6.11一次方程组的应用
- 格式:ppt
- 大小:683.00 KB
- 文档页数:8
6.11 一次方程组的应用(1)班级 姓名 学号【学习目标/难点重点】1.能根据题意合理设元,找出等量关系,列出一次方程组解应用题,2.经历和体验解决实际问题的过程,提高解决实际问题的能力.【学习过程】一、课前预习:1.参观上海科技馆的成人票、学生票的票价分别为60元、45元.一天,科技馆卖出成人票、学生票共1万张,票务收入为51万元,问这两种票各卖出多少张.分析:本题中的等量关系有:二、新课学习1.例题1:六年级(1)班、(2)班各有44人,两个班都有一些同学参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加天文小组的人数的31,(2)班参加天文小组的人数恰好是(1)班没有参加天文小组的人数的41,问六年级(1)班、(2)班没有参加天文小组的各多少人?2.小结——用二元一次方程组解实际问题的一般步骤:3.例题2:某商场购进甲、乙两种服装,都加价40%后出售.春节其间商场搞优惠促销活动,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,甲、乙两种服装标价之和为210元,问甲、乙两种服装的进价和标价各是多少钱?三、课堂小结1.能根据题意合理设元,找出等量关系,列出一次方程组解应用题,2.二元一次方程组解实际问题的一般步骤.四、课堂检测数学习题册习题6.11 1,2,3,课课精炼一、填空题:1.两数之和为20,两数之差为4,设较大数为x ,较小数为y ,则列方程组 .2.已知甲、乙两种商品的原价之和为100元,后来甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价之和与原单价之和提高了2%,设甲商品的原单价为x 元,乙商品的原单价为y 元,则列方程组 .二、选择题:3.一篮子苹果分给若干个人,如果每人分6个,那么就余15个;如果每人分9个,那么就缺3个.设这篮子苹果有x 个,有y 个人分,则下列方程组中正确的有 ( ) 1)⎩⎨⎧+=-=39156y x y x 2)⎩⎨⎧-=++=39156156y y y x3)⎩⎨⎧=+=-y x y x 93615 4)⎩⎨⎧=+-=y x y x 93156A.0个B.1个C.2个D.3个三、应用题4.国庆长假期间,某旅行社接待一日游和三日游的游客共2200人,收旅行费200万元,其中一日游每人收费200元,三日游每人收费1500元.该旅行社接待的一日游和三日游旅客个多少人?5.某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两个车间原有多少人?6.某商场搞优惠促销活动,由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,甲、乙两种商品原价之和为500元,问甲、乙两种商品原价各是多少钱?7.一家眼镜厂,有28个工人加工镜架和镜片,每人每天可加工镜架68个或镜片102片,为了使每天加工的镜架和镜片成套,则应如何分配工种人数?完成作业我所化的时间为: 分钟,其中所化时间最多的是第 题,所化时间为 分钟。
《一次方程组的应用》作业设计方案(第一课时)一、作业目标本作业旨在通过一次方程组的应用实例,加深学生对一次方程组的理解,并培养学生运用数学知识解决实际问题的能力。
通过作业练习,使学生能够熟练掌握一次方程组的解法,并能够灵活运用其解决日常生活中的问题。
二、作业内容本次作业内容主要围绕一次方程组的应用展开,包括以下方面:1. 基础练习:布置一定数量的基础题目,如简单的方程组构成、解法等,以帮助学生巩固基础知识。
2. 实际应用:设计一系列与日常生活密切相关的问题,如商品打折问题、行程问题等,要求学生运用一次方程组进行解答。
3. 拓展提高:提供一些具有挑战性的问题,鼓励学生进行思考和探索,如涉及多个未知数的一次方程组应用问题。
三、作业要求1. 学生需认真审题,理解题目中的条件和要求,准确列出方程组。
