抗体的制备方法与原理
- 格式:doc
- 大小:116.50 KB
- 文档页数:14
单克隆抗体的制备原理及方法
单克隆抗体的制备原理及方法是通过以下步骤来实现的:
1. 免疫原的选择:选择一个目标抗原,并将其注入到免疫宿主中,例如小鼠。
2. 免疫应答:免疫宿主的免疫系统会识别并产生抗体来应对免疫原的存在。
3. 融合细胞的制备:从免疫宿主中取得抗体产生的细胞,并与癌细胞(如骨髓瘤细胞)融合,形成杂交瘤细胞。
4. 杂交瘤细胞的筛选:采用适当的培养基,筛选出那些能够生存和增殖的杂交瘤细胞。
这些细胞具有与原先抗体产生细胞相同的生长特性。
5. 单克隆抗体的筛选:将培养基中的每个细胞与免疫原进行反应,然后用酶联免疫吸附试验(ELISA)或流式细胞术等方法筛选出特异性抗原结合的细胞。
6. 单克隆抗体的扩增:将特异性抗原结合的细胞分离并培养,使其增殖,形成一个与原始细胞相同的细胞群。
除了以上的制备原理,还可以使用其他的方法来制备单克隆抗体,例如基因工程方法、人源化方法等。
这些方法可以通过人工改造的方式来制备单克隆抗体,以满足特定需求。
抗体的制备方法与原理-单克隆抗体的制备1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。
这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。
免疫细胞化学的技术关键之一是制备特异性强、亲合力大、滴度高的特异性抗体,由于每种抗原都有几个抗原决定簇,用它免疫动物将产生对各个决定簇的抗体,即多克隆抗体。
单克隆抗体则是由一个产生抗体的细胞与一个骨髓瘤细胞融合而形成的杂交廇细胞经无性繁殖而来的细胞群所产生的,所以它的免疫球蛋白属同一类型,质地纯一,而且它是针对某一抗原决定簇的,因此特异性强,亲合性也一致。
单克隆抗体(McAb)的特性和常规血清抗体的特性比较见2-3。
表2—3 单克隆抗体(McAb)和常规免疫血清抗体的特性比较单克隆抗体的制备方法如下。
(一)动物的选择与免疫1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。
目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。
2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb 至关重要。
一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。
(1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。
常用佐剂:福氏完全佐剂、福氏不完全佐剂。
初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点)↓3周后第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml)↓3周后第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价)↓2~3周加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射)↓3天后取脾融合目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。
抗体的制备方法与原理抗体是一种能够识别和结合特定抗原的蛋白质,广泛应用于医学诊断、治疗和研究领域。
抗体的制备方法包括动物免疫和体外选择性放大两种主要途径。
以下将详细介绍这两种方法及其原理。
一、动物免疫法制备抗体动物免疫法是制备多种特异性抗体的主要方法,常用的动物包括小鼠、兔子、大鼠等。
制备抗体的主要步骤如下:1.抗原选择:首先需要选择目标抗原,可以是蛋白质、多肽、糖蛋白、核酸等。
抗原应具有免疫原性,能在动物体内引起免疫反应。
2.免疫原免疫:将抗原与适当的佐剂混合后注射到动物体内,佐剂可以增强抗原的免疫原性,如完全弗氏佐剂、佐科克佐剂等。
注射的剂量和时间间隔需根据具体实验目的和动物种类进行优化。
3.收集血清和分离抗体:免疫一定时间后,收集动物的全血或血清,离心分离血清,其中包含了目标抗体。
4.抗体纯化:通常使用亲和层析、凝胶过滤层析等方法将血清或血浆中的抗体纯化出来。
亲和层析是最常用的抗体纯化方法,利用特定配体或抗原结合柱将目标抗体捕获,再洗脱得到纯抗体。
二、体外选择性放大法制备抗体体外选择性放大法是指通过技术手段进行人工放大和筛选特定抗体,主要包括以下步骤:1.生成抗体文库:将来自多个个体免疫系统的B细胞或血浆细胞收集起来,提取RNA或DNA,然后利用逆转录酶合成cDNA或文库,得到抗体基因的cDNA文库。
2.构建抗体显示系统:将抗体基因文库插入适当的表达载体中,如噬菌体、酵母、哺乳动物细胞表达系统等。
