高中物理电磁学知识点
- 格式:doc
- 大小:199.50 KB
- 文档页数:7
高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。
在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。
本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。
一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。
2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。
3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。
二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。
2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。
3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。
三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。
2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。
3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。
四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。
2. 光的电磁波理论:光的本质和电磁波的传播速度。
3. 光的反射和折射:光的反射定律、折射定律和光的全反射。
4. 光的色散和光的衍射:光的色散现象和衍射现象。
五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。
2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。
3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。
结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。
通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。
希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。
电磁学知识点引言:电磁学是物理学领域中的一个重要分支,研究电荷和电流所产生的电场与磁场及它们之间的相互作用。
本文将重点介绍电磁学的基础知识点,包括库仑定律、安培定律、麦克斯韦方程组以及电磁波等内容,以帮助读者更好地理解电磁学的基本原理和应用。
一、库仑定律库仑定律是电磁学的基础之一,描述了两个电荷之间的相互作用力。
根据库仑定律,两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。
这一定律可以用以下公式表示:F = k * |q1 * q2| / r^2其中F是两个电荷之间的作用力,q1和q2分别是这两个电荷的电荷量,r是它们之间的距离,k是一个常数,被称为库仑常数。
二、安培定律安培定律是描述电流所产生的磁场的原理。
根据安培定律,通过一段导线的电流所产生的磁场的大小与电流的大小成正比,与导线到磁场点的距离成反比,磁场的方向则由右手螺旋定则确定。
安培定律可以用以下公式表示:B = (μ0 / 4π) * (I / r)其中B是磁场的大小,μ0是真空中的磁导率,约等于4π x 10^-7 T·m/A,I是电流的大小,r是观察点到电流所在导线的距离。
三、麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程组,总结了电磁学的基本定律和规律。
麦克斯韦方程组包括四个方程,分别描述了电荷和电流的电场和磁场之间的关系,以及它们的传播规律。
这些方程是:1. 麦克斯韦第一方程(电场高斯定律):∇·E = ρ / ε02. 麦克斯韦第二方程(磁场高斯定律):∇·B = 03. 麦克斯韦第三方程(法拉第电磁感应定律):∇×E = -∂B/∂t4. 麦克斯韦第四方程(安培环路定律):∇×B = μ0 * J + μ0ε0 *∂E/∂t其中E是电场,B是磁场,ρ是电荷密度,ε0是真空中的介电常数,J是电流密度。
四、电磁波电磁波是由电场和磁场相互作用而形成的一种传播现象。
高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。
本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。
一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。
同性电荷相斥,异性电荷相吸。
电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。
2. 静电场和静电力静电场是指电荷静止时产生的电场。
静电力是指电荷之间由于电场作用而产生的力。
根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。
