微波与天线矩形波导
- 格式:ppt
- 大小:207.50 KB
- 文档页数:34
第1篇一、矩形波导的模式分类矩形波导中的电磁波模式主要分为TE(横电磁波)模式和TM(纵电磁波)模式。
1. TE模式TE模式是指电场只在波导的横向(垂直于传播方向)分量存在,而磁场则在纵向(沿传播方向)分量存在。
根据电场和磁场在波导横截面上的分布,TE模式又可以分为TE10、TE20、TE01等模式。
(1)TE10模式:TE10模式是矩形波导中最基本、最常用的模式。
其电场分布呈矩形,磁场分布呈椭圆。
TE10模式的截止频率最高,适用于高频传输。
(2)TE20模式:TE20模式的电场分布呈矩形,磁场分布呈圆形。
其截止频率低于TE10模式,适用于中频传输。
(3)TE01模式:TE01模式的电场分布呈矩形,磁场分布呈椭圆。
其截止频率最低,适用于低频传输。
2. TM模式TM模式是指磁场只在波导的横向分量存在,而电场则在纵向分量存在。
根据电场和磁场在波导横截面上的分布,TM模式又可以分为TM01、TM11、TM21等模式。
(1)TM01模式:TM01模式的电场分布呈矩形,磁场分布呈圆形。
其截止频率最高,适用于高频传输。
(2)TM11模式:TM11模式的电场分布呈矩形,磁场分布呈椭圆。
其截止频率低于TM01模式,适用于中频传输。
(3)TM21模式:TM21模式的电场分布呈矩形,磁场分布呈圆形。
其截止频率最低,适用于低频传输。
二、矩形波导的模式特性1. 截止频率截止频率是矩形波导中一个重要的参数,它决定了电磁波在波导中能否有效传输。
不同模式的截止频率不同,其中TE10模式的截止频率最高,适用于高频传输。
2. 相速度相速度是指电磁波在波导中传播的速度。
不同模式的相速度不同,TE模式的相速度比TM模式快。
3. 模式损耗模式损耗是指电磁波在波导中传播时,由于波导壁的吸收和辐射等原因,能量逐渐衰减的现象。
不同模式的损耗不同,TE模式的损耗比TM模式小。
4. 传输特性矩形波导中不同模式的传输特性不同,如TE模式的传输特性较好,适用于高频传输;TM模式的传输特性较差,适用于低频传输。
微波技术矩形波导中电磁波的通解要点矩形波导是一种常见的微波传输线结构,具有广泛的应用,如微波通信、雷达系统和微波功率传输等。
在矩形波导中,电磁波的传播可以通过求解波动方程得到其通解。
下面将介绍矩形波导中电磁波的通解的要点。
矩形波导中的电磁波动方程是由Maxwell方程组给出的。
在无源情况下,即没有电流密度和电荷密度,Maxwell方程组可以简化为两个波动方程,即:(1)对电场E的波动方程:∇^2E+k^2E=0(2)对磁场H的波动方程:∇^2H+k^2H=0其中,k为波数,k=ω/c,ω为角频率,c为光速,∇^2为Laplace 算子。
为了求解上述波动方程,我们需要确定边界条件。
(1)边界条件:矩形波导具有无限大的边界,因此我们可以选择适当的坐标系来求解波动方程。
一种常见的坐标系选择是矩形坐标系,其中坐标轴沿着波导的边界方向。
在矩形波导的壁面上,电场E和磁场H应满足如下边界条件:a)电场E与波导壁面垂直,即E·n=0,其中n为壁面的法向量;b)磁场H与波导壁面平行,即H·n=0。
(2)模态理论:矩形波导中的电磁波存在多个模式,每个模式由一组特定的场分布和频率特征确定。
每个模式都对应于特定的截止频率,超过这个频率时将不能在波导中传播。
对于矩形波导,存在两个基本的模式,即TE (Transverse Electric)模式和TM (Transverse Magnetic)模式。
TE模式是指电场E的一部分为零,也就是垂直于波导壁面的电场分量为零。
TE模式有多种类型,根据电场分布情况的不同而命名。
例如,TE10模式表示只有横向电场分量的模式,而TE20模式表示有两个横向电场分量的模式。
TM模式是指磁场H的一部分为零,也就是垂直于波导壁面的磁场分量为零。
TM模式也有多种类型,根据磁场分布情况的不同而命名。
例如,TM11模式表示只有横向磁场分量的模式,而TM30模式表示有三个横向磁场分量的模式。
•理论与设计•矩形波导转微波谐振腔同轴天线的仿真设计闫新胜12!赵连敏刘甫坤吴大俊贾华单家芳1!•中国科学院等离子体物理研究所,安徽合肥230031; 2.中国科学技术大学,安徽合肥230026)摘要:矩形波导转谐振腔同轴天线是微波等离子体镀膜系统的重要组件之一。
借助仿真模拟软件,以中心频率915MHz 仿真设计了两种矩形波导同轴天线转换器。
其一是垂直结构,同轴天线与矩形波相交;其二是相切弧结构,同轴天线内导体以相切的弧线向矩形波导过渡。