3.筛选特异性抗体:利用高通量筛选技术,如细胞表面展示、比对深度测序等,可通过抗原结合的特异性来筛选出具有高亲和力的抗原结合片段或全长抗体。
4.抗体表达和纯化:通过选择后的抗体基因进行表达,再经过蛋白纯化和检验等步骤,最终得到目标抗体。
抗体制备的原理主要是基于免疫系统的免疫应答机制。
当机体受到抗原的刺激后,机体会产生一系列免疫应答,其中包括B细胞的活化和分化。
经过抗原的结合和识别,B细胞会分泌具有高亲和力的抗体。
基因工程抗体制备原理
1. 靶抗原选择:根据需要制备的抗体的特定功能和应用领域,选择合适的靶抗原。
靶抗原可以是纯化的蛋白质,细胞表面分子等。
2. 基因克隆:将靶抗原的基因序列克隆到适当的表达载体中,例如质粒或病毒载体。
这个过程通常涉及使用限制性内切酶切割目标基因和载体,并通过DNA连接酶将它们连接起来。
3. 转染宿主细胞:将重组载体导入宿主细胞,使其表达靶抗原基因。
可以使用多种方法进行转染,包括电穿孔、高压转染或病毒介导的转染。
4. 细胞培养与表达:培养被转染的宿主细胞,在适当的培养基中表达靶抗原。
这些细胞通常是哺乳动物细胞,如CHO细胞。
5. 抗体纯化:通过多种分离技术将抗体从培养物中纯化出来。
常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。
6. 抗体测试和鉴定:通过各种实验方法,如ELISA、Western blot等,验证所制备的抗体的特异性和相关功能。
基因工程抗体制备利用了基因重组技术和细胞工程技术,能够高效、精确地制备特定的抗体,具有广泛的应用前景。
多克隆抗体的制备过程及原理
多克隆抗体是一种由多个不同的B细胞克隆所产生的抗体,能够识别并结合多个抗原表位。
其制备过程主要包括以下几个步骤:
1. 免疫原的选择:选择目标抗原,可以是蛋白质、多肽、细胞表面蛋白等。
2. 免疫动物的选择:根据抗原的物种来源,选择合适的免疫动物,如小鼠、兔子、山羊等。
3. 免疫动物的免疫:将免疫原注射到免疫动物体内,激发免疫反应。
通常采用多次免疫,间隔一定时间进行。
4. 细胞融合:从免疫动物体内提取免疫细胞,通常采用脾细胞或骨髓细胞。
与骨髓或脾细胞进行融合,得到杂交瘤细胞。
5. 杂交瘤细胞筛选:采用筛选培养基,筛选出杂交瘤细胞,一般是通过对杂交瘤细胞进行限稀稀释培养,进行单克隆细胞的筛选。
6. 克隆抗体的生产:将单克隆细胞进行扩增,并进行细胞培养,使其产生大量的抗体。
多克隆抗体制备的原理是利用免疫动物的免疫系统产生多个克隆的抗体。
当免疫
原进入免疫动物体内时,会激发免疫细胞产生对应的免疫反应,形成多个不同的克隆细胞。
这些克隆细胞会产生具有不同的抗体结构的抗体分子。
通过细胞融合和杂交瘤筛选的步骤,可以筛选出产生目标抗原特异性抗体的单克隆细胞,并进行大规模生产。
这样就获得了能够结合多个抗原表位的多克隆抗体。
简述单克隆抗体的制备原理
单克隆抗体是指由单个B细胞克隆所产生的同一种抗体分子,具有高度特异性和亲和力。
制备单克隆抗体的方法有多种,其中最常用的是杂交瘤技术。
制备单克隆抗体的过程主要分为以下几个步骤:
1. 免疫动物
首先需要选取与目标抗原相关的免疫原来免疫动物,一般常用的免疫原包括蛋白质、多肽、糖类、细胞表面分子等。
免疫动物可以选择小鼠、大鼠、兔子等。
2. 分离B细胞
将免疫动物的脾脏取出,制备成单细胞悬液,然后通过离心、梯度离心等方法分离出B细胞。
B细胞是免疫系统中产生抗体的主要细胞类型。
3. 杂交瘤的制备
将B细胞与骨髓瘤细胞进行融合,形成杂交瘤细胞。
骨髓瘤细胞是一种白血病细胞,具有无限增殖的能力,但不产生抗体。
通过融合,可以将B细胞的抗体产生能力与骨髓瘤细胞的无限增殖能力结合在一起,形成具有两种细胞的特点的杂交瘤细胞。
4. 筛选单克隆抗体
将杂交瘤细胞进行分离和培养,筛选出产生特定抗原的单克隆抗体。
可以通过酶联免疫吸附试验、流式细胞术等方法鉴定和筛选出单克隆抗体。
5. 大规模制备和纯化
通过大规模培养杂交瘤细胞,可以得到足够数量的单克隆抗体,然后通过柱层析、电泳等方法对单克隆抗体进行纯化,得到高纯度的单克隆抗体。
总的来说,单克隆抗体的制备过程需要经过免疫动物、分离B细胞、杂交瘤的制备、筛选单克隆抗体和大规模制备和纯化等步骤。
这些步骤需要严格控制条件和技术,以确保制备出高质量的单克隆抗体。
单克隆抗体的制备原理及方法单克隆抗体是一种由单一克隆B细胞产生的抗体,具有高度的特异性和亲和力。
它在生物医药领域有着广泛的应用,包括疾病诊断、治疗和生物学研究等方面。
本文将介绍单克隆抗体的制备原理及方法,希望能对相关领域的研究人员有所帮助。
一、制备原理。
单克隆抗体的制备原理主要包括以下几个步骤,抗原免疫、细胞融合、筛选和鉴定、扩增和保存。
首先,通过将目标抗原注射到实验动物体内,诱导其产生特异性抗体。
然后,从免疫动物体内获得B细胞,与骨髓瘤细胞进行融合,形成杂交瘤细胞。
接着,通过细胞培养和筛选,筛选出产生特异性单克隆抗体的杂交瘤细胞。
最后,对所得的单克隆抗体进行扩增和保存,以备进一步的实验和应用。