3. 电场线电场线是描述电场分布形态的一种图示方法。
电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。
电场线不会相交,且垂直于导体表面。
二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。
磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。
2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。
3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。
感应电流具有闭合电路的特点。
三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。
电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。
2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。
包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。
3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。
电磁感应还可以用于磁悬浮列车、无线充电等领域。
2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。
高中物理电磁学知识点一)电场1、库仑力:F=kq1q2/r^2(适用条件:真空中点电荷)其中k=9×10^9 N·m^2/C^2为静电力恒量。
电场力:F = Eq(F与电场强度的方向可以相同,也可以相反)2、电场强度:电场强度是表示电场强弱的物理量。
定义式:E=F/q,单位为N/C。
对于点电荷,电场场强E=kq/r^2;对于匀强电场,电场场强E=U/d。
3、电势,电势能:电势:Φ=E·d(顺着电场线方向,电势越来越低)电势能:E电=qΦ4、电势差U,又称电压:U=WAB/q,其中WAB为电场力做功。
5、电场力做功和电势差的关系:WAB=qUAB6、粒子通过加速电场:粒子受到电场力加速,速度增加。
7、粒子通过偏转电场的偏转量:粒子通过偏转电场的偏转角与电场强度、粒子电荷、粒子速度和偏转电场长度有关。
8、电的电容:c=Q/U,其中Q为电的带电量,U为电的电压。
对于平行板电,电容为c=εS/4πkd,其中ε为介电常数,S为平行板面积,d为平行板间距。
二)直流电路1、电流强度的定义:I=ΔQ/Δt,单位为A(安培)。
微观式:I=nev,其中n为单位体积电子个数,e为电子电荷量,v为电子漂移速度。
2、电阻定律:U=IR,其中U为电压,I为电流强度,R为电阻。
电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关,单位为Ω·m。
3、串联电路总电阻:R=R1+R2+R3,电压分配为U1=R1/(R1+R2)·U,U2=R2/(R1+R2)·U,功率分配为P1=R1/(R1+R2)·P,P2=R2/(R1+R2)·P。
4、并联电路总电阻:1/R=1/R1+1/R2+1/R3,两个电阻并联R=R1R2/(R1+R2),电流分配为I1=R2/(R1+R2)·I2,功率分配为P1=R2/(R1+R2)·P,P2=R1/(R1+R2)·P。
二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
高中物理电磁学所有概念-知识点-公式十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
高中物理电磁学知识点电磁学是高中物理的重要组成部分,它不仅在物理学中具有关键地位,也在日常生活和现代科技中有着广泛的应用。
接下来,咱们就一起来详细梳理一下高中物理电磁学的主要知识点。
一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
其表达式为:F = kq₁q₂/r²,其中 k 为静电力常量。
2、电场强度电场强度是描述电场强弱和方向的物理量。
定义为放入电场中某点的电荷所受的电场力 F 跟它的电荷量 q 的比值,即 E = F/q。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3、电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线的疏密表示电场强度的强弱,电场线上某点的切线方向表示该点的电场强度方向。
4、电势与电势差电势是描述电场能的性质的物理量,定义为电荷在电场中某点的电势能与电荷量的比值,即φ = Ep/q。
电势差是指电场中两点间电势的差值,也叫电压,表达式为 UAB =φA φB 。
5、匀强电场电场强度大小和方向都相同的电场叫匀强电场。
在匀强电场中,电场线是平行且等间距的直线。
二、电容1、电容的定义电容器所带电荷量 Q 与电容器两极板间的电势差 U 的比值,叫做电容器的电容,即 C = Q/U 。
电容是表示电容器容纳电荷本领的物理量。
2、平行板电容器的电容平行板电容器的电容与两极板的正对面积成正比,与两极板间的距离成反比,还与电介质的介电常数有关。
其表达式为 C =εS/4πkd 。
三、电流1、电流的形成电荷的定向移动形成电流。
形成电流的条件是:有自由移动的电荷,导体两端存在电压。
