数 m 的取值范围是(9,+∞).
【方法规律】
解决对数函数类型的综合问题,抓住函数本身的定义域和基本性质
.
课堂反思
1.通过本节课的学习,你学到了哪些知识?
2.你认为本节课的重点和难点是什么?
随堂演练
1.方程log (x+4)=3x的实数根的个数为( C
A. 0
B. 1
)
C. 2 D. 3
log , >
数学思想在研究数学问题中的运用
在运用数形结合、等价转化等思想解题
的过程中,培养逻辑推理、数学运算素
养
情境导学
燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,
两岁燕子的飞行速度可以表示为函数v=5log2 ,单位是m/s,其中Q
表示燕子的耗氧量.试问燕子静止时的耗氧量是多少个单位?
初探新知
(2) 形如 loga x>b 的不等式,应将 b 化为以 a 为底数的对数式的形式(b=logaa b),再借助
y=loga x 的单调性求解.
(3) 形如 logf(x )a>logg(x)a[f(x),g(x)>0,且 f(x),g(x)≠1;a>0]的不等式,可利用换底公式化为同底
的对数进行求解,或利用函数图象求解.
3
3
3
log 2( +4)
>log2 (2+x),即
log24
(2) 原不等式可化为
10
1<x< 9 ,所以原不等式
log2(x+4)>log2 (2+x)2 ,所以
>− 2,
( + 3) < 0, 解得-2<x<0.所以原不等式的解集为(-2,0).