二、制备方法。
1. 抗原免疫。
选择合适的实验动物,根据抗原的特性和研究需要,选择合适的免疫方案,包括抗原的种类、免疫的途径和次数等。
2. 细胞融合。
将获得的B细胞与骨髓瘤细胞进行融合,形成杂交瘤细胞。
融合细胞的筛选条件包括杂交瘤细胞的生长条件、培养基的成分和杂交瘤细胞的筛选方法等。
3. 筛选和鉴定。
通过特异性抗原的筛选和鉴定,筛选出产生特异性单克隆抗体的杂交瘤细胞。
鉴定的方法包括ELISA、免疫印迹、免疫荧光等。
4. 扩增和保存。
对所得的单克隆抗体进行扩增和保存,以备进一步的实验和应用。
扩增的方法包括体外培养、动物体内生长等。
三、实验注意事项。
在进行单克隆抗体的制备过程中,需要注意以下几个方面的实验注意事项,实验动物的选择和管理、抗原的制备和纯化、细胞融合和杂交瘤细胞的培养条件、单克隆抗体的鉴定和保存等。
四、应用前景。
单克隆抗体作为一种重要的生物医药制剂,在疾病诊断、治疗和生物学研究等方面具有广阔的应用前景。
随着生物技术的不断发展,单克隆抗体的制备技术也在不断完善,相信在未来会有更多的应用领域被开发出来。
综上所述,单克隆抗体的制备原理及方法是一个复杂而又具有挑战性的过程,需要研究人员在实验操作中严格把关,以确保所得的单克隆抗体具有高度的特异性和亲和力。
多克隆抗体的制备流程及原理
多克隆抗体的制备流程及原理可以参考以下步骤:
1. 抗原免疫:使用目标抗原免疫动物,例如小鼠,在一定时间间隔内多次免疫。
抗原可以是纯化的蛋白质、多肽片段或者细胞/组织提取物。
2. 细胞融合:将免疫小鼠脾脏与骨髓中的浆细胞混合,然后使用聚乙二醇等方法促使细胞融合,获得杂交瘤细胞。
3. 杂交瘤筛选:将杂交瘤细胞悬浮液分别分装于多个培养皿中,含有杀死未融合细胞的培养基中,通过限制性稀释法或离子交换法,筛选出高产、单克隆抗体的杂交瘤细胞。
4. 单克隆抗体培养与提取:将筛选出的单克隆杂交瘤细胞进行扩增培养,获取大量的细胞。
然后通过细胞培养上清液、腹水或腹水灌洗法获得单克隆抗体。
多克隆抗体制备的原理如下:
多克隆抗体是指由多个不同的抗体产生细胞(即多克隆细胞)产生的一类抗体。
其制备的原理是通过免疫动物多次免疫,激发机体产生大量的抗原特异性抗体。
不同的抗原特异性抗体由不同的抗体产生细胞产生,并经过体内的嫁接与筛选,获
得了多个具有抗原特异性的抗体。
多克隆抗体具有较广泛的抗原特异性,可以识别目标抗原的不同位点,因此可以广泛应用于免疫学、分子生物学、生物医学等领域。
简述单克隆抗体制备原理。
单克隆抗体是一种通过人工合成而获得的高度特异性的抗体,通常用于检测、诊断和治疗各种疾病。
单克隆抗体的制备原理主要涉及以下几个步骤:
1. 细胞培养:选择适当的细胞系,如B细胞或T细胞等,将其培养在适宜条件下。
2. 分子标记:使用一定的技术和分子标记技术,如荧光标记、放射性标记等,将目标分子或目标分子的基因编码序列引入细胞中。
3. 基因重组:利用基因工程技术,如基因重组载体、基因编辑工具等,将目标分子的基因与相应的单克隆抗体基因进行重组。
4. 表达和处理:将重组后的单克隆抗体基因导入细胞中,使其表达目标分子。
随后,对表达后的单克隆抗体进行筛选和纯化。
5. 扩增和制备:利用适当的扩增技术和设备,如PCR、冻存技术等,将筛选得到的单克隆抗体进行扩增,并制备成所需的浓度和规模。
单克隆抗体制备的原理是基于人工合成抗体的概念,通过分子标记和基因工程技术,将目标分子的基因与单克隆抗体基因进行重组,
使其在细胞中表达并产生高特异性的抗体。
随后,通过筛选、纯化和扩增等技术,获得所需的单克隆抗体。
单克隆抗体的制备原理及方法嘿,你知道单克隆抗体不?那可是超厉害的东西呢!单克隆抗体的制备就像是一场神奇的冒险。
先说说制备原理吧。
想象一下,免疫系统就像一个超级大工厂,里面有各种不同的“工人”。
单克隆抗体的制备就是要找到那个能专门对付特定“坏蛋”的“超级工人”。
通过把特定的抗原注入动物体内,让动物的免疫系统产生反应,就像吹响了战斗的号角。
动物体内的免疫细胞们开始行动起来,其中有一种叫B 淋巴细胞的,它们能产生针对特定抗原的抗体。
这就好比是一群勇敢的战士,找到了攻击的目标。
那制备方法呢?首先,把抗原注射到小鼠等动物体内,让动物产生免疫反应。
然后把动物的脾脏取出来,这里面有很多产生抗体的B 淋巴细胞。
接下来,把这些B 淋巴细胞和骨髓瘤细胞融合在一起。
这就像是让两个不同的超级英雄合体,产生更强大的力量。
融合后的细胞既有B 淋巴细胞产生抗体的能力,又有骨髓瘤细胞无限增殖的特性。
然后通过筛选,找到能产生特定抗体的杂交瘤细胞。
这就像是在一堆宝石中找到那颗最闪亮的钻石。
在这个过程中有啥注意事项呢?哎呀,那可不少呢!比如注射抗原的剂量要合适,不然可能效果不好。
融合细胞的时候,条件要控制好,不然成功率就低啦。
筛选的时候要仔细,可不能让那些“滥竽充数”的细胞混进来。
那安全性和稳定性咋样呢?单克隆抗体的安全性还是挺高的呢!经过严格的检测和筛选,确保不会对人体造成危害。