2、电流的定义通过导体横截面的电荷量 q 跟通过这些电荷量所用时间 t 的比值,叫做电流,即 I = q/t 。
电流是标量,但有方向,规定正电荷定向移动的方向为电流的方向。
3、欧姆定律导体中的电流 I 跟导体两端的电压 U 成正比,跟导体的电阻 R 成反比,即 I = U/R 。
物理高考电磁学要点电磁学作为物理学的重要分支,是高考物理考试的重要内容之一。
本文将为大家总结电磁学的关键要点,以帮助大家更好地复习和应对物理高考。
一、静电场1. 静电场基本概念静电场是由静止的电荷所产生的电场。
静电场强度表示电场对单位正电荷的作用力。
电场强度的方向与电场线相切,并指向电场中正荷所受到的力的方向。
2. 静电场的高斯定理静电场的高斯定理描述了电荷所产生的电场对电场线通过的闭合曲线所围成的面积的积分。
高斯定理的公式为Φ = ε₀Q(其中Φ为电场线通过的闭合曲线所围成的面积,ε₀为真空中的介电常数,Q为电荷)。
3. 静电场的电势电势是描述电场的物理量,表示单位正电荷在电场中具有的能量。
电势的公式为V = kq/r(其中V为电势,k为库仑常数,q为电荷,r为距离)。
二、恒定磁场1. 恒定磁场基本概念恒定磁场是不随时间变化的磁场。
磁感应强度B表示磁场的强弱和方向,单位为特斯拉(T)。
2. 洛伦兹力洛伦兹力是运动带电粒子在磁场中所受的力。
洛伦兹力的公式为F= qvBsinθ(其中F为力,q为电荷,v为速度,B为磁感应强度,θ为磁感应强度与速度之间的夹角)。
3. 磁感应强度的计算磁感应强度的计算公式为B = μ₀I/2πr(其中B为磁感应强度,μ₀为真空中的磁导率,I为电流,r为电流元到观察点的距离)。
三、电磁感应与电磁波1. 法拉第电磁感应定律法拉第电磁感应定律描述了变化磁场中的电流感应现象。
根据该定律,导线中感应电动势的大小与导线所围成的磁通量的变化率成正比。
2. 感应电动势的计算感应电动势的计算公式为ε = -dΦ/dt(其中ε为感应电动势,dΦ/dt为磁通量的变化率)。
3. 电磁波的概念与特性电磁波是由变化的电场和磁场相互作用而产生的波动现象。
电磁波具有电场、磁场垂直于传播方向且振幅相等的特性。
四、电磁感应与电路1. 动生电动势动生电动势是由于导体相对于磁场运动而产生的电动势。
动生电动势的大小与导体长度、磁感应强度、运动速度以及导体与磁场夹角有关。
高考物理电磁知识点电磁现象是物理学中的重要内容,也是高考物理考试中不可忽视的部分。
本文将为大家介绍高考物理中的一些重要电磁知识点。
一、电磁感应电磁感应是指通过磁场对电流产生作用力,或通过电流对磁场产生作用力的现象。
电磁感应的实验中,常使用电磁铁和螺线管。
1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场相对于导体变化时,导体中就会感应出电动势。
2. 感应电流的方向:根据楞次定律,感应电流的方向总是使得其磁场与导体感应磁场相互作用而阻碍运动。
3. 感应电流的大小:感应电流的大小与磁场的变化率成正比,在导体闭合回路中的电流大小与回路面积、磁场强度和运动速度有关。
二、电磁波电磁波是由电场和磁场相互作用而产生的一种波动现象,是高考物理中的重要内容。
1. 电磁波的基本特性:电磁波是以光速传播的横波,具有电场和磁场的振动。
2. 电磁波的分类:电磁波按照波长从小到大的顺序可分为射线、紫外线、可见光、红外线、微波和无线电波等。
3. 电磁波的传播与吸收:电磁波能够在真空中传播,其能量主要来自于振荡的电场和磁场。
不同物质对电磁波有各自的吸收特性。
三、电磁场电磁场是指由电荷和电流所产生的电场和磁场的空间分布。
了解电磁场对高考物理的学习和应用有着重要的意义。
1. 电场的基本性质:电场是由电荷产生的,具有方向和大小。
电场的强度用电场强度来描述,可以通过库仑定律计算。
2. 磁场的基本性质:磁场是由电流产生的,具有方向和大小。
磁场的强度用磁感应强度来描述,可以通过安培环路定律计算。
3. 电磁场的相互作用:电场和磁场之间通过洛伦兹力相互作用,影响着物体的运动轨迹和能量转化。
四、电磁感应与电磁场的应用电磁感应和电磁场在现实生活中有着广泛的应用,也是高考物理考试的重点。
1. 电磁感应的应用:感应电流的产生为发电机和变压器等电器的工作原理提供了基础。
同时,感应电磁力还被应用于电动机和电磁铁等装置中。
2. 电磁场的应用:电磁场的应用涉及到电磁波的传播和电磁辐射的效应。
电磁学的基础知识电磁学是物理学中的一个重要分支,研究电荷和电磁场之间的相互作用。
从静电学到电动力学,从麦克斯韦方程组到电磁辐射,掌握电磁学的基础知识对于理解电磁现象和应用电磁技术具有关键意义。
一、电荷和电场在电磁学中,最基本的概念是电荷和电场。
电荷是物质的基本属性,可以分为正电荷和负电荷。
正负电荷之间相互吸引,同类电荷之间相互排斥。
电场则是电荷周围所产生的力场,负责传递相互作用力。
二、库仑定律库仑定律描述了电荷之间的相互作用力。
根据库仑定律,电荷对之间的相互作用力与电荷之间的距离成正比,与电荷的大小成正比。
三、电场强度电场强度是电场中单位正电荷所受的力,用E表示。
对于点电荷,电场强度的大小与距离的平方成反比。
由于电荷的性质,电场是以向外的径向方向存在。
四、电势差和电位电势差是指电场中两点之间的电势能差,用V表示。
单位正电荷从一个点移动到另一个点时所做的功,就是电势差。
电势差与电场强度的积成正比。
五、电场线电场线是描述电场空间分布的图形。
电场线以电场强度方向为切线,线的密度表示电场强度的大小。
电场线从正电荷出发,进入负电荷或者无穷远。
六、电荷分布电荷分布可以分为均匀分布和非均匀分布。
