八年级数学函数图像的基本作法
- 格式:ppt
- 大小:357.50 KB
- 文档页数:14
考点名称:函数图象∙定义:点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。
∙函数图像的画法:(1)描点法:一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。
(2)用函数的性质画图一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。
(3)通过图像变换画图(一)平移变化:Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到;Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到.(二)对称变换:Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到;Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到;Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到;Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.函数图像的判断:这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。
常用结论:(1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a 成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。
数学函数图像操作方法
在进行数学函数图像操作时,我们通常需要考虑以下几个方法:
1. 描点法:将函数的自变量取一组特定的值,然后计算对应的函数值,再将这些点连线,就可以得到函数的图像。
这种方法适用于简单的函数,但会忽略函数在两个点之间的变化。
2. 函数变化法:通过观察函数的表达式,分析函数的性质,确定函数的增减性,转折点,极值点等关键信息,再结合这些信息来画图。
这种方法适用于一些特殊函数或复杂函数,可以更全面地描述函数的特点。
3. 借助计算工具:借助数学软件或计算器,输入函数的表达式,通过计算工具可以直接绘制函数图像。
这种方法适用于复杂函数或需要更精确绘制的情况,可以节省时间和提高准确性。
4. 函数变换法:对于已知函数的图像,可以通过一些变换操作来得到新函数的图像。
例如,平移、伸缩、翻转等操作可以改变函数图像的位置、形状和方向。
这种方法可以通过调整参数或组合多个函数来得到不同的图像。
以上方法是常用的数学函数图像操作方法,根据具体情况选择合适的方法进行操作。
在进行图像操作时,要根据函数的性质和图像的需求来确定合适的方法,并
注意分析图像的特点和变化规律。
数学函数图像操作方法总结数学函数图像操作方法总结如下:1. 平移:将函数图像沿x 轴或y 轴方向移动,可以使用平移公式进行计算。
对于函数y=f(x),平移后的函数y=f(x-a) 表示沿x 轴正方向平移a 个单位,y=f(x)+b 表示沿y 轴方向平移b 个单位。
2. 缩放:将函数图像沿x 轴或y 轴方向进行放大或缩小。
对于函数y=f(x),缩放后的函数y=a*f(bx) 表示沿x 轴方向放大a 倍,y=f(x/b)/a 表示沿x 轴方向缩小b 倍,y=a*f(x) 表示沿y 轴方向放大a 倍,y=f(x)/a 表示沿y 轴方向缩小a 倍。
3. 翻转:将函数图像沿x 轴或y 轴方向翻转。
对于函数y=f(x),翻转后的函数y=-f(x) 表示沿x 轴翻转,y=f(-x) 表示沿y 轴翻转。
4. 对称:将函数图像关于某条直线对称。
对于函数y=f(x),关于y 轴对称的函数为y=f(-x),关于x 轴对称的函数为y=-f(x),关于原点对称的函数为y=-f(-x)。
5. 拉伸和压缩:将函数图像在x 轴或y 轴方向进行拉伸或压缩。
对于函数y=f(x),拉伸后的函数y=f(cx) 表示在x 轴方向拉伸c 倍,y=f(x/c) 表示在x 轴方向压缩c 倍,y=d*f(x) 表示在y 轴方向拉伸d 倍,y=f(x/d) 表示在y轴方向压缩d 倍。
6. 旋转:将函数图像绕坐标原点或任意点进行旋转。
旋转后的函数可以使用旋转公式进行计算。
例如,绕坐标原点逆时针旋转a 弧度的函数为y=f(x)cos(a)+f(-x)sin(a),绕任意点(h, k) 逆时针旋转a 弧度的函数为y=f(x-h)cos(a)-f(x-h)sin(a)+k。
这些方法可以帮助对数学函数图像进行各种变换和操作,以便更好地理解和分析函数的性质和行为。
函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。
在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。
在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。
一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。
直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。
当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。
绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。
首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。
2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。
平方函数的一般形式为y=x^2。
平方函数的图像对称于y轴,开口向上。
绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。