而且稳定性也不错,就像一个可靠的小伙伴,在需要的时候总能发挥作用。
单克隆抗体有哪些应用场景和优势呢?那可多了去了!在医学领域,可以用来诊断疾病、治疗疾病。
比如检测癌症标志物,就像一个超级侦探,能快速找到疾病的线索。
治疗某些疾病的时候,就像一个精准的导弹,直接攻击病变细胞,副作用还小。
在科研领域,也是个得力助手,可以用来研究蛋白质的结构和功能。
实际案例也不少呢!比如治疗某些癌症的单克隆抗体药物,让很多患者看到了希望。
就像黑暗中的一束光,给人们带来了温暖和力量。
单克隆抗体的制备原理及方法单克隆抗体是指来源于单一B细胞克隆的抗体,具有单一的抗原特异性。
它是一种高度纯化、高度特异性的抗体,广泛应用于生物医学研究、临床诊断和治疗等领域。
本文将介绍单克隆抗体的制备原理及方法。
首先,单克隆抗体的制备原理是基于B细胞的克隆扩增。
当机体受到抗原刺激后,B细胞会产生多种抗体,其中具有特异性的B 细胞将被筛选出来,然后与癌细胞融合形成杂交瘤细胞。
这些杂交瘤细胞具有B细胞的分泌抗体能力和癌细胞的无限增殖能力,能够长期稳定地分泌单一种类的抗体。
其次,单克隆抗体的制备方法包括免疫动物、细胞融合、筛选鉴定和大规模培养等步骤。
首先,需要选择合适的免疫动物,如小鼠、大鼠、兔子等,然后将抗原注射到动物体内,刺激B细胞产生抗体。
接着,收集免疫动物的脾细胞和癌细胞,进行细胞融合,得到杂交瘤细胞。
随后,通过细胞培养和限稀稀释法,筛选出分泌特异性抗体的杂交瘤细胞。
最后,对筛选出的单克隆抗体进行鉴定和鉴定,确保其具有高亲和力和特异性。
在实际操作中,制备单克隆抗体需要严格控制各个步骤的条件,包括抗原的选择和纯化、免疫动物的免疫程序、杂交瘤细胞的筛选和鉴定等。
此外,还需要考虑单克隆抗体的应用领域和特定要求,如在临床诊断中需要高灵敏度和高特异性的抗体,而在治疗中则需要稳定性和低免疫原性的抗体。
总之,单克隆抗体的制备原理及方法是基于B细胞的克隆扩增,通过免疫动物、细胞融合、筛选鉴定和大规模培养等步骤,最终得到具有单一抗原特异性的抗体。
制备单克隆抗体需要严格控制各个步骤的条件,并考虑其应用领域和特定要求。
希望本文能够为单克隆抗体的制备提供一定的参考和帮助。
单克隆抗体的制备原理及方法
单克隆抗体是一种来源于同一B细胞克隆的抗体,具有单一的抗原结合特异性。
它在生物医学领域有着广泛的应用,如药物研发、疾病诊断和治疗等方面。
本文将介绍单克隆抗体的制备原理及方法。
首先,制备单克隆抗体的原理是通过免疫细胞融合技术获得单克隆抗体细胞系。
该技术主要包括以下几个步骤,免疫原注射、混合细胞培养、细胞融合、筛选和克隆等。
其中,免疫原注射是指将目标抗原注射到小鼠等动物体内,刺激其产生特异性抗体;混合细胞培养是将小鼠脾细胞与骨髓瘤细胞混合培养,促使它们融合形成杂交瘤细胞;细胞融合是通过聚乙二醇等化合物促使免疫细胞与骨髓瘤细胞融合,形成杂交瘤细胞;筛选和克隆是通过限稀稀释法或限稀稀释法筛选出单克隆杂交瘤细胞,并将其进行克隆扩增,最终得到单克隆抗体细胞系。
其次,制备单克隆抗体的方法主要包括动物免疫、细胞融合、杂交瘤筛选和克
隆等步骤。
动物免疫是指将目标抗原注射到小鼠等动物体内,刺激其产生特异性抗体;细胞融合是通过将免疫细胞与骨髓瘤细胞融合,形成杂交瘤细胞;杂交瘤筛选是通过限稀稀释法或限稀稀释法筛选出单克隆杂交瘤细胞;克隆是将筛选出的单克隆杂交瘤细胞进行克隆扩增,最终得到单克隆抗体细胞系。
总之,单克隆抗体的制备原理及方法是通过免疫细胞融合技术获得单克隆抗体
细胞系。
其制备方法包括动物免疫、细胞融合、杂交瘤筛选和克隆等步骤。
这些步骤的顺序和方法的选择都对单克隆抗体的制备起着至关重要的作用。
希望本文的介绍能够对单克隆抗体的制备原理及方法有所帮助。
一、实验目的1. 了解单克隆抗体制备的基本原理和实验流程;2. 掌握单克隆抗体制备过程中各步骤的操作方法;3. 通过实验,获得特异性单克隆抗体。
二、实验原理单克隆抗体是由单个B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体。
制备单克隆抗体的基本原理是杂交瘤技术,即将具有分泌特异性抗体能力的致敏B细胞和具有无限繁殖能力的骨髓瘤细胞融合,形成杂交瘤细胞,进而培养出单克隆细胞,最终获得单克隆抗体。
三、实验材料1. 实验动物:Balb/c小鼠;2. 细胞:SP2/0骨髓瘤细胞;3. 抗原:待筛选的抗原;4. 试剂:弗氏完全佐剂、弗氏不完全佐剂、氢氧化铝佐剂、细胞培养液、抗生素、无菌操作器具等。
四、实验步骤1. 动物免疫(1)首免:将抗原与弗氏完全佐剂混合,通过多点注射法注射给Balb/c小鼠,剂量为150-200g/只。
(2)加强免疫:在首免后2-3周,重复首免过程。
2. B细胞提取(1)无菌操作,处死小鼠,取脾脏,制成单细胞悬液。
(2)用细胞分离液分离B细胞。
(3)洗涤、计数,调整细胞浓度。
3. 细胞融合(1)将B细胞与SP2/0骨髓瘤细胞按一定比例混合,加入聚乙二醇(PEG)诱导细胞融合。