对于均匀分布的电荷,可以通过积分来求解电场。
对于非均匀分布的电荷,则需要运用高斯定律或者数值计算来求解。
七、电场能量电场能量是指电荷在电场中所具有的能量。
电场能量与电荷的大小和电势差的平方成正比。
八、电场的叠加原理在多个电荷存在的情况下,各电荷所产生的电场可以叠加。
即总电场等于各电荷所产生的电场之和。
九、电流和电阻电流是指电荷在单位时间内通过导体的数量,用I表示。
电流的方向被约定为正电荷从正极流向负极。
电阻则是导体对电流的阻碍程度。
根据欧姆定律,电流与电压成正比,与电阻成反比。
十、电阻与电导率电阻与电导率成反比,电导率是导体的属性。
电导率越大,电阻越小。
常见的导体包括金属和电解质。
十一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。
高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。
在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。
下面将对高中物理电磁学知识点进行整理和归纳。
一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。
2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。
3. 超导体:电荷自由运动的材料,内部电场强度为零。
4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。
二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。
2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。
3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。
4. 电场线:用以表示电场强度方向的曲线。
5. 等势面:垂直于电场线的曲面,上面点的电势相同。
三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。
2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。
3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。
4. 电势差的计算:电势差等于电场力沿路径做功的量。
四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。
2. 电流的方向:正电荷流动的方向。
3. 电阻的影响:电阻导致电流受阻,产生热量。
4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。
五、电路中的基本元件1. 电动势:电源供电的原动力。
2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。
3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。
4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。
综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。
教资_高中物理知识点整理_电磁学
高中物理电磁学知识点整理:
1.电荷与静电:电荷的性质、电荷守恒定律、库仑定律、电场的概念
和性质、电场强度、电场线、静电场中的电势、电势差与电势能、电势差
与电场强度的关系和计算、电容器、电容量、等效电容。
2.电流与电阻:电流的定义和计算、电阻的概念和性质、导体的电阻、欧姆定律、电阻的串、并联关系和计算、理想导体、非理想导体、杂质的
影响、电源与电动势、电功和功率。
3.磁场与磁感应:磁场的定义和性质、磁场的表示、磁场线、磁感应
强度、磁感应强度的单位和计算、安培定律和磁场的叠加、磁能、磁通量
与磁感应强度的关系。
4.电磁感应:伦萨定律、自感、相互感应、电磁感应定律、法拉第电
磁感应定律、电磁感应中的能量转化和损耗。
5.电磁波:电磁波的概念和基本特性、电磁波的传播和性质、电磁波
的频率、波长、速度和光速、电磁波的反射、折射、衍射和干涉。
6.光电效应和光的粒子性质:光电效应的发现和实验、光电效应的解释、光电效应的应用、光的粒子性质和泊松分布。
7.波的性质:波的特性和类型、波的传播和速度、波长、频率和振动
周期的关系、波的衍射、干涉和多普勒效应。
8.光的干涉和衍射:光的干涉的条件和相干性、双缝干涉和杨氏实验、两平面波干涉、光的衍射和衍射图案、单缝衍射、衍射光栅。
9.光的折射和色散:折射定律、折射率、绝对折射率和相对折射率、光的全反射、光纤的原理和应用、色散现象及其原因。
10.光的偏振:自然光和偏振光、偏振光的产生和特性、偏振光的消光定律和马吕斯定律、偏振光的旋光现象。
高中物理电磁学知识点总结电磁学是物理学中的重要分支,研究电和磁之间的相互关系和规律。
下面将对高中物理电磁学的知识点进行总结,帮助大家理解和掌握相关概念和原理。
一、电场与电势能1. 电荷:基本电荷、电荷守恒定律。
2. 高斯定律:用于计算闭合曲面内的电场强度。
3. 电场强度:表示单位正电荷所受到的力。
4. 电势能:由静电场中的电荷所具有的能量。
二、电场中的理想导体和电势1. 理想导体:电场内部为零,仅存在导体表面。