仿真分析了两种结构的适用范围&分析表明,加销钉的垂直结构在100MHz带宽范围内,反射系数小于一10dB,同轴内导体的直径需不大于波导宽度的1/10;优化后的相切弧结构在100MHz带宽范围内,反射系数小于一10dB同轴内导体直径需不小于波导宽度的1/4&关键词:波导转换;HFSS仿真模拟;反射系数中图分类号:TN812;TN814文献标志码:A文章编号:1002-8935(2019)03-0055-04doi:10.16540/11-2485/tn.2019.03.13Design and Simulation of Rectangular Waveguide toMicrowave Resonant Coaxial AntennasYAN Xin-sheng1'2,ZHAO Lian-min1,LIU Fu-kun1,WU Da-jun1,JIA Hua1,SHAN Jia-fang1(1.Institute of Plasma Physics,Chinese Academy of Sciences,Hefei230031,China;2.University of Science and Technology of China,Hefei230026,China)Abstract:The rectangular waveguide to resonant cavity coaxial antenna is an important component of themicrowaveplasmacoatingsystem.Twokindsofrectangularwaveguidetocoaxialantennaconverters withthecenterfrequencyof915MHzweredesignedandsimulated.Thefirstisaverticalstructure the coaxialantennaintersectsperpendicularly withtherectangular waveguide;whilethesecondisatangent arcstructure the inner conductor of the coaxial antenna transitions to the rectangular waveguide witha tangentarc.Theapplicationscopeofthetwostructureswassimulatedandanalyzed.Theanalysisshows thatthereflectioncoe f icientoftheverticalstructure withthepinislessthan—10dB within100MHz bandwidth whenthediameterofthecoaxialinnerconductorisnotgreaterthanonetenthofthewaveguide width,meanwhile the reflection coefficient of the optimized tangent arc structure is less than—10dB with-n100MHz bandwidth when the coaxial inner conductor diameteris notlessthan a quarter ofthe waveguidewidth.Keywords:Waveguideconversion HFSSsimulation Reflectioncoe f icient在微波系统中,矩形波导和同轴波导是常用的两种传输结构&矩形-同轴波器可现两者的,在微波测试、雷统中都有重要的应用&矩波同线矩-同波转换以及同轴内伸的发线构成&目前多种形式的微波等离子体镀膜设备就是利用这种波导转同轴天线的集成设计来耦合微波能量*1—4+&矩形波同线的设计要:矩波的微波能量有效地向同轴天线转换,传输损耗低,反射系数效率高[5]&1理论基础传统论模型以悬空式波导变换为研究对象,其结构是[6—7+:在矩形波导的宽边开孔,插入同波导的内&内线的作用,矩同轴变换,内导体作为接收天线,激励起同轴波2019-03导中的TEM模式;同轴向矩形变换,内导体作为发线,激励起矩形波的TE10模&结构如图1所示&图中,h是同轴内伸进入矩形波导的;l同内线矩波的距离;为同轴波导的内导体的半径&图1波导变换结构根据R E Collin「8+,由正弦电流近似理论得到线的阻抗实部为:R=役0sin2("101#tan2(K。
矩形波导的特点
矩形波导(Rectangular waveguide)是一种常用的传输微波能量的波导结构。
它具有以下特点:
1. 大功率承载能力:矩形波导的内部电场分布比较均匀,因此在相同的输入功率下,其最大输出功率较其他波导结构要高。
2. 低传输损耗:矩形波导的传输损耗比传输线要小,因为传输线上的电磁波要通过导线进行传输,而矩形波导中的电磁波只需要在金属面之间传播即可,传输效率更高。
3. 宽频带:矩形波导的宽度和高度可按一定的比例调节,以适应不同频率下的传输要求。
一般较宽的矩形波导具有更宽的工作频带。
4. 可靠性高:矩形波导结构简单,容易制造,结构稳定,因此具有较高的可靠性。
参考文献:
[1] 陈国强, 许海德. 波导与天线学[M]. 北京: 国防工业出版社, 1996.