3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。
开方函数的一般形式为y=sqrt(x)。
开方函数的图像对称于x轴,开口向右。
绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。
4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。
绝对值函数的一般形式为y=|x|。
绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。
以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。
初二数学知识点:函数的图象知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特殊地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b 取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的'交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。
特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)由于在一次函数上的任意一点P(x,y),都满意等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最终得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t肯定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。
画函数图像的方法函数图像是用于表达函数关系的一种图表。
它是把函数算式中的变量转换为横纵坐标的点,再把所有点连接起来形成的曲线。
函数图像的特点是把函数关系清晰地表达出来,可作为函数研究的重要参考材料。
二、如何画函数图像1、定画布:在坐标系中设定画布,一般用网格纸或绘图软件。
2、定函数:将函数表达式写入画布,如y=3x+2,x为横纵坐标,y为函数值。
3、出函数的根:函数的根为函数图像的拐点,可以使用试值代入法求出。
4、出函数图像:根据函数表达式可以求出横纵坐标的配对,在坐标系中一点一点的将它们连接起来,画出函数图像。
三、函数图像的类型1、稳函数:函数图像不发生变化,伴随变量x变化而变化,只有一条线。
例如y=2x。
2、函数:函数图像向下弯曲,伴随变量x变化而变化,只有一条线。
例如y=3x的平方。
3、函数:函数图像向上弯曲,伴随变量x变化而变化,只有一条线。
例如y=logx。
4、大值函数:函数图像最高点降低,伴随变量x变化而变化,只有一条线。
例如y=sinx。
5、物线:函数图像存在上拐点或下拐点,两端弯曲向上或向下,只有一条线。
例如y=4x的平方-2x。
四、画函数图像的应用(1)函数图像可以帮助研究函数的性质,从而解决函数的极值问题、求解函数的最大值和最小值的问题;(2)函数图像可以帮助更加直观地理解函数的定义域和值域;(3)函数图像可以帮助求解函数的极限值,以及估算函数斜率。
五、总结画函数图像是数学中常见的一种任务,它可以帮助我们理解函数的定义域和值域,求解函数的极值问题、求解函数的最大值和最小值的问题,以及估算函数斜率。
画函数图像的方法主要分为:确定画布,确定函数,画出函数的根以及画出函数图像,其中画出函数的根需要使用试值代入法求出。
在画函数图像时,应根据函数的特点区分函数的类型,如平稳函数、凹函数、凸函数、最大值函数以及抛物线,以便更加清晰准确地表达函数的关系,发挥画函数图像的最大价值。
函数的图象思维导图知识梳理1.利用描点法作函数的图象 其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ). ②y =f (x )――→关于y 轴对称y =f (-x ). ③y =f (x )――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (x >0). (3)翻折变换①y =f (x )――→保留x 轴及上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――→保留y 轴及右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换 ①y =f (x )a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变→y =f (ax ).②y =f (x )a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变→y =af (x ).题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .3.(2021·全国高一)函数22()21xf x x =-的图像的是 ( )A .B .C .D .4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( )A .B .C.D.5.(2021·天津南开区·南开中学高三月考)函数cos622x xxy-=-的图像大致为()A.B.C.D.6.(2021·天津滨海新区·高三月考)函数ln||cos()sinx xf xx x⋅=+在[),0π]π(0,-⋃的图像大致为()A.B.C.D.7.(2021·浙江高一期末)函数ln||()||x xf xx=的图像可能是()A .B .C .D .8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.