2. Faraday 笼和屏蔽作用:理想导体外的保护。
3. 等势面与电势差:沿等势面电势不变。
三、电流和电路1. 电流:单位时间内通过导体横截面的电荷量。
2. 电阻和电阻率:电流与电压的关系。
3. 欧姆定律:电流与电压成正比。
4. 瞬态电流:电路中的开关导致电流变化。
5. 串联和并联电路:电阻的连接方式影响电流和电压。
四、磁场与磁场力1. 磁感应强度:表示单位正电荷运动所受到的磁场力。
2. 磁场线和磁感线:描述磁场的线条和方向。
3. 磁通量和磁感应强度:磁场穿过一个平面的总磁力线数。
4. 洛伦兹力:带电粒子在磁场中受到的力。
五、电磁感应和法拉第电磁感应定律1. 感应电动势:磁感线剪切导体产生的感应电动势。
2. 法拉第电磁感应定律:感应电动势正比于磁场变化率。
3. 感应电流:磁场变化导致电流的产生。
六、电磁感应和自感1. 自感和互感:电流的变化导致自感和互感现象。
2. 自感系数和互感系数:衡量自感和互感强度的物理量。
3. 变压器原理:基于互感现象的电气设备。
七、电磁波和电磁谱1. 电磁波的特性:由变化的电场和磁场组成的波动。
2. 电磁波的传播:在空气和真空中以光速传播。
3. 电磁谱:根据频率和波长将电磁波划分为不同范围。
八、电磁感应和交流电1. 交流电和直流电:电流方向变化导致的不同电流类型。
2. 交流电的频率和相位:描述交流电波的特性。
3. 交流电的电压和电流关系:交流电中的电压和电流之间的关系。
高三物理电磁学知识点电磁学是物理学的重要分支,研究电荷的运动和相互作用。
在高三物理学习中,电磁学是必须掌握的一部分内容。
下面将详细介绍高三物理电磁学的主要知识点。
一、电场和电势1. 电场:电场是指电荷在周围空间中产生的一种力场。
电场的强度用电场强度表示,符号为 E。
电场中某一点的电场强度大小等于该点单位正电荷所受到的电场力的大小。
2. 电势:电势是指单位正电荷从无穷远处移到某一点所做的功。
电势的单位是伏特(V)。
电势差等于两点间的电势之差。
3. 库仑定律:库仑定律是描述两个点电荷间电场强度和电荷之间距离的关系。
库仑定律公式为 F = k * |q1 * q2| / r^2,其中 F 为电荷相互作用力,k 为库仑常量,q1 和 q2 分别为两个电荷的大小,r 为电荷之间的距离。
二、磁场和磁感线1. 磁场:磁场是物质中存在的一种特殊力场,由磁荷或电流产生。
磁感应强度 B 是磁场的物理量,表示磁力对单位试验磁荷的作用。
2. 磁感线:磁感线是表示磁场线的一种方式。
磁感线是从北极指向南极,并形成闭合曲线。
3. 磁通量:磁通量是磁感线穿过某个面积的数量。
磁通量的单位是韦伯(Wb)。
三、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电流的现象。
它的数学表达式为ε = -dφ/dt,其中ε 是感应电动势,dφ/dt 是磁通量关于时间的变化率。
2. 楞次定律:楞次定律规定感应电流的方向。
根据楞次定律,感应电流的方向总是阻碍产生它的磁场变化。
四、电磁振荡和电磁波1. 电磁振荡:电磁振荡是指电磁场的能量以波动形式传播的过程。
经典的电磁振荡就是电磁波。
2. 电磁波:电磁波是以电磁场作为媒介,传播电磁能量的波动现象。
根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同波长的区域。
五、电磁场中的能量传播和辐射1. Poynting矢量:Poynting矢量描述了电磁场的能量传播方向和能量传播速率。
高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。
高中物理电磁学知识要点电磁学是物理学中一个重要的分支,主要研究电荷和电磁场之间的相互作用。
在高中物理学习中,电磁学也是一个重点内容。
本文将介绍高中物理电磁学的知识要点,并以整洁美观的方式,分小节论述。
一、电荷与电场1. 电荷的基本性质- 电荷分为正电荷和负电荷,同性相斥,异性相吸。
- 电荷守恒定律:孤立系统的总电荷保持不变。
2. 电场的概念与性质- 电场是由电荷产生的力场,用于描述电荷对周围空间的影响。
- 电场线表示电场的方向,指向正电荷的电场线由内向外,指向负电荷的电场线由外向内。
- 电场强度的定义与计算公式,E = F / q(F为电荷受力,q为电荷量)。
二、电场中的运动电荷1. 电荷在电场中受力- 电荷在电场中受力的大小与电场强度和电荷量的乘积成正比,表示为F = qE。
- 电荷在电场中受力的方向与电荷的性质(正负)以及电场方向相关。
2. 电势能与电势差- 电势能的定义与计算公式,Ep = qV(Ep为电势能,q为电荷量,V为电势差)。
- 电势差表示单位正电荷从A点移动到B点所获得的电势能变化量,计算公式为ΔV = Vb - Va。
三、电流与电阻1. 电流的概念与电流强度- 电流表示单位时间内通过导体横截面的电荷量,计算公式为I =ΔQ / Δt(I为电流强度,ΔQ为通过导体的电荷量,Δt为时间)。
- 电流强度的单位为安培(A)。
2. 欧姆定律与电阻- 欧姆定律的描述,U = IR(U为电压,I为电流强度,R为电阻)。
- 电阻的概念与计算公式,R = ρl / A(R为电阻,ρ为电阻率,l为导体长度,A为导体横截面积)。
四、电路中的基本元件1. 电阻与电阻的串并联- 串联电阻的总电阻计算公式,R = R1 + R2 + ... + Rn。
- 并联电阻的总电阻计算公式,1/R = 1/R1 + 1/R2 + ... + 1/Rn。