2. 学生在解题过程中,应注重解题思路的清晰和解题步骤的规范。
3. 对于实际应用和拓展提高部分,学生应尝试用不同的方法进行解答,并对比不同方法的优劣。
4. 作业需独立完成,严禁抄袭。
如遇不懂的问题,可向老师或同学请教。
四、作业评价1. 教师将对作业进行批改,评价学生的解题思路和步骤是否正确。
2. 对学生的解题速度和准确度进行评价,鼓励学生提高解题效率。
3. 对学生的创新能力进行评价,鼓励学生在解决问题时尝试新的方法和思路。
4. 对学生的合作能力进行评价,鼓励学生通过小组合作解决更具挑战性的问题。
五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,帮助学生理解自己的错误并改正。
2. 对于普遍存在的问题,教师将重点讲解,确保学生能够掌握相关知识。
3. 对于学生的优秀作业和解题思路,教师将在课堂上进行展示和表扬,激发学生的积极性。
4. 教师将根据学生的作业情况,调整教学计划和教学方法,以更好地满足学生的学习需求。
通过上所述的作业设计方案,我们期待学生能够在本次作业中深化对一次方程组的理解,提升其解决实际问题的能力。
6.11(1)一次方程组的应用教学目标1. 根据题意合理设元,找出等量关系;2.会利用一次方程组解决一些简单的实际应用题;3.经历将实际问题抽象为一次方程组的过程,体验方程思想是解决实际问题的有利工具,同时提高分析问题、解决问题的能力;激发学习数学的兴趣.教学重点和难点找出题目中的等量关系及列一次方程组.教学过程:一、课前练习1.x 的15为2. 请列方程:________________; 2.小明买了红笔和黑笔共11支,其中红笔2元一支,黑笔3元一支;(1)如果小明买了红笔x 支,那么黑笔买了_______支;红笔的费用为__________元;黑笔的费用为__________________元;(2)如果小明买了红笔x 支,黑笔y 支, 共计26元,那么红笔的费用为__________元;黑笔的费用为____________元;则可列方程__________________.3. 加工某型号的自行车零件时,要使车轮数和方向盘数配套.(1)如果车轮数为2只,那么方向盘数为______只;(2)如果车轮数为x 只,那么方向盘数为______只;(3)如果车轮数为x 只,方向盘数为y 只,那么x 与y 的等量关系式为____________.二、引入新课参观上海科技馆的成人票、学生票的票价分别为60元、45元。
一天,科技馆卖出成人票、学生票共1万张,票务收入为51万元。
问这两种票各卖出多少万张?1.找等量关系式(提问:什么是等量关系式?)(1)关键句:成人票张数+学生票张数=1万张; 成人票收入+学生票收入=51万元(2)常见数量关系式: 票价×票张数 = 票收入2.尝试设元,并列式小结:比较几种方法,可从计算、列式便捷对比.一次方程组 −−−−→消元转化思想一元一次方程. (列式方便) (计算简单)三、例题分析六年级(1)班、(2)班各有44人,两个班都有一些同学参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加天文小组的人数的13,(2)班参加天文小组的人数恰好是(1)班没有参加天文小组的人数的14.六年级(1)班、(2)班没有参加天文小组的各有多少人?a)分析流程:1.找等量关系→2.设未知数→3.列一次方程组→4.解方程组,检验并作答b)归纳:1. 列方程解应用题时要灵活选择未知数的个数.①对于含有两个未知数的应用题一般采用列_______________来解;②对于含有三个未知数的应用题一般采用列_______________来解.2.列一次方程组解应用题的一般步骤随堂练习七(1)班和七(2)班两个班各有32人,已知(1)班的男生是(2)班女生人数的12,(2)班男生人数是(1)班女生人数的25,求两个班的男生各有多少人?四、自主讨论近年来,掀起了一股学习葫芦丝的浪潮,国内、国外、各民族、各地区、城市、农村、机关团体、学校,到处都有葫芦丝音乐在飘响。
一次方程组的应用引言一次方程组是数学中常见的问题解决工具,它在各个领域都有广泛的应用。