函数的图象解析题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【解析】解:(Ⅰ)函数()y f x =的图象如图; (Ⅱ)当1x <-时,满足1()4f x , 当11x -,由1()4f x 得214x ,得12x 或12x -,此时112x --或112x , 当1x >时,1()4f x 恒成立, 综上得12x或12x -, 即x 的取值范围是得12x或12x -; (Ⅲ)由图象知()0f x ,即()y f x =的值域是[0,)+∞.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【解析】解:(1)函数22221,2||121,x x x y x x x x x ⎧--=--=⎨+-<⎩. 当0x 时,2(1)2y x =--; 当0x <时,(1)2y x =+-. 故图象如图所示;(2)函数的增区间为:(1-,0],(1,)+∞; 减区间为:(-∞,1]-,(0,1].【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【解析】解:函数241xy x =+的定义域为实数集R ,关于原点对称,函数24()1x y f x x ==+,则24()()1xf x f x x -=-=-+,则函数()y f x =为奇函数,故排除C ,D , 当0x >是,()0y f x =>,故排除B , 故选:A .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【解析】解:由图可知,函数()f x 为奇函数,而选项A 和C 中对应的函数是非奇非偶函数,于是排除选项A 和C ;当(0,1)x ∈时,从图象可知,()0f x <,而对于选项D ,0lnx <,20x >,所以()0f x >,与图象不符,排除选项D . 故选:B .【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【解析】解:由题知,点(2,0)A ,点(2cos ,2sin )B θθ,点(2cos ,0)C θ, 则11()||||(22cos )2|sin |022S AC BC θθθ=⨯=-,故排除选项C 和D ,又因为当34πθ=时,1()(222122S θ=⨯+⨯>,排除选项B .故选:A .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【解析】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【解析】解:令()x x s x e e -=+,该函数的定义域为R ,且()()x x s x e e s x --=+=, ()s x ∴为R 上的偶函数;令()x x t x e e -=-,该函数的定义域为R ,且()()()x x x x t x e e e e t x ---=-=--=-, ()t x ∴为R 上的奇函数,又正弦函数为奇函数,余弦函数为偶函数, 且图中所给出的函数为偶函数,排除A 与C ; 又由图可知,所求函数在[0,1]上为减函数,而B 中内层函数()t x 在[0,1]上为增函数,而外层函数正弦函数在[0,]2π上为增函数,故当x 大于0且在0附近时,B 中函数为增函数,排除B . 故选:D .【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【解析】解:()2cos 2sin )4y f x PA PB x x x π==+=+=+,选项D 符合题意, 故选:D . 【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【解析】解:202x x ->+,2x ∴>或2x <-,即函数的定义域为(-∞,2)(2-⋃,)+∞(定义域关于原点对称), 32()2x y f x x lgx -==+,333222()()()222x x x f x x lg x lg x lg f x x x x --+-∴-=-=-==-+-+, ∴函数()y f x =是偶函数,关于y 轴对称,故选:B .【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【解析】解:根据题意,由()f x 的图象分析可得:在(0,1)和(2,)+∞上,()0f x >,在区间(1,2)上,()0f x <, 又由()f x 为偶函数,则在(1,0)-和(,2)-∞-上,()0f x >,在区间(2,1)--上,()0f x <, 0()0()0x xf x f x >⎧>⇒⎨>⎩或0()0x f x <⎧⎨<⎩, 则有01x <<或2x >或21x -<<-,即不等式的解集为{|01x x <<或2x >或21}x -<<-; 故答案为:{|01x x <<或2x >或21}x -<<-.【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【解析】解:函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,∴函数的图象如下图所示:(1)y kx k k x =+=+,故函数图象一定过(1,0)-点若()f x kx k =+有三个不同的根,则y kx k =+与()y f x =的图象有三个交点 当y kx k =+过(2,1)点时,13k =,当y kx k =+过(3,1)点时,14k =,故()f x kx k =+有三个不同的根,则实数k 的取值范围是11[,)43故答案为:11[,)43.【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【解析】解:由图象()log a f x x =可得(0,1)x ∈时,()0f x <, (1,)x ∈+∞时,()0f x >,当1x =时()0f x =由图象()(2)g x k x =-可得(,2)x ∈-∞时,()0g x >, (2,)x ∈+∞时,()0g x <,不等式()0()f x g x ,即()0()0f x g x ⎧⎨>⎩或()0()0f x g x ⎧⎨<⎩; [1x ∴∈,2) ∴不等式()0()f xg x 的解集为[1,2) 故答案为:[1,2) 【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .【答案】A 【解析】[0,]2x π∈时,B x x π+=()2,B f x AB x x x π∴==-=-[0,]2x π∈时()f x 表示递减的一次函数所以选A.2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .【答案】B【解析】解:根据题意,当0x ≥时,2x y =,为指数函数,单调递增,且在0x =时函数有最小值1; 当0x <时,122xx y -⎛⎫== ⎪⎝⎭为指数函数,单调递减,且函数值1y >. 故选:B.3.(2021·全国高一)函数22()21x f x x =-的图像的是 ( ) A . B .C .D .【答案】B【解析】解:因为22()21x f x x =-,所以2210x -≠,解得2x ≠±,故函数的定义域为|x R x ⎧⎪∈≠⎨⎪⎪⎩⎭,故排除AC ;当0x <<时,20x <,2210x -<,所以22()021x f x x =>-,故排除D ; 故选:B4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( ) A . B .C .D .【答案】B【解析】()2ln f x x x =+,()()22ln ln ()f x x x x f x x -=-∴=+-+=,所以()f x 为偶函数,排除D ;当0x →时,()f x →-∞ ,排除AC ;故选:B.5.(2021·天津南开区·南开中学高三月考)函数cos622x x xy -=-的图像大致为( )A .B .C .D .【答案】D【解析】解:()cos622x x xy f x -==-定义域为()(),00,-∞⋃+∞,()()cos622x x xf x f x --==--即函数()f x 是奇函数,图象关于原点对称,故A 错误;当x →+∞是,2x →+∞,20x -→,[]cos61,1x ∈-,故()0f x →,故C 错误;当0x >且,0x →时,cos60x >,220x x -->,故()0f x >,故B 错误,D 正确;故选:D6.(2021·天津滨海新区·高三月考)函数ln ||cos ()sin x xf x x x ⋅=+在[),0π]π(0,-⋃的图像大致为( )A .B .C .D .【答案】D【解析】 因为ln ||cos()ln ||cos ()()sin()sin x x x x f x f x x x x x-⋅-⋅-==-=--+-+,[)π,00,π(]x -⋃∈, 所以()f x 为奇函数,因此函数()f x 的图像关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C.故选:D 7.(2021·浙江高一期末)函数ln ||()||x x f x x =的图像可能是( ) A . B .C .D .【答案】B【解析】 函数的定义域是{}0x x ≠,且()()f x f x -=-,所以函数是奇函数,关于原点对称,排除A,C ,当01x <<时,ln 0x <,所以()0f x <,故排除D.故选:B8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .【答案】C【解析】当1a >时,log a y x =单调递增,()2121y a x x =---开口向上,不过原点,且对称轴101x a =>-,可排除AB 选项;当1a <时,log a y x =单调递减,()2121y a x x =---开口向下,可排除D ,故选C 9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .【答案】C【解析】结合容器的形状,可知一开始注水时,水高度变化较快当水位接近中部时变慢并持续一段时间,接近上部时,水位高度变快,故选C.10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+【答案】A【解析】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C ,故选:A11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .【答案】A【解析】由题得12x ≤≤时,2(1)22,42,,2BE x x CE x CF x DF x =-=-=-==-,所以AEF 的面积y 211142(22)(42)2(2)34222x x x x x x =-⋅⋅--⋅⋅--⋅⋅-=-+, 它的图象是抛物线的一部分,且含有对称轴.故选:A12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .【答案】ACD【解析】当0a <时,()a g x x =为奇函数,定义域为{}|0x x ≠,且在()0,∞+上递减,而2()21f x ax x =++开口向下,对称轴为10x a =->,(0)1f =,故A 符合; 当()2a n n N+=∈时,()a g x x =为偶函数,且在()0,∞+上递增,2()21f x ax x =++开口向上,且对称轴为10x a =-<,440a ∆=-<,其图象和x 轴没有交点,故D 符合; 当()12a n N n+=∈时,函数()a g x x =的定义域为[)0,+∞,且在[)0,+∞上递增,2()21f x ax x =++开口向上,且对称轴为10x a=-<,440∆=->a ,图象和x 轴有两个交点,故C 符合. 故选:ACD .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.【答案】[]3,3-【解析】根据函数为奇函数,可作出函数的简图,如图所示:不等式()()000x x f x f x >⎧⋅⇒⎨≥⎩或()00x f x <⎧⎨≤⎩或0x =, 由图可得:03x <≤或-<3≤0x 或0x =, 综上:解集为:[]3,3-故答案为:[]3,3-.。