2. 电流的分流与合流- 串联电流的相等性,总电流等于各支路电流之和,I = I1 + I2 + ... + In。
物理学电磁学基础(知识点)电磁学是物理学中的重要分支,研究电荷之间的相互作用及其产生的电磁现象。
它与我们日常生活息息相关,如电力、电子设备、无线通信等都离不开电磁学知识。
本文将介绍电磁学的基础知识点,包括电磁场、电磁波以及电磁感应等。
一、电磁场电磁场是一种在空间中存在的物理场,由电荷和电流产生。
电磁场有两个基本特点:电场和磁场。
1. 电场电场是由电荷产生的一种物理场,描述了电荷对其他电荷的作用力。
电场的性质由库仑定律描述,即两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。
电场可以通过电场线表示,它们是沿着电场中的力线方向的连续曲线。
2. 磁场磁场是由电流产生的一种物理场,描述了电流对其他电流的作用力。
磁场的性质由安培定律描述,即通过导线的电流产生的磁场与电流成正比,与距离成反比。
磁场可以通过磁力线表示,它们是沿着磁场中的力线方向的连续曲线。
二、电磁波电磁波是一种由变化的电场和磁场相互作用而产生的波动现象。
电磁波具有电场和磁场的振荡,并在空间中传播。
根据波长的不同,电磁波可分为不同的类型,如射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波的速度是光速,即30万千米/秒。
电磁波在我们生活中有广泛的应用,如无线通信、广播电视、雷达、医疗影像等。
其中,可见光是我们能够感知的,它的波长范围约为380纳米到760纳米。
三、电磁感应电磁感应是指当导体中的磁场发生变化时,在导体中产生感应电动势的现象。
根据法拉第电磁感应定律,当导体与磁场相对运动或者磁场的强度发生变化时,在导体中会产生感应电动势。
感应电动势的大小与变化速率有关。
在电磁感应中,也可以根据磁场变化产生的电动势来制造电动机和发电机等设备。
电动机利用电磁感应产生的力来将电能转化为机械能,而发电机则利用机械能转化为电能。
总结电磁学是物理学非常重要的分支,涉及到了电磁场、电磁波以及电磁感应等多个知识点。
了解电磁学的基础知识,有助于我们更好地理解和应用电磁现象。
高中物理电磁知识点归纳总结电磁学是物理学中的重要分支,研究电荷与电流间相互作用的原理及其应用。
在高中物理学习中,电磁学是一个关键的知识点,包括电磁感应、电磁波、电路等内容。
本文将对高中物理电磁知识进行归纳总结,帮助同学们更好地理解和掌握相关概念和原理。
一、电磁感应1.法拉第电磁感应定律法拉第电磁感应定律指出,磁通量的变化将在导体中诱导出电动势,并产生电流。
数学表示为:ε = -dΦ/dt,即电动势等于磁通量的变化率的相反数。
2.楞次定律楞次定律规定,感应电流的方向总是使建立起它的磁场的磁力线构成的磁通量变小。
这个定律可以帮助我们确定感应电流的方向。
3.电磁感应的应用电磁感应在实际中有广泛的应用,如发电机、变压器、感应加热等。
通过利用电磁感应的原理,可以将机械能转化为电能或者将电能转化为机械能。
二、电磁波1.电磁波的概念电磁波是一种由电场和磁场交替产生的波动现象,它在真空中以光速传播。
电磁波具有波长、频率和振幅等特征。
2.电磁波谱电磁波谱是按波长或频率对电磁波进行分类和排列的图谱。
包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
3.电磁波的特性电磁波具有传播性、反射性和折射性等特性。
它们可以在空气、真空、介质中传播,并会根据不同介质的折射率发生折射现象。
三、电路1.电阻和电导电阻是导体中阻碍电流通过的因素,单位是欧姆(Ω)。
而电导是导体中电流通过的能力,单位是西门子(S)。
2.欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。
数学表示为:I = V/R,即电流等于电压除以电阻。
3.串联和并联电路在电路中,电阻可以串联或并联连接。
串联电路中电流相同而电压不同,而并联电路中电压相同而电流不同。
4.电功率电功率表示单位时间内电能的转化速率。
数学表示为:P = VI,即功率等于电压与电流的乘积。
四、电磁场1.电场电场是由电荷产生的力场,描述电荷在电场中受力的情况。
电场的强度由电场线表示,电荷会沿着电场线的方向运动。
电磁学知识点总结1. 静电学- 电荷与库仑定律- 基本电荷的定义- 电荷守恒原理- 库仑定律的表述及应用- 电场与电场强度- 电场的物理意义- 电场强度的计算- 电场线的概念- 电势与电势能- 电势的定义- 电势能与电势差- 电势的计算- 电容与电容器- 电容的定义- 电容器的工作原理- 并联与串联电容器的计算- 静电感应与电介质- 静电感应现象- 电介质的极化- 电位移矢量D2. 直流电路- 欧姆定律- 欧姆定律的表述- 电阻的概念与计算- 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 直流电路分析- 节点分析法- 环路分析法- 电功率与能量- 电功率的计算- 能量守恒原理3. 磁场- 磁场与磁力线- 磁场的描述- 磁力线的绘制- 安培定律与毕奥萨法尔定律 - 安培定律的表述- 毕奥萨法尔定律与磁矩 - 磁通与磁感应强度- 磁通的定义- 磁感应强度B的计算- 电磁感应- 法拉第电磁感应定律- 楞次定律- 互感与自感- 互感的概念- 自感系数的计算- RLC串联电路的谐振4. 交流电路- 交流电的基本概念- 交流电的周期与频率- 瞬时值、有效值与峰值- 交流电路中的电阻、电容与电感 - 阻抗的概念- 电容与电感在交流电路中的行为 - 交流电路分析- 相量法- 功率因数与功率- 变压器原理- 变压器的工作原理- 理想变压器的电压与功率变换5. 电磁波- 电磁波的产生- 振荡电路与电磁波的产生- 电磁波的传播- 电磁波的性质- 波长、频率与速度的关系- 电磁谱的分类- 电磁波的应用- 无线通信- 医学成像6. 电磁学的现代应用- 微波技术- 微波的特性与应用- 光纤通信- 光纤的工作原理- 光纤通信的优势- 电磁兼容性- 电磁干扰的来源与影响- 电磁兼容性设计的原则本文提供了电磁学的基础知识点总结,涵盖了从静电学到电磁波及其应用的主要内容。
