流体力学气体的一维定常流动
- 格式:ppt
- 大小:644.50 KB
- 文档页数:25
一、名词解说1.理想流体:实质的流体都是有粘性的,没有粘性的设想流体称为理想流体。
2.水力圆滑与水力粗拙管:流体在管内作紊流流动时(1 分),用符号△表示管壁绝对粗拙度,δ0 表示粘性基层的厚度,则当δ0>△时,叫此时的管路为水力圆滑管;(2 分)当δ 0<△时,叫此时的管路为水力粗拙管。
(2 分)3.界限层厚度:物体壁面邻近存在大的速度梯度的薄层称为界限层;(2分)往常,取壁面到沿壁面外法线上速度达到势流区速度的 99%处的距离作为界限层的厚度,以δ表示。
(3 分)4.卡门涡街:流体绕流圆柱时,跟着雷诺数的增大界限层第一出现分别,分别点不停的前移;( 2 分)当雷诺数大到必定程度时,会形成两列几乎稳固的、非对称性的、交替零落的、旋转方向相反的旋涡,并随主流向下游运动,这就是卡门涡街。
( 3 分)1、雷诺数:是反响流体流动状态的数,雷诺数的大小反响了流体流动时,流体质点惯性力和粘性力的对照关系。
2、流线:流场中,在某一时辰,给点的切线方向与经过该点的流体质点的刘速方向重合的空间曲线称为流线。
3、压力体:压力体是指三个面所封闭的流体体积,即底面是受压曲面,顶面是受压曲面界限限封闭的面积在自由面或许其延伸面上的投影面,中间是经过受压曲面界限限所作的铅直投影面。
4、牛顿流体:把在作剪切运动时知足牛顿内摩擦定律的流体称为牛顿流体。
5、欧拉法:研究流体力学的一种方法,是指经过描绘物理量在空间的散布来研究流体运动的方法。
6、拉格朗日法:经过描绘每一质点的运动达到认识流体运动的方法称为拉格朗日法。
7、湿周:过流断面上流体与固体壁面接触的周界称为湿周。
8、恒定流动:流场中,流体流速及由流速决定的压强、粘性力、惯性力等也不随时间变化的流动。
9、附面层:粘性较小的流体在绕过物体运动时,其摩擦阻力主要发生在紧靠物体表面的一个流速梯度很大的流体薄层内,这个薄层即为附面层。
10、卡门涡街:当流体经绕流物体时,在绕流物后边发生附面层分别,形成旋涡,并交替开释出来,这类交替摆列、有规则的旋涡组合称为卡门涡街。
定常流动流体(气体、液体)流动时,若流体中任何一点的压力,速度和密度等物理量都不随时间变化,则这种流动就称为定常流动;反之,只要压力,速度和密度中任意一个物理量随时间而变化,液体就是作非定常流动或者说液体作时变流动。
所以,定常流动时,管中流体每单位时间流过的体积(体积流量)qV为常量,流体每单位体积的质量(密度)ρ也是常量。
非定常流动流体的流动状态随时间改变的流动。
若流动状态不随时间而变化,则为定常流动。
流体通常的流动几乎都是非定常的。
分类按流动随时间变化的速率,非定常流动可分为三类:①流场变化速率极慢的流动:流场中任意一点的平均速度随时间逐渐增加或减小,在这种情况下可以忽略加速度效应,这种流动又称为准定常流动。
水库的排灌过程就属于准定常流动。
可认为准定常流动在每一瞬间都服从定常流动的方程,时间效应只是以参量形式表现出来。
②流场变化速率很快的流动:在这种情况下须考虑加速度效应。
活塞式水泵或真空泵所造成的流动,飞行器和船舶操纵问题中所考虑的流动都属这一类。
这类流动和定常流动有本质上的差别。
例如,用伯努利方程(见伯努利定理)描述这类流动,就须增加一个与加速度有关的项,成为:,式中为理想流体沿流线的速度分布;A和B表示同一流线上的两个点;P 为压强;为密度;g为重力加速度;z为重力方向上的坐标;ds为流线上的长度元。
③流场变化速率极快的流动:在这种情况下流体的弹性力显得十分重要,例如瞬间关闭水管的阀门。
阀门突然关闭时,整个流场中流体不可能立即完全静止下来,速度和压强的变化以压力波(或激波)的形式从阀门向上游传播,产生很大的振动和声响,即所谓水击现象。
这种现象不仅发生在水流中,也发生在其他任何流体中。
在空气中的核爆炸也会发生类似现象。
除上述三类流动外,某些状态反复出现的流动也被认为是一种非定常流动。
典型的例子是流场各点的平均速度和压强随时间作周期性波动的流动,即所谓脉动流,这种流动存在于汽轮机、活塞泵和压气机的进出口管道中。
流体力学B 篇题解B1题解BP1.1.1 根据阿佛迦德罗定律,在标准状态下(T = 273°K ,p = 1.013×105Pa )一摩尔空气(28.96ɡ)含有6.022×10 23个分子。
在地球表面上70 km 高空测量得空气密度为8.75×10 -5㎏/m 3。
试估算此处 10 3μm 3体积的空气中,含多少分子数n (一般认为n <106时,连续介质假设不再成立)答: n = 1.82×10 3提示:计算每个空气分子的质量和103μm 3体积空气的质量 解: 每个空气分子的质量为 g 1081.410022.6g 96.282323-⨯=⨯=m设70 km 处103μm 3体积空气的质量为Mg 1075.8)m 1010)(kg/m 1075.8(20318335---⨯=⨯⨯=M323201082.1g1081.4g 1075.8⨯=⨯⨯==--m M n 说明在离地面70 km 高空的稀薄大气中连续介质假设不再成立。
BP1.3.1 两无限大平行平板,保持两板的间距δ= 0.2 mm 。
板间充满锭子油,粘度为μ=0.01Pa ⋅s ,密度为ρ= 800 kg / m 3。
若下板固定,上板以u = 0.5 m / s 的速度滑移,设油内沿板垂直方向y 的速度u (y)为线性分布,试求: (1) 锭子油运动的粘度υ;(2) 上下板的粘性切应力η1、η2 。
答: υ= 1.25×10 – 5 m 2/s, η1=η2= 25N/m 2。
提示:用牛顿粘性定侓求解,速度梯度取平均值。
解:(1 ) /s m 1025.1kg/m800/sm kg 0.0125-3⨯===ρμν (2)沿垂直方向(y 轴)速度梯度保持常数,δμμττ/21u dydu==== (0.01Ns / m 2)(0.5m/s)/(0.2×10-3m)=25N/m 2 BP1.3.2 20℃的水在两固定的平行平板间作定常层流流动。
第一章流体及其物理性质1、在高压下,流体(包括气体和液体)的粘性随着压力的升高而增大。
