5平板上自由电荷所产生的电场强度,介质面上极化电
荷所产生的电场强度。
解:(1) 25010655.2--⋅⨯===m C E E D r εεε (2) 250010655.2--⋅⨯===m C E D r e εεσ (3) 2501077.1--⋅⨯==m C E P e εχ (4) 25/
1077.1--⋅⨯==m C P e σ
(5) 16000100.3/-⋅⨯===m V E E r e εεσ,
160/100.2)1(-⋅⨯=-=-=m V E E E E r ε
或162
12122
50/
/
100.21085.81077.1/------⋅⨯=⋅⋅⨯⋅⨯==C N m
N C m C E e εσ 9. 一导体球,带电量q ,半径为R ,球外有两种均匀电介质。
第一种介质介电常数为1r ε、
厚度为d ,第二种介质为空气21r ε=充满其余整个空间。
求球内、球外第一种介质中、第二种介质中的电场场强、电位移矢量和电势。
解:由高斯定理,得到电位移矢量的空间分布
01=D ,
(R r <);2
324r
q
D D π==,(r R <)。
电场强度的空间分布:
01=E ,(R r <);2
1024r q E r επε=,(d R r R +<<);2
034r q E πε=
,(d R r +>)。
球壳内电势:(R r <)
)
(4)11(
4440102
02
103211d R q
d R R q
dr
r q
dr r q r d E r d E r d E l d E U r d
R d R R
r d
R d R R
R r
r
++
+-=
+
=⋅+
⋅+⋅=⋅=⎰
⎰
⎰⎰⎰⎰∞
++∞
++∞
πεεπεπεεπε
球外第一种介质中的电势:d R r R +<<
)
(4)11(4440102
02
10322d R q d R r q
dr
r
q dr r
q r d E r d E l d E U r d
R d R r
r d
R d R r
r
++
+-=
+
=⋅+⋅=⋅=⎰
⎰
⎰⎰⎰∞
++∞++∞πεεπεπεεπε
球外第二种介质中的电势:d R r +>
r q
dr r
q r d E l d E U r r r 02
03144πεπε+==⋅=⋅=⎰⎰⎰∞∞∞ 10.半径为R 的均匀带电金属球壳里充满了均匀、各向同性的电介质,球外是真空,此球
壳的电势是否为
4Q
R
πε?为什么?
答:球壳外电场分布r
r
Q E ˆ42
0πε=
,球壳电势为
R
Q •dr r Q
r d r
r Q
l d E U R
R
R
02
02
044ˆ4πεπεπε=
=⋅=⋅=⎰⎰
⎰∞
∞
∞。