[2] 孙利朝. 电磁场与微波技术[M]. 西安: 西安电子科技大学出版社, 2001.
[3] 李文琦, 刘国祥. 微波技术基础[M]. 北京: 电子工业出版社, 2005.。
微波通信中的天线设计微波通信作为一种高速、高效、长距离传输数据的方式,广泛应用于雷达、通信、卫星通讯、无线电视和远程遥测等领域。
天线作为微波通信系统的重要组成部分,在信号的传输和接收中扮演着至关重要的角色。
本文将对微波通信中的天线设计进行介绍和探讨。
一、微波通信中的天线种类1. 矩形波导天线矩形波导天线是一种常见的微波天线,具有结构简单、成本低、谐振频率快等特点。
它的工作原理是通过在波导管内形成电磁场来传输和接收微波信号。
矩形波导天线可以分为单模天线和多模天线两种类型,前者只能在一定的频段内工作,而后者则可以在更广泛的频段内工作。
2. 微带天线微带天线是一种小型化、轻量化的天线,主要用于移动通信、卫星通信等领域。
它的结构非常简单,通常由一块金属贴片放置在介电基底材料上,并通过线路连接到射频设备。
微带天线的性能取决于贴片、介电材料和线路等因素。
3. 基于波导的槽天线基于波导的槽天线是一种性能优良的微波天线,它由一个直径小于波导长度的大槽埋在波导管内,通过在槽内产生电磁场来传输和接收信号。
相比于其他微波天线,基于波导的槽天线具有带宽宽、辐射功率大等优点。
二、微波天线设计的关键因素1. 工作频率工作频率是设计微波天线的关键因素,它直接影响天线的谐振和辐射功率。
在进行微波天线设计的时候,需要根据应用场景的要求选择合适的频率范围进行设计。
2. 天线尺寸天线尺寸是设计微波天线的另一个重要因素,尺寸的大小会影响天线的谐振频率和辐射功率。
在进行天线设计时需要综合考虑实际应用场景的需求以及天线性能的要求,选择合适的尺寸。
3. 天线结构和材料天线的结构和材料也是设计微波天线的关键因素之一。
合适的结构和材料可以提高天线的性能,如提高天线的带宽、增加谐振频带等。
三、微波天线设计的常用方法1. 参数化设计参数化设计是常用的微波天线设计方法之一,它是通过改变天线参数,如尺寸、工作频率等,来获得不同的性能结果。
参数化设计方法可以节省时间和成本,提高天线设计效率。
矩形波导极化方向介绍矩形波导是一种常见的电磁波传输结构,其采用矩形截面,可以用于射频、微波和光纤通信等领域。
在矩形波导中,波的传播方向和波导的截面形状决定了波的极化方向。
本文将深入探讨矩形波导极化方向的特性和影响因素。
极化方向的定义极化是指电磁波传播中电场矢量的振动方向。
根据极化方向的不同,电磁波可以分为水平极化、垂直极化和斜线极化等。
矩形波导的极化方向矩形波导中电磁波的极化方向与波导的截面形状密切相关。
矩形波导一般具有两个正交的传输模式,即TE模式和TM模式。
TE模式表示横向电场分量为零,TM模式表示横向磁场分量为零。
在TE模式中,电场分布与垂直于波导传输方向相同,磁场分布与传输方向垂直。
在TM模式中,磁场分布与垂直于波导传输方向相同,电场分布与传输方向垂直。
影响极化方向的因素1. 波导截面形状矩形波导的截面形状是影响极化方向的关键因素之一。
当波导的宽度大于高度时,通常会存在TE模式和TM模式。
如果宽度小于高度,只能存在TM模式。
2. 工作频率频率对矩形波导的极化方向也有影响。
在某些频率下,仅存在TE或TM模式。
因此,选择合适的工作频率可以控制极化方向。
3. 束流束流是指矩形波导中的电流分布,也会影响极化方向。
在一些特定情况下,束流可能导致极化方向的旋转或变化。
这对于特定的应用如偏振器设计具有重要意义。
极化方向的应用矩形波导的极化方向在实际应用中具有广泛的意义。
