微波技术基础-概述(1)
- 格式:pdf
- 大小:1.55 MB
- 文档页数:55
《微波技术基础》课程学习知识要点第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 3×108Hz ~3×1012Hz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。
一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。
2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。
3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。
4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为()()()()d U z dz U z d I z dzI z 2222220-=-=ββ 其解为 ()()()U z A e A e I z Z A e A e j z j zj z j z=+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则:对于均匀无耗传输线,已知始端电压U 1和电流I 1,则:()()⎪⎭⎪⎬⎫+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ其参量为 Z L C 000=,βπλ=2p ,v v p r =0ε,λλεp r=03. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。
摘要本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。
10This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.微波技术基础第一章微波简介1.1 什么是微波微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~MHz3000括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。
下图为电磁波谱分布图:1.2微波的基本特点1.似光性和似声性微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。
同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。
这样利用微波就能获得方向性极好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体发射或反射的微弱信号,从而确定该物体的方向和距离,这就是雷达及导航技术的基础。
微波技术基础第一篇:微波技术基础微波技术是指在微波频段内进行无线电波传输和工作的技术。
微波频段的频率范围为300MHz至300GHz,是一种高频电磁波。
微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
本篇文章主要介绍微波技术的基础知识。
1、微波的特点微波的特点是波长短、频率高、传输能力强、穿透力强、反射和绕射能力弱。
由于微波波长短,具有高频率和短时间间隔,相应的能量高,因此可以携带大量信息。
微波具有很强的穿透力,可以穿透一些物质。
但它对金属等导电材料的反射和绕射能力非常弱。
2、微波的应用微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
其中,通信是微波技术应用最广的领域。
无线电视也用到了微波技术,它具有大带宽和高清晰度等优点。
雷达是一种利用微波波段特殊频率特性进行目标侦察和跟踪的技术。
医疗成像是微波技术的另一个应用领域,例如计算机断层扫描,实现肿瘤发现和诊断。
3、微波的发射方式微波发射方式包括波束走向和波束展宽两类。
波束走向是指将微波束对准目标以达到传送信息的目的。
波束展宽是指通过微波辐射,以实现信息的传输。
微波发射方式的选择应根据不同的应用场景来确定,例如在通信中应选择波束走向,而在雷达中应选择波束展宽。
4、微波的传输损耗微波在传输过程中会发生一定的损耗。
导致这种损耗的原因主要包括传输路径的衰减、反射和绕射效应、电磁波散射等。
传输路径的衰减是微波传输损耗最主要的原因。
它可以通过加强发射功率、缩短传输距离、采用大口径天线等措施来降低影响。
5、微波天线天线是微波技术的重要组成部分,它能将高频率的电磁波转换成物理信号,实现信息的传输。
微波天线种类繁多,包括Horn天线、微带天线、反射天线、缝隙天线等。
微波天线的使用应根据具体应用需求来选择。
例如,在雷达中,反射天线和缝隙天线可以实现高精度的指向和定位,而微带天线则可以被制成很小的尺寸,方便安装和使用。
6、微波放大器微波放大器的作用是放大微波信号,以便在传输中降低信号衰减。
微波原理概述1、微波技术原理微波技术是一门需要高度实验技能的专业技术知识,微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。
微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,麦克斯维方程组本身就是从实践中归纳、总结出来的。
大多数微波实际应用的工程问题都不能通过理论计算得到精确的解析解。
在研究微波工程问题时,为了避开一些复杂的数学运算和无解析解的问题,常需要根据具体情况和一些基本的物理概念对所研究的问题做简化、等效或近似处理,因此,通过实践来修正理论分析结果是每个微波工程技术人员具备的基本技能。
2、微波定义微波是一种频率非常高的电磁波。
微波包括的波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右的电磁波。
由于微波的频率很高,所以也叫超高频电磁波。
为了进行比较,这里将微波、工业用电和无线电中波广播的频率与波长范围列于表中。
因为微波的应用极为广泛,为了避免相互的干扰,供工业、科学及医学使用的微波频段是不同的,现将其列于表中不同工作频率的微波系统具有不同的技术特性、生产成本和用途,微波系统的工作频率越高。
其结构尺寸就越小;微波通讯系统的工作频率越高,其信息容量越大;微波雷达系统的工作频率越高,雷达信号的方向性和系统的分辨率就越高。
微波的频率越高,其大气传输和传输线传输的损耗就越大。
目前国内只有915MHz和2450MHz 被广泛使用。
在较高的两个频率段还没有合适的大功率工业设备。
3、微波的特殊性质微波是电磁波,它具有电磁波的诸如反射、透射干涉、衍射、偏振以及伴随着电磁波能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。