每个部分都详细列出了关键概念、定律和应用,旨在为读者提供一个全面且系统的电磁学知识框架。
高中物理电磁学知识点1. 电荷与电场电荷: 物质的基本属性,分为正电荷和负电荷。
电荷的多少用库仑(C)表示。
库仑定律: 两个静止点电荷之间的作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
电场: 电荷周围存在的一种特殊物质,能够对放入其中的电荷产生作用力。
电场强度: 电场对单位正电荷的作用力,用牛顿/库仑(N/C)表示。
2. 电流与磁场电流: 电荷的定向移动形成电流,用安培(A)表示。
欧姆定律: 导体中的电流与两端电压成正比,与电阻成反比。
安培力: 电流在磁场中受到的力,其方向与电流方向和磁场方向垂直。
磁感应强度: 磁场对单位长度导线中单位电流的作用力,用特斯拉(T)表示。
3. 电磁感应法拉第电磁感应定律: 闭合回路中的磁通量发生变化时,回路中会产生感应电动势。
楞次定律: 感应电流的方向总是阻碍引起它的磁通量的变化。
自感现象: 电流变化时,线圈自身会产生感应电动势,阻碍电流的变化。
4. 电磁波麦克斯韦方程组: 描述电磁场的基本方程组,揭示了电磁场与电荷、电流之间的关系。
电磁波: 电磁场在空间传播的波动,其传播速度为光速。
电磁波的发射和接收: 通过天线可以实现电磁波的发射和接收,从而实现无线通信。
5. 电磁学在科技中的应用电磁感应: 电动机、发电机、变压器等设备的工作原理都基于电磁感应。
电磁波: 无线通信、雷达、微波炉等设备都利用了电磁波的特性。
电磁场: 磁悬浮列车、核磁共振成像等技术的应用都离不开电磁场。
电磁学知识点的掌握需要通过理论学习和实验探究相结合的方式进行。
通过深入理解电磁学的基本原理,我们可以更好地应用电磁学知识来解决实际问题,并推动科技的发展。
高中物理电磁学知识点1. 电荷与电场电荷: 物质的基本属性,分为正电荷和负电荷。
电荷的多少用库仑(C)表示。
库仑定律: 两个静止点电荷之间的作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
电场: 电荷周围存在的一种特殊物质,能够对放入其中的电荷产生作用力。
二、电磁学
(一)电场
1、库仑力:221r
q q k F = (适用条件:真空中点电荷) k = ×109 N ·m 2/ c 2 静电力恒量
电场力:F = E q (F 与电场强度的方向可以相同,也可以相反)
2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: q
F E = 单位: N / C 点电荷电场场强 r Q k
E = 匀强电场场强 d U E =
3、电势,电势能:
q E A 电
=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压
q
W U = U AB = φA -φB 5、电场力做功和电势差的关系:
W AB = q U AB
6、粒子通过加速电场:
22
1mv qU = 7、粒子通过偏转电场的偏转量:
20
2
2022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角
20
mdv qUL v v tg x y
==θ 8、电容器的电容: c Q U
= 电容器的带电量: Q=cU
平行板电容器的电容: kd
S c πε4= 电压不变 电量不变
(二)直流电路
1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)
2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m
3、串联电路总电阻: R=R 1+R 2+R 3
电压分配 2121R R U U =,U R R R U 2
111+= 功率分配 2121R R P P =,P R R R P 2
111+= 4、并联电路总电阻: 3
211111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2
121R R R R R += 并联电路电流分配 1221I R I R =,I 1=I R R R 2
12+ S l
R ρ
=
并联电路功率分配 1221R R P P =,P R R R P 2
121+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR
(2)闭合电路欧姆定律:I =r
R E + Ir U E += E r 路端电压:U = E -I r= IR
输出功率:
= IE-I r = (R = r 输出功率最大) R
电源热功率: 电源效率: =E
U = R R+r 6、电功和电功率: 电功:W=IUt
焦耳定律(电热)Q=
电功率 P=IU 纯电阻电路:W=IUt=
P=IU
非纯电阻电路:W=IUt ? P=IU?