(2)将融合细胞在含有抗生素的细胞培养液中培养。
4. 杂交瘤细胞筛选(1)在培养液中加入抗原,筛选出能分泌特异性抗体的杂交瘤细胞。
(2)将筛选出的杂交瘤细胞进行克隆化培养,获得单克隆细胞。
5. 单克隆抗体制备(1)将单克隆细胞在培养液中扩大培养,收集上清液。
(2)对上清液进行抗体检测,鉴定抗体特异性。
(3)采用适当方法纯化抗体,如亲和层析、离子交换层析等。
五、实验结果1. 成功获得特异性单克隆抗体。
2. 抗体特异性经ELISA等方法验证,与待筛选抗原具有高度特异性。
3. 抗体亲和力良好,可用于后续实验。
六、实验总结本次实验成功制备了特异性单克隆抗体,掌握了单克隆抗体制备的基本原理和实验流程。
在实验过程中,应注意以下几点:1. 动物免疫时,抗原与佐剂的混合比例、注射剂量、注射次数等要严格控制。
抗体的制备(一)抗体是动物机体在抗原刺激下,由B细胞分化成熟的浆细胞合成的,并能与抗原特异性结合的一类球蛋白,亦称免疫球蛋白(Immunoglobulin, Ig)。
高等哺乳动物体内普通有4种免疫球蛋白,即IgM、IgG、IgA、IgE,在免疫分析中常用的是IgG。
IgG的分子量为150~160kD,在动物血清中的含量约为6~16mg·mL-1,占血清蛋白总量的75%。
IgG的基本结构类似英文大写的“Y”形,8-1所示。
IgG由两条轻链(图中浅色部分)和两条重链(图中深色部分)组成,轻链和重链及重链和重链之间通过二硫键(-S-S-)衔接。
重链从其氨基端开头的1/4区域和轻链从其氨基端开头的1/2区域内的组合成抗原结合部位。
由图8-1可以看出,一个IgG分子可以有两个抗原结合部位。
用木瓜蛋白酶水解IgG,可以得到两个Fab片段和一个Fc片段。
同种生物的IgG,Fc 片段基本保持不变,称为稳定区,该区域有与金色葡萄球菌蛋白A结合的位点;Fab片段从其氨基端开头的1/2区域,对不同的抗原有不同的氨基酸序列和空间结构,称为可变区,该区域是抗原识别部位。
因为IgG分子的抗原识别部位在“Y”,形结构的最顶端,这对于抗体的固定化具有重要意义:人们可以通过与Fc片段的特异性结合而把抗体固定在固相载体上。
同时使抗原结合部位充分裸露,以保持抗体的活性。
图8-1 抗体基本结构暗示图凡能刺激肌体产生抗体,并能与之结合引起特异性免疫反应的物质称为抗原。
物质刺激肌体产生抗体的特性称为免疫原性,与相应抗体发生免疫亲和反应的特性称为反应原性。
对一些大分子物质,如蛋白、多糖来说,既有免疫原性又有反应原性,因此可以挺直用来免疫动物制备抗体,这些物质又称为彻低抗原。
而对于环境分析中的大多数目标化合物来说,因为分子量较小,所以只具有反应原性而不具有免疫原性,不能挺直刺激肌体产生抗体。
但是。
可以通过化学反应将目标化合物或目标化合物的特征结构结合到载体蛋白上,使之获得免疫原性,然后免疫动物,即可得到目标化合物或特征结构的抗体。
抗体的制备方法与原理一、抗血清的制备有了质量好的抗原,还必须选择适当的免疫途径,才能产生质量好(特异性强和效价高)的抗体。
(一)用于免疫的动物作免疫用的动物有哺乳类和禽类,主要为羊、马、家兔、猴、猪、豚鼠、鸡等,实验室常用者为家兔、山羊和豚鼠等。
动物种类的选择主要根据抗原的生物学特性和所要获得抗血清数量,如一般制备抗r-免疫球蛋白抗血清,多用家兔和山羊,因动物反应良好,而且能够提供足够数量的血清,用于免疫的动物应适龄,健壮,无感染性疾患,最好为///雄性,此外还需十分注意动物的饲养,以消除动物的个体差异以及在免疫过程中死亡的影响。
若用兔,最好用纯种新西兰兔,一组三只,兔的体重以2~3kg为宜。
(二)免疫途径免疫途径有多种多样,如静脉内、腹腔内、肌肉内、皮内、皮下、淋巴结内注射等,一般常用皮下或背部多点皮内注射,每点注射0.1ml左右。
途径的选择决定于抗原的生物学特性和理化特性,如激素、酶、毒素等生物学活性抗原,一般不宜采用静脉注射。
(三)佐剂由于不同个体对同一抗原的反应性不同,而且不同抗原产生免疫反应的能力也有强有弱,因此常常在注射抗原的同时,加入能增强抗原的抗原性物质,以刺激机体产生较强的免疫反应,这种物质称为免疫佐剂。
佐剂除了延长抗原在体内的存留时间,增加抗原刺激作用外,更主要的是,它能刺激网状内皮系统,使参与免疫反应的免疫活性细胞增多,促进T细胞与B细胞的相互作用,从而增强机体对抗原的细胞免疫和抗体的产生。
常用的佐剂是福氏佐剂(Freund adjuvant),其成分通常是羊毛脂1份、石腊油5份,羊毛脂与石腊油的比例,视需要可调整为1:2~9(V/V),这是不完全福氏佐剂,在每毫升不完全佐剂加入1~20mg 卡介苗就成为完全佐剂。
配制方法:按比例将羊毛脂与石蜡油置容器内,用超声波使之混匀,高压灭菌,置4℃下保存备用。
免疫前取等容积完全或不完全佐剂与免疫原溶液混合,用振荡器混匀成乳状,也可以在免疫前取需要量佐剂置乳钵中研磨,均匀后再边磨边滴加入等容积抗原液(其中加卡介苗3~4mg/ml或不加),加完后再继续研磨成乳剂,滴于冰水上5~10min内完全不扩散为止。