在微波系统中,组件的电性质不能认为是集总的,微波系统没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。
在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。
微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。
它广泛应用于无线通信、卫星通信、雷达探测等领域。
掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。
本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。
一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。
微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。
2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。
3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。
4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。
二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。
2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。
3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。
4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。
三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。
2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。
3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。
四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。
2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。
3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。
微波技术基础知识积累刘鹏May 7, 20151. 微波基础知识微波的定义微波是指波长很短、频率很高的电磁波。
广义上讲,频率300MHz到3000GHz,波长从1m到范围的电磁波都可以称为微波。
但人们通常把波长1cm以下至(频率30GHz~3000GHz)的电磁波专门称为毫米波及亚毫米波,而把波长1cm以上至1m的电磁波才称为微波。
微波特性微波总的特性可以简单记忆为:波长短、频率高、穿透性强。
这三个特点又可以延伸出以下几个方面的特性:1)波长短(1)共度性。
微波波长比宏观物体的尺寸小很多时,微波照射在物体上就会产生显著反射。
(2)似光性。
一般来说,波长越短,电磁波的传播特性就越接近光波特性,即类似光波具有直线传播、反射、散射、绕射等特性,而且随着波长的缩短,波束的定向性和分辨能力越高。
2)频率高(1)共时性。
微波振荡频率极高,故对应的每一个振荡周期时间极短。
使得普通电子器件中点击对电子的控制失去作用,因而普通电子管不能用来作为微波的振荡和放大。
(2)带宽性。
任何信息的传递都必须占有一定的频带,一个语言信号至少要3000Hz,而一路电视信号则需用8MHz频带。
因为微波的频率高,所以其包含的频带宽,信息容量大。
3)穿透性。
(1)微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播影响较小,这为全天候微波通信和遥感技术打下基础;微波能穿透生物,这为微波生物医学打下基础;另一方面,几个波段的微波受电离层的影响较小,可以容易的从地面向外层空间传播,故其为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。
(2)热效应特性。
微波照射到介质上时能深入到介质内部,从而使微波对介质的作用在内部和外部同时进行,这也是微波加热不同与一般加热的优点基础。
微波的应用微波在军事技术、工农业生产、科学研究及日常生活等各领域都有广泛应用。
例如,雷达、电子对抗(对敌人电子信息装备进行干扰、欺骗、压制,使其不能正常工作,侧重于干扰)、微波武器(随着微波功率的提升,微波武器可使敌方装备暂时性或永久性遭到破坏,侧重于破坏)、通信、微波检测。
天线和微波技术基础知识概述天线和微波技术是现代通信领域中非常重要的组成部分。
天线作为接收和发射无线信号的关键装置,而微波技术则主要用于传输和处理高频率的电磁信号。
本文将对天线和微波技术的基础知识进行概述,以帮助读者加深对这一领域的了解。
一、天线基础知识1. 天线的定义和作用天线是一种通过电磁辐射和感应的方式,将电磁信号转换为自由空间中的电磁波,或者将电磁波转换为电信号的装置。
它负责将信号从发射源传输到接收源,或者将接收到的信号转换为电信号。
2. 天线的分类根据天线的形式和使用场景,可以将其分为多种类型,如:(1)微带天线:用于无线通信和雷达系统,具有体积小、重量轻、成本低的优点。
(2)偶极子天线:应用广泛,适用于各种频率范围和工作环境。
(3)扩展频带天线:可以在多个频段上工作,适应不同通信需求。
(4)阵列天线:通过组合多个天线单元,实现波束和指向性辐射。
(5)喇叭天线:用于辐射高功率无线信号,可在长距离范围内传输。
3. 天线参数天线的性能主要由以下参数来衡量:(1)增益:表示天线向某个方向传输/接收信号的能力,可以通过增加天线尺寸或精心设计来提高。
(2)方向性:指示天线向某个方向辐射/接收信号的能力,可以通过改变天线结构来实现。
(3)驻波比:用于衡量天线的适配性和效率,一般要求越小越好。
二、微波技术基础知识1. 微波的概念和特点微波是一种频率范围在300 MHz至300 GHz之间的电磁波,具有高频率、短波长和较强的穿透能力。
微波技术在无线通信、雷达、卫星通信等领域有着广泛的应用。
2. 微波器件和系统(1)微波集成电路(MIC):它是一种将微波元器件(如传输线、滤波器、放大器等)集成在同一芯片上的技术,可以实现尺寸小、性能优越的微波电子元器件。
(2)高频开关:用于控制微波信号的通断,具有快速响应、低损耗的特点。
(3)微波天线系统:结合天线和微波技术,用于将微波信号进行传输和接收。
(4)微波滤波器:用于筛选和处理特定频率范围内的微波信号,以满足通信系统的要求。