2016人教版高中数学必修2练习2.1.1平面.doc
- 格式:doc
- 大小:168.00 KB
- 文档页数:3
2.1合情推理与演绎推理2.1.1合情推理[学习目标]1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.[知识链接]1.归纳推理和类比推理的结论一定正确吗?答归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.2.由合情推理得到的结论可靠吗?答一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.[预习导引]1.归纳推理和类比推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.3.合情推理的过程从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想要点一归纳推理的应用例1观察如图所示的“三角数阵”1 (1)22 (2)343 (3)4774 (4)5 1114115 (5)…………记第n(n>1)行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.解由数阵可看出,除首末两数外,每行中的数都等于它上一行的肩膀上的两数之和,且每一行的首末两数都等于行数.(1)6,16,25,25,16,6(2)a2=2,a3=4,a4=7,a5=11(3)∵a3=a2+2,a4=a3+3,a5=a4+4由此归纳:a n+1=a n+n.规律方法对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪演练1根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式.(1)a1=3,a n+1=2a n+1;(2)a1=a,a n+1=12-a n;(3)对一切的n∈N*,a n>0,且2S n=a n+1.解(1)由已知可得a1=3=22-1,a2=2a1+1=2×3+1=7=23-1,a 3=2a 2+1=2×7+1=15=24-1, a 4=2a 3+1=2×15+1=31=25-1. 猜想a n =2n +1-1,n ∈N *. (2)由已知可得a 1=a ,a 2=12-a 1=12-a ,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a.猜想a n =(n -1)-(n -2)an -(n -1)a(n ∈N *).(3)∵2S n =a n +1,∴2S 1=a 1+1,即2a 1=a 1+1, ∴a 1=1.又2S 2=a 2+1,∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0. ∵对一切的n ∈N *,a n >0, ∴a 2=3.同理可求得a 3=5,a 4=7, 猜想出a n =2n -1(n ∈N *). 要点二 类比推理的应用例2 如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边.类比上述定理,写出对空间四面体性质的猜想.解如右图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小. 我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ. 规律方法 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中的相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形类比00过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py ,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0. 要点三 平面图形与空间图形的类比 例3 三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形. 通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:规律方法将平面几何中的三角形、长方形、圆、面积等和立体几何中的三棱锥、长方体、球、体积等进行类比,是解决和处理立体几何问题的重要方法.跟踪演练3类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.A.①B.①②C.①②③D.③答案C解析由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫类比推理,上述三个结论均符合推理结论,故均正确.1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误答案B解析根据合情推理定义可知,合情推理必须有前提有结论.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色B.黑色C.白色可能性大D.黑色可能性大答案A解析由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色.3.将全体正整数排成一个三角形数阵:1234567891011 12 13 14 15 ……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 答案 n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个, 即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.4.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示正整数,用关于n 的等式表示为________. 答案 (n +2)2-n 2=4n +4解析 由已知四个式子可分析规律:(n +2)2-n 2=4n +4.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想. 一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明. 2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.一、基础达标1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63 D .128答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1,归纳可得:x =26+1=65.2.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113答案 B解析 由数塔猜测应是各位都是1的七位数,即1 111 111. 3.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,猜想a n =( )A .2cosθ2nB .2cosθ2n-1C .2cos θ2n +1D .2 sin θ2n答案 B解析 法一 ∵a 1=2cos θ, a 2=2+2cos θ=21+cos θ2=2cos θ2, a 3=2+a 2=2 1+cosθ22=2cos θ4,…, 猜想a n =2cosθ2n -1.