( )2、流体在静止时无粘性,只有内部发生相对运动时才有粘性。
( )3、。
流体在静止时无粘性,只有在流体微团发生相对运动时才有粘性。
( )4、当两流层之间残生相对运动时,单位面积上的内摩擦力与速度梯度成反比。
( )5、构成气体粘性主要因素是气体分子间的吸引力。
( )6、根据牛顿内摩擦定律,流层间的摩擦切应力与速度梯度成正比,而与压力无关。
( )7、理想流体必须具备两个条件:一是不具有粘性,二是不可压性。
( )8、流体在静止时无粘性,只有在内部发生相对运动时才有粘度。
( )9、在无粘性流体中,不管是否运动,都不会产生切应力。
( )10、流体的粘性随温度的升高而减小。
( )11、静止的不可压缩流体的密度并非处处都为同一常数,只有即为不可压缩流体,同时又是均质时,密度才时时处处都是同一常数。
( )12、静止流体无粘性,即切应力等于零。
( )13、由于粘性是流体的固有属性,因此粘性流体在静止是应该存在切应力。
( )第一章流体及其物理性质1、如果在某一瞬间使流体中每个流体微团的密度均相同,则这种流体一定是( )。
A、可压缩流体;B、不可压缩流体;C、均质流体;D、非均质流体;2、牛顿内摩擦定律告诉我们( )。
A、作用于流层上切向应力与压力成正比;B、作用于流层上切向应力与速度梯度成正比;C、作用于流层上切向应力与速度梯度成反比;D、作用于流层上切向应力与流层面积成反比;3、流体的特点是( )。
A、只能承受微小剪切力作用;B、受任何微小压力都能连续变形;C、当受到剪切力作用时,仅能产生一定程度的变形;D、受任何微小剪切力作用将发生连续变形;4、在地球的重力场中,流体的密度和重度的关系为( )。
A、gργ=;B、gργ=;C、ργg=;D、γρg=;5、流体是那样一种物质,它( )。
A、不断膨胀,直到充满任意容器;B、实际上是不可压缩的;C、不能承受切应力;D、在任意切应力作用下,不能保持静止;6、流体的力学特征为( )。
全国2002年4月高等教育自学考试工程流体力学试题课程代码:02250一、单项选择题(每小题1分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。
A.质量B.体积C.温度D.压强2.亚声速流动,是指马赫数( )时的流动。
A.等于1B.等于临界马赫数C.大于1D.小于13.气体温度增加,气体粘度( )A.增加B.减小C.不变D.增加或减小4.混合气体的密度可按各种气体( )的百分数来计算。
A.总体积B.总质量C.总比容D.总压强5.某单位购买了一台提升汽车的油压升降机(如图一所示),原设计操纵方法是:从B管进高压油,A管排油时平台上升(图一的左图);从A管进高压油,B管排油时平台下降。
在安装现场工人不了解原设计意图,将A、B两管联在一起成为C管(图一的右图)。
请你判断单靠一个C管通入高压油或排油,能操纵油压机升降吗?你的判断:( )A.可以B.不能动作C.能升不能降D.能降不能升6.在一个储水箱的侧面上、下安装有两只水银U形管测压计(如图二),当箱顶部压强p0=1个大气压时,两测压计水银柱高之差△h=h1-h2=760mm(Hg),如果顶部再压入一部分空气,使p0=2个大气压时。
则△h应为( )A.△h=-760mm(Hg)B.△h=0mm(Hg)C.△h=760mm(Hg)D.△h=1520mm(Hg)7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( )A.定常流B.非定常流C.非均匀流D.均匀流8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。
A.运动轨迹是水平的B.运动轨迹是曲线C.运动轨迹是直线D.是否绕自身轴旋转9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( )A.重合B.相交C.相切D.平行10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( )A.F1=F2=F3B.F1>F2>F3C.F1<F2<F3D.F1=F3>F211.三个容积完全相等的容器,联接如图示,先将阀门a,b关闭,阀门c开启。
第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。
这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。
本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。
这些基本概念与方程在流体运动学中的研究中是十分重要的。
3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。
3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。
为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。
在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。
此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。
在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。
表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。
这种研究流体质点运动的方法称为欧拉法。
在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。
此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。
利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。
方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。