植物抗体制备的原理和方法
植物抗体制备的原理是通过将目标抗原引入植物细胞或植物体内,利用植物基因工程技术使其表达出抗原特异性的抗体。
植物抗体制备的方法如下:
1. Agrobacterium介导的转化:利用农杆菌(Agrobacterium tumefaciens)将目标抗原的基因转入植物细胞中,从而使植物细胞能够合成目标抗原。
这种方法广泛应用于转基因植物的制备。
2. 基因枪法:利用基因枪将外源抗原的DNA或RNA颗粒直接导入植物组织或细胞中,从而使植物细胞能够合成目标抗原。
这种方法适用于多种植物组织和细胞。
3. 病毒介导的表达:利用病毒作为携带抗原基因的载体,通过感染植物细胞,使其表达目标抗原。
例如,利用病毒颗粒(virus-like particle)来显示目标抗原。
4. 核转录翻译:利用人工改造的植物病毒基因组或质粒DNA,在植物细胞的细胞核内直接合成目标抗原。
这种方法可在较短时间内获得大量抗原产物。
5. 植物细胞悬浮培养:将目标抗原基因导入悬浮培养细胞中,通过培养和增殖,
使细胞合成目标抗原。
这种方法具有生产效率高、易扩展等优点。
以上方法中,农杆菌介导的转化和基因枪法是最常用的植物抗体制备方法,已广泛应用于药物生产、免疫诊断等领域。
抗体产生的原理
抗体产生的原理是通过机体的免疫系统来应对外来入侵的病原体。
当病原体进入机体后,机体的免疫系统会识别它们并进行相应的应激反应。
其中,B细胞是主要的抗体产生细胞。
抗体产生的过程可以分成两个阶段:抗原刺激和抗体合成。
首先,当病原体进入机体后,它们的特异抗原会被识别并结合到B细胞上,即抗原刺激。
这个过程受到细胞介导免疫应答
和体液介导免疫应答两种机制的调控。
在接收到抗原刺激后,B细胞会进一步分化为两种形式:浆细
胞和记忆B细胞。
浆细胞是一种专门合成和分泌抗体的细胞,而记忆B细胞则会长期保存在体内,以便在再次遇到相同病
原体时迅速产生抗体。
接下来是抗体合成的过程。
在细胞内,B细胞会通过基因重组
产生特异性的抗体基因,进而合成相应的抗体蛋白。
这些抗体蛋白通过分泌出B细胞表面的免疫球蛋白M(IgM)进入体液循环,并与抗原结合形成抗原-抗体复合物,从而中和或清除
病原体。
值得一提的是,抗体的产生不仅能够应对外来病原体,在疫苗接种后也能够提供免疫保护。
疫苗中的抗原刺激可激活B细
胞并诱导抗体产生,从而让机体在未来遇到相同病原体时能够更快产生抗体,有效预防疾病。
总而言之,抗体产生的原理是通过机体免疫系统的反应,识别并结合到病原体抗原,进而分化为合成抗体的浆细胞和保存在体内的记忆B细胞,最终产生特异性的抗体来应对外来入侵的病原体。
抗体药物是一种以抗体为基础的生物制剂,具有高效、高特异性、低毒副作用等优点,在治疗疾病方面具有广阔的应用前景。
抗体药物的制备原理主要包括以下几个方面:
抗原免疫:在制备抗体药物之前,需要免疫动物或人体,使其产生特异性抗体。
免疫过程一般包括抗原选择、免疫方案设计、免疫动物或人体的选择等步骤。
抗体筛选:在抗原免疫后,需要对产生的抗体进行筛选和鉴定。
常用的筛选方法包括ELISA、Western blot、免疫沉淀等方法,可以通过这些方法对抗体的特异性、亲和力、稳定性等性质进行评价和鉴定。
抗体制备:制备抗体药物的关键在于大量制备抗体。
通常采用葡萄糖酸钠钙共沉淀、离子交换层析、蛋白A亲和层析、蛋白G亲和层析等方法,可以纯化和制备出目的抗体。
抗体修饰:为了提高抗体药物的稳定性、特异性、药效等性质,常常需要对抗体进行修饰。
例如,在抗体的Fc区域引入多糖、PEG等修饰剂,可以提高其循环寿命和稳定性;在抗体的Fab区域进行亲和力改变、CDR区域突变等操作,可以增强其特异性和药效。
抗体药物制剂:抗体药物的制剂是将制备好的抗体药物以一定的配方制成制剂,便于临床使用。
常见的制剂包括注射剂、口服剂、局部用药剂等。
综上所述,抗体药物的制备原理包括抗原免疫、抗体筛选、抗体制备、抗体修饰和抗体药物制剂等步骤。
这些步骤需要科学合理的方案设计和仪器设备的支持,以保证抗体药物的质量和疗效。
抗体的制备方法与原理一、抗血清的制备有了质量好的抗原,还必须选择适当的免疫途径,才能产生质量好(特异性强和效价高)的抗体。
(一)用于免疫的动物作免疫用的动物有哺乳类和禽类,主要为羊、马、家兔、猴、猪、豚鼠、鸡等,实验室常用者为家兔、山羊和豚鼠等。
动物种类的选择主要根据抗原的生物学特性和所要获得抗血清数量,如一般制备抗r-免疫球蛋白抗血清,多用家兔和山羊,因动物反应良好,而且能够提供足够数量的血清,用于免疫的动物应适龄,健壮,无感染性疾患,最好为///雄性,此外还需十分注意动物的饲养,以消除动物的个体差异以及在免疫过程中死亡的影响。
若用兔,最好用纯种新西兰兔,一组三只,兔的体重以2~3kg为宜。
(二)免疫途径免疫途径有多种多样,如静脉内、腹腔内、肌肉内、皮内、皮下、淋巴结内注射等,一般常用皮下或背部多点皮内注射,每点注射0.1ml左右。
途径的选择决定于抗原的生物学特性和理化特性,如激素、酶、毒素等生物学活性抗原,一般不宜采用静脉注射。