本文将介绍一次方程组的定义、求解方法以及在现实生活中的一些应用案例。
一次方程组的定义一次方程组指的是一组含有未知数的线性方程的集合。
一般来说,一次方程组的形式可以表示为:a1*x1 + a2*x2 + ... + an*xn = b1a1*x1 + a2*x2 + ... + an*xn = b2...a1*x1 + a2*x2 + ... + an*xn = bn其中,x1, x2, …, xn是未知数,a1, a2, …, an是已知系数,b1, b2, …, bn是已知常数。
一次方程组的求解方法一次方程组的求解方法有多种。
以下是常见的两种方法:1. 代入法代入法是一种简单直接的求解一次方程组的方法。
其基本思路是将一个方程的一个未知数的表达式代入到另一个方程中,从而得到只含有一个未知数的方程,进而求解出未知数的值。
以一个简单的一次方程组为例,:2x + y = 10x + y = 6我们可以选择第二个方程将y的表达式代入到第一个方程中:2x + (6 - x) = 10化简后得到:x = 2将x的值代回第二个方程,得到y的值:2 + y = 6y = 4最终,方程组的解为x = 2, y = 4。
2. 消元法消元法是另一种常用的求解一次方程组的方法。
其基本思路是通过将方程组中的某些方程相加、相减或相乘,消去其中的未知数,从而得到只含有一个未知数的方程,进而求解出未知数的值。
以一个简单的一次方程组为例,:2x + y = 10x + y = 6我们可以将第二个方程的y系数乘以2,然后将第一个方程减去第二个方程:2 * (x + y) - (2x + y) = 2 * 6 - 10化简后得到:x = 2将x的值代回第二个方程,得到y的值:2 + y = 6y = 4最终,方程组的解为x = 2, y = 4。
一次方程组在现实生活中的应用案例一次方程组在现实生活中有很多应用,以下是一些常见的应用案例:1. 购物问题假设你去商店购买3个苹果和2个香蕉,总共花费15元;如果购买2个苹果和3个香蕉,总共花费13元。
《一次方程组的应用》作业设计方案(第一课时)一、作业目标本次作业旨在通过一次方程组的应用题目的练习,加深学生对一次方程组的理解,提高学生的解题能力和应用能力,同时培养学生的逻辑思维和解决问题的能力。
二、作业内容1. 基础练习:设计一系列一次方程组应用题,包括行程问题、分配问题、经济问题等,题目难度适中,让学生巩固一次方程组的基本解法。
2. 拓展延伸:设计一些较为复杂的一次方程组应用题,如含有多个未知数、涉及多个方程的组合问题等,引导学生运用所学知识进行综合分析和解决。
3. 实践操作:让学生自主选择实际生活中的问题,将其转化为一次方程组,并尝试求解。
如计划安排周末出游的交通、住宿等问题,用一次方程组来安排费用预算等。
三、作业要求1. 完成基础练习题时,要求学生认真审题,理解题目中的条件和要求,准确列出方程组,并运用所学知识进行求解。
2. 在完成拓展延伸题时,要求学生多角度思考问题,灵活运用所学知识,尝试多种解法,并对比分析各种解法的优劣。
3. 在实践操作环节中,要求学生积极思考,将实际问题转化为数学问题,并运用所学知识进行求解。
同时要求学生注意问题的实际意义,确保解法的合理性和可行性。
四、作业评价1. 对学生的作业进行批改,评价学生在完成作业过程中的态度、方法和结果。
2. 针对学生的错误进行指导,帮助学生找出错误原因,并引导其正确解题。
3. 对学生的优秀作业进行表扬和展示,激励学生积极参与课堂学习和作业完成。
五、作业反馈1. 通过作业反馈,了解学生对一次方程组的理解程度和应用能力,为后续教学提供参考。
2. 根据学生的作业情况,调整教学进度和教学方法,更好地满足学生的学习需求。
3. 鼓励学生将所学知识应用到实际生活中,提高学生的数学应用能力和解决问题的能力。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在学习一次方程组应用时所掌握的知识与技能,通过实际问题解决,加深对一次方程组的理解,并能够灵活运用一次方程组解决实际问题。