(三)磁场 1、磁场的强弱用磁感应强度B 来表示: Il
F B = (条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
(1)直线电流的磁场
(2)通电螺线管、环形电流的磁场
3、磁场力
(1)安培力:磁场对电流的作用力。
公式:F= BIL (B?I )(B//I 是,F=0)
方向:左手定则
(2)洛仑兹力:磁场对运动电荷的作用力。
公式:f = qvB (B?v)
方向:左手定则
粒子在磁场中圆运动基本关系式 R
mv qvB 2= 解题关键画图,找圆心画半径 粒子在磁场中圆运动半径和周期 qB mv R =, qB
m T π2= t=πθ2T 4、磁通量 =BS 有效(垂直于磁场方向的投影是有效面积)
或=BS sin α (α是B 与S 的夹角)
∆
=2-1= ∆BS= B ∆S (磁通量是标量,但有正负)
(四)电磁感应 1.直导线切割磁力线产生的电动势 BLv E =(三者相互垂直)求瞬时或平均 (经常和I =r
R E + , F 安= BIL 相结合运用) 2.法拉第电磁感应定律 t n E ∆∆Φ==S t B n ∆∆=B t
S n ∆∆=t n ∆Φ-Φ12
求平均 3.直杆平动垂直切割磁场时的安培力 r R v L B F +=
22 (安培力做的功转化为电能)
4.转杆电动势公式 ω22
1BL E = 5.感生电量(通过导线横截面的电量) 匝1R Q ∆Φ=
*6.自感电动势 t
I L
E ∆∆=自
(五)交流电 1.中性面 (线圈平面与磁场方向垂直) Φm =BS , e=0 I=0
2.电动势最大值 ωεNBS m ==N Φm ω,0=Φt
3.正弦交流电流的瞬时值 i=I m sin (中性面开始计时)
4.正弦交流电有效值 最大值等于有效值的2倍
5.理想变压器 出入P P = 2
121n n U U = 1221n n I I = (一组副线圈时) *6.感抗 fL X L π2= 电感特点:
*7.容抗 fC
X C π21= 电容特点: (六)电磁场和电磁波
*1、LC 振荡电路
(1)在LC 振荡电路中,当电容器放电完毕瞬间,电路中的电流为最大, 线圈两端电
压为零。
在LC回路中,当振荡电流为零时,则电容器开始放电, 电容器的电量将减少, 电
容器中的电场能达到最大, 磁场能为零。
(2)周期和频率 LC T π2= LC f π21
=
2、麦克斯韦电磁理论:
(1)变化的磁场在周围空间产生电场。
(2)变化的电场在周围空间产生磁场。
推论:①均匀变化的磁场在周围空间产生稳定的电场。
②周期性变化(振荡)的磁场在周围空间产生同频率的周期性变化(振荡)的电场;周期性变化(振荡)的电场周围也产生同频率周期性变化(振荡)的磁场。
3、电磁场:变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一体,叫电
磁场。
4、电磁波:电磁场由发生区域向远处传播就形成电磁波。
5、电磁波的特点
⒈以光速传播(麦克斯韦理论预言,赫兹实验验证);
⒉具有能量;
⒊可以离开电荷而独立存在;
⒋不需要介质传播;
⒌能产生反射、折射、干涉、衍射等现象。
6、电磁波的周期、频率和波速:
V=? f = (频率在这里有时候用ν来表示)
波速:在真空中,C=3×108 m/s。