(三)佐剂由于不同个体对同一抗原的反应性不同,而且不同抗原产生免疫反应的能力也有强有弱,因此常常在注射抗原的同时,加入能增强抗原的抗原性物质,以刺激机体产生较强的免疫反应,这种物质称为免疫佐剂。
佐剂除了延长抗原在体内的存留时间,增加抗原刺激作用外,更主要的是,它能刺激网状内皮系统,使参与免疫反应的免疫活性细胞增多,促进T细胞与B细胞的相互作用,从而增强机体对抗原的细胞免疫和抗体的产生。
常用的佐剂是福氏佐剂(Freund adjuvant),其成分通常是羊毛脂1份、石腊油5份,羊毛脂与石腊油的比例,视需要可调整为1:2~9(V/V),这是不完全福氏佐剂,在每毫升不完全佐剂加入1~20mg 卡介苗就成为完全佐剂。
配制方法:按比例将羊毛脂与石蜡油置容器内,用超声波使之混匀,高压灭菌,置4℃下保存备用。
免疫前取等容积完全或不完全佐剂与免疫原溶液混合,用振荡器混匀成乳状,也可以在免疫前取需要量佐剂置乳钵中研磨,均匀后再边磨边滴加入等容积抗原液(其中加卡介苗3~4mg/ml或不加),加完后再继续研磨成乳剂,滴于冰水上5~10min内完全不扩散为止。
为避免损失抗原,亦可用一注射器装抗原液,另一注射器装佐剂,二者以聚乙烯塑料管连接,然后二者来回反复抽吸,约数十分钟后即能完全乳化。
检查合格后即以其中一注射器作注射用。
(四)免疫方法抗原剂量,首次剂量为300~500μg,加强免疫的剂量约为首次剂量为1/4左右。
每2~3周加强免疫一次。
加强免疫时用不完全佐剂,首次免疫时皮下注射百日咳疫苗0.5ml,加强免疫时不必注射百日咳疫苗。
在第2次加强免疫后2周,从耳缘静脉取2~3ml血,制备血清,检测抗体效价(见后)。
如未达到预期效价,需再进行加强免疫,直到满意时为止(图2-3)。
当抗体效价达到预期水平时,即可放血制备抗血清。
图2-3 抗体反应(五)抗血清的采集与保存家兔是最常用以产生抗体的动物,因此这里主要讨论兔血的收集。
羊等较大动物以颈静脉、动脉取血,鼠等小动物取血可参阅有关资料。
取兔血有两种方法,一是耳缘静脉或耳动脉放血,一是颈动脉入血,也可心脏采血。
取动脉或静脉放血时,将兔放入一个特造的木匣或笼内,耳露于箱(笼)外,也可由另一人捉住兔身。
剪去耳缘的毛,用少许二甲苯涂抹耳廓,30s后,耳血管扩张、充血。
用手轻拉耳尖,以单面剃须刀或尖的手术刀片,快速切开动脉或静脉,血液即流出,每次可收集30~40ml 。
然后用棉球压迫止血,凝血后洗去二甲苯。
二星期后,可在另一耳放血。
此法可反复多次放血。
颈动脉放血时,将兔仰卧,固定于兔台,剪去颈部的毛,切开皮肤,暴露颈动脉,插管,放血。
放血过程中要严格按无菌要求进行。
收集的血液置于室温下1h左右,凝固后,置4℃下,过夜(切勿冰冻)析出血清,离心,4000rpm,1 0min。
在无菌条件,吸出血清,分装(0.05~0.2ml),贮于-40℃以下冰箱,或冻干后贮存于4。
C冰箱保存。
(六)抗血清质量的评价在免疫期间,不仅各个不同的动物,而且同一动物在不同的时间内抗血清效价、特异性、亲合力等都可能发生变化,因而必须经常地采血测试。
只有在对抗血清的效价、特异性、亲合力等方面作彻底的评价后,才可使用所取得的抗血清。
1.效价抗血清的效价,就是指血清中所含抗体的浓度或含量。
效价测定的方法常用的是放射免疫法,此法对所有的抗体均适用。
某些由大分子(如蛋白类)抗原所产生的抗体,可用双扩散等方法测定。
前者测定的效价极为精确。
而后者则粗糙得多。
(1)放射免疫法:以不同稀释度的抗血清与优质标记抗原混合,孵育24h后,测定其结合率。
通常以结合率为50%的血清稀度和为效价。
如某抗血清的结合率为50%时的稀释度为1:15000,则该血清的效价就是1:15000。
抗血清的效价,除由抗血清本身的性质决定外,还受标记抗原的质量、孵育时间,所用稀释液的成分及其pH等因素的影响,在工作中必须引起注意。
(测定方法见第8章)(2)双向扩散法:利用大分子抗原和抗体在琼脂平板上扩散,两者在相交处产生沉淀线,以观察和判断抗血清中是否有抗体及其浓度。
球脂板的制备:100ml pH7.1 的磷酸盐缓冲液加到15g的琼脂内,于水浴中加温,搅拌,使琼脂完全溶解,趁热用纱布过滤,待溶液冷却到65℃左右时,加入叠氮钠(NaN3),使其在溶液中的浓度为0.1%。
用移液管把琼脂放在干净平皿或玻片上,约3mm厚,待其冷却,完全凝固后,用打孔器打孔(图2-4)。
中央孔内加适量抗原(容量为50μl),周围各孔内分别加入50μl 1:2、1:4、1:8、1:16、1:32及不稀释的抗血清,37℃下孵育24h,观察有无沉淀线产生,以判断血清的稀释度(图2-5)。
图2-4 双向扩散模型图2-5 免疫扩散试验2.特异性测定抗血清的特异性或称专一性是指抗血清对相应的抗原及近似的抗原物质的识别能力。
特异性好就是抗血清的识别能力强。
通常,特异性是以交叉反应率来表示的。
交叉反应率低,表示抗血清的特异性好,反之则特异性差。