以下是一些应用领域的例子:1. 天线设计极化方向决定了天线的特性,因此在设计天线时需要考虑波导极化方向的特点。
合理选择极化方向可以提高天线的效率和性能。
2. 偏振器设计极化方向的控制是偏振器设计中的关键问题。
通过选择合适的波导截面形状和工作频率,可以实现特定的极化方向,从而满足特定的偏振器要求。
3. 光纤通信矩形波导在光纤通信中也具有重要作用。
通过控制光纤纤芯的截面形状,可以实现特定的极化方向,从而提高传输效率和容量。
4. 射频和微波电路矩形波导的极化方向对于射频和微波电路的设计也具有影响。
矩形波导尺寸计算公式矩形波导是一种常用的微波传输线,广泛应用于无线通信、雷达系统、微波器件等领域。
矩形波导的尺寸直接影响其工作频率和传输特性,因此准确计算矩形波导尺寸十分重要。
矩形波导的尺寸通常由宽度a和高度b来表示。
在计算矩形波导尺寸时,我们需要考虑波导的工作频率、模式以及材料参数等因素。
1. 工作频率:矩形波导具有一系列谐振模式,而不同模式对应不同的工作频率。
为了确定矩形波导的尺寸,我们需要首先确定所需的工作频率。
根据工作频率,可以选择适当的模式。
2. 模式选择:矩形波导的模式通常由截止频率决定。
截止频率是指在某一模式下,电磁波不能在波导中传播的最低频率。
根据截止频率,我们可以选择适当的模式,然后计算矩形波导的尺寸。
3. TE和TM模式:矩形波导中最常见的模式是TE和TM模式。
TE 模式是横向电场模式,电场垂直于波导的截面;TM模式是横向磁场模式,磁场垂直于波导的截面。
根据所需的模式,可以选择适当的尺寸计算公式。
4. 矩形波导尺寸计算公式:对于TE模式,矩形波导的宽度a和高度b的计算公式如下:a = (m * λ) / 2b = (n * λ) / 2其中,a为宽度,b为高度,m和n为模式数,λ为波长。
根据所选的模式数,可以计算出矩形波导的宽度和高度。
5. 波导材料参数:在计算矩形波导尺寸时,还需要考虑波导材料的参数。
波导材料的相对介电常数和磁导率对尺寸计算有一定影响。
根据材料参数,可以调整尺寸计算公式中的修正系数。
矩形波导尺寸的计算是一个相对复杂的过程,需要考虑多个因素并进行适当的修正。
在实际应用中,可以借助电磁仿真软件来辅助计算和优化矩形波导的尺寸。
总结起来,矩形波导尺寸的计算涉及工作频率、模式选择、计算公式以及波导材料参数等因素。
根据这些因素,我们可以确定矩形波导的宽度和高度,以满足特定的工作要求。
矩形波导尺寸计算是微波器件设计中的重要一环,准确计算可以保证波导的传输特性和工作性能。
通过合理选择和优化矩形波导的尺寸,可以提高微波系统的性能和可靠性。
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率*围:300MHz~3000GHz ,其对应波长*围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)2、λ/4变换性:Z in(z)-Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)=|Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
矩形波导的特点矩形波导是一种重要的微波传输线,以其简单的结构、较低的损耗和宽带特性,在微波技术中被广泛应用。
本文主要介绍矩形波导的特点、结构和应用。
一、矩形波导的特点1. 较低的传输损耗:在微波频段,矩形波导的传输损耗很小,这是由于矩形波导的体积很大,传输的能量少受到周围环境的影响。