交叉反应率一般是用竞争抑制曲线来判断的。
以不同浓度的抗原和近似抗原物质分别做竞争抑制曲线,计算各自的结合率(B/T或B/B0),求出各自在IC50时的浓度,按下列公式计算交叉反应率。
S=y/Z×100%S:交叉反应率,y:IC50时抗原浓度,Z:IC50时近似抗原物质的浓度。
如某抗原的IC50浓度为90Pg/管,而一些近似抗原物质IC50浓度几乎是无限大,可以说这一抗血清与其它抗原物质的交叉反应率近似零,即无交叉反应,该抗血清的特异性是好的。
3.亲合力在免疫学中,亲合力是指抗体与结合抗原体的活度或牢固度。
抗体与抗原结合疏松,结合后会迅速解离,称为亲合力低,反之,亲合力高。
亲合力的高低是由抗原分子的大小,抗体分子的结合位点与抗原的决定基之间的立体结构型的合适程度决定的。
亲合力常以亲合常数K表示。
K的单位是升/摩尔(L/mol)。
在RIA中,K是该抗血清能达到的最小检出量(灵敏度)的倒数,K=1/[H],[H]是最小检出量,通常,K的范围在108~1012L/mol之间,也有高达1014L/mol的。
计算亲合常数的方法20余种,计算出的K都不能真实反映实验情况,只能作为参考。
(七)免疫失败的可能原因及应采取的措施有时不能获得满意的抗血清,可从下列几方面找原因,并改进之。
(1)免疫动物的种属及品系是否合适,可考虑改变动物的种属或品系,或扩大免疫动物的数量。
(2)抗原质量是否良好,可改用其它厂家的产品或改用同一厂家的其它批号,也可考虑改变抗原分子的部分结构,或改进提取方法。
(3)制备的免疫原是否符合要求,可从偶联剂,载体、抗原或载体的比例、反应时间等多方面去考虑,并加以改进。
(4)所用的佐剂是否合适,乳化是否完全,可改用其它佐剂,或加强乳化。
(5)免疫的方法、剂量,加强免疫的间隔时间和次数,免疫的途径是否合适。
(6)动物的饲养是否得当,如营养(饲料、饮水)、环境卫生(通风、采光、温度)是否符合要求,动物的健康情况是否良好等。
二、单克隆抗体的制备1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。
这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。
免疫细胞化学的技术关键之一是制备特异性强、亲合力大、滴度高的特异性抗体,由于每种抗原都有几个抗原决定簇,用它免疫动物将产生对各个决定簇的抗体,即多克隆抗体。
单克隆抗体则是由一个产生抗体的细胞与一个骨髓瘤细胞融合而形成的杂交廇细胞经无性繁殖而来的细胞群所产生的,所以它的免疫球蛋白属同一类型,质地纯一,而且它是针对某一抗原决定簇的,因此特异性强,亲合性也一致。
单克隆抗体(McAb)的特性和常规血清抗体的特性比较见2-3。
表2—3 单克隆抗体(McAb)和常规免疫血清抗体的特性比较单克隆抗体的制备方法如下。
(一)动物的选择与免疫1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。
目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。
2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。
一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。
(1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。
常用佐剂:福氏完全佐剂、福氏不完全佐剂。
初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点)↓3周后第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml)↓3周后第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价)↓2~3周加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射)↓3天后取脾融合目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。
②改变抗原注入的途径,基础免疫可直接采用脾内注射。
③使用细胞因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。
(2)颗粒抗原免疫性强,不加佐剂就可获得很好的免疫效果。
以细胞性抗原为例,免疫时要求抗原量为1~2×107个细胞。
初次免疫1×107/0.5ml ip↓2~3周后第二次免疫1×107/0.5ml ip↓3周后加强免疫(融合前三天)1×107/0.5ml ip或iv↓取脾融合(二)细胞融合1.细胞融合前准备(1)骨髓瘤细胞系的选择:骨髓瘤细胞应和免疫动物属于同一品系,这样杂交融合率高,也便于接种杂交瘤在同一品系小鼠腹腔内产生大量McAb。