2. 宽带性:矩形波导的截止频率较低,一般为GHz,因此较宽的频段可以被传输。
同时,矩形波导的输入输出端口规格定制灵活,可以支持不同的应用场景。
3. 高功率承受能力:矩形波导的结构比较简单,因此在高功率应用中,可以承受颇高的功率。
这也是在雷达、卫星通信等领域应用广泛的原因之一。
4. 良好的抗干扰性能:由于矩形波导的结构特点,其较好的抗干扰性能是十分值得推崇的。
在强干扰环境下,仍能有效地传输信号。
二、矩形波导的结构矩形波导由四面体构成,具有长与宽两个维度,相对于纯导体,其截止频率相比较而言较低。
矩形波导的截止频率是由矩形的长宽比决定的,当长宽比减小时,截止频率减小。
矩形波导的四边均被镀上导体,通过振荡和反射来实现能量传输。
与矩形波导相应的模式包括电模和磁模两种模式,它们的波长和频率是不同的,这主要是由于不同模式传输的本质区别所造成的。
三、矩形波导的应用1. 雷达系统:雷达系统具有高功率、宽带、高抗干扰性等特点,正是这些特点让雷达系统的数据传输准确性更高、可靠性更好。
2. 卫星通信:在卫星通信中,矩形波导主要应用在卫星发射、接收系统。
卫星通信对于信号传输的准确性和可靠性要求很高,因此选择矩形波导作为传输线路也是一个不错的选择。
3. 航空导航:紧凑的结构和良好的抗干扰性能是矩形波导在航空导航领域得到广泛应用的原因。
在航空导航中应用,不仅可以准确感知目标,还能够保证安全性。
四、总结综上所述,矩形波导以其较低传输损耗、高功率承受能力、宽带性和出色的抗干扰性能,在微波技术中被广泛应用。
通过对矩形波导的深入研究,可以更好地发挥其特点,并在不同应用场景下得到更好的应用。
矩形波导的特点矩形波导是一种常用于微波和毫米波频段的传输线,其具有多种优良特性,如低损耗、高可靠性、可变带宽、易制造和可集成等等。
本文将从矩形波导的基础理论、结构特点、应用领域和发展趋势等方面进行详细介绍。
一、基础理论1. 电磁场的基本方程电磁场的基本方程包括麦克斯韦方程组和洛伦兹力方程,其中麦克斯韦方程组描述了电场与磁场之间的相互作用规律,洛伦兹力方程则描述了电流在电磁场中的受力情况。
2. 传输线的电学性质传输线的电学性质包括电容、电感和阻抗等参数。
在矩形波导中,电容和电感主要由波导金属壳体和波导中的电场和磁场相互作用产生,阻抗则由波导的几何形态和介质特性决定。
3. 矩形波导的传输特性矩形波导的传输特性与其结构形式密切相关。
一般来说,矩形波导的特性阻抗、传输带宽和模式结构等都会随着频率的变化而发生相应的变化。
二、结构特点1. 矩形波导的构造矩形波导由上下两块平行的金属板和四面硬性壁构成,内部空间是一个长方体或正方体腔室。
其金属壳的尺寸和形状决定了波导的频率响应和谐振模式。
2. 矩形波导的工作方式矩形波导的工作方式可分为TE模式和TM模式,其中TE模式是指电场垂直于波导纵向方向,磁场平行于波导纵向方向;TM模式则是指电场平行于波导纵向方向,磁场垂直于波导纵向方向。
尽管矩形波导的主要应用场合是TE10模式,但在一些特定频率下,其可工作于多种模式下。
3. 矩形波导的参数设计矩形波导的设计需要考虑多个参数,如波导长度、宽度、高度、壁厚、端口位置和形状等。
这些参数的选择和优化将极大地影响波导的电学特性、传输带宽和谐振模式等指标。
三、应用领域1. 通信领域矩形波导被广泛应用于通信领域,如微波通信中的天线阵列、毫米波中的频率合成器和信号放大器等。
其低损耗的特点在长距离传输中具有优良的性能。
2. 雷达测量矩形波导的谐振性质在雷达测量中广泛应用,如星载雷达中的天线和高频发生器等。
此外,矩形波导的可变谐振频率特性还被用于各种形式的频率可调谐器件。