法二 验n =1时,排除A 、C 、D ,故选B.4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心 答案 D解析 由正四面体的内切球可知,内切球切于四个侧面的中心.5.观察下列等式:13+23=(1+2)2,13+23+33 =(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________. 答案 13+23+33+43+53=(1+2+3+4+5)2(或152)解析 观察前3个等式发现等式左边分别是从1开始的两个数、三个数、四个数的立方和,等式右边分别是这几个数的和的平方,因此可得第四个等式是:13+23+33+43+53=(1+2+3+4+5)2=152. 6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面P AB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明 设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥P A ,PC ⊥PB 得PC ⊥面P AB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin ∠PCO =h PC ,cos β=h P A ,cos γ=h PB∵V P -ABC =16P A ·PB ·PC =13⎝⎛12P A ·PB cos α+ 12PB ·⎭⎫PC cos β+12PC ·P A cos γ·h ,∴⎝⎛⎭⎫cos αPC +cos βP A +cos γPB h =1 即cos 2 α+cos 2 β+cos 2 γ=1. 二、能力提升8.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =( ) A.VS 1+S 2+S 3+S 4 B .2VS 1+S 2+S 3+S 4C .3VS 1+S 2+S 3+S 4D .4VS 1+S 2+S 3+S 4答案 C 解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体A -BCD=13(S 1+S 2+S 3+S 4)R ,∴R =3V S 1+S 2+S 3+S 4. 9.(2020·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n正方形数 N (n,4)=n 2 五边形数 N (n,5)=32n 2-12n六边形数 N (n,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 答案 1 000解析 由归纳推理可知:n 2和n 前面的系数,一个成递增的等差数列,另一个成递减的等差数列,所以N (n ,k )=k -22n 2-12n (k -4),所以N (10,24)=24-22×102-12×10(24-4)=1 100-100=1 000.10.(2020·陕西)观察下列等式: 12=112-22=-312-22+32=612-22+32-42=-10…照此规律, 第n 个等式可为________. 答案12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1)解析 分n 为奇数、偶数两种情况.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2.当n 为奇数时,第n 个等式=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式:12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1).11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.12.(1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程). 解 (1)证明如下:设点P (x 0,y 0),(x 0≠±a ) 依题意,得A (-a,0),B (a,0), 所以直线P A 的方程为y =y 0x 0+a(x +a ).【精品新版高中数学(2019)——提分卷】第 11 页 / 共 11 页 令x =0,得y M =ay 0x 0+a, 同理得y N =-ay 0x 0-a ,所以y M y N =a 2y 20a 2-x 20. 又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 20=b 2a 2(a 2-x 20),所以y M y N =a 2y 20a 2-x 20=b 2. 因为AN →=(a ,y N ),BM →=(-a ,y M ),所以AN →·BM →=-a 2+y M y N =b 2-a 2.(2)-(a 2+b 2).三、探究与创新13.如图,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α、β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解 在长方形ABCD 中,cos 2α+cos 2β=⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2=a 2+b 2c 2=c 2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α、β、γ, 则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝⎛⎭⎫m l 2+⎝⎛⎭⎫n l 2+⎝⎛⎭⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.。
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。
第二章 平面解析几何初步A .M(-x)与N(x)B .M(x)与N(x +a)C .M(x 3)与N(x 2)D .M(2x)与N(2x -1) 答案 D解析 A 项,x 的符号不确定,∴-x 与x 的大小关系不确定,故不能确定两点的相对位置.B 项,由于a 的值不确定,故不能确定x 与x +a 的相对位置.C 项,x 3与x 2的大小关系不确定,故不能确定x 3与x 2的相对位置.D 项,∵2x>2x -1对任意实数x 都成立,∴点M 一定位于点N 的右侧.A .数轴上任意一个点的坐标有正负和大小,它是一个位移向量B .两个相等的向量的起点可以不同C .每一个实数都对应数轴上的唯一的一个位移向量D .AB →的大小是数轴上A ,B 两点到原点距离之差的绝对值 答案 B解析 一个点的坐标没有大小,每一个实数对应着无数个位移向量.|AB →|=|x B -x A |,不一定为|AB →|=|||x B |-|x A|.故选B .3.若A(a)与B(-5)两点对应的向量AB 的数量为-10,则a =______,若A与B 的距离为10,则a =______.答案 5 5或-15解析 ∵AB =x B -x A ,|AB|=|x A -x B |, ∴-5-a =-10,解得a =5. |-5-a|=10,解得a =5或a =-15. 4.已知数轴上三点A(x),B(2),P(3). (1)当AP =2BP 时,求x ;(2)当AP >2BP 时,求x 的取值范围; (3)当AP =2PB 时,求x .解 由题意,可知AP =3-x ,BP =3-2=1. (1)当AP =2BP 时,有3-x =2,解得x =1. (2)当AP >2BP 时,有3-x >2,解得x <1. (3)由AP =2PB ,可得3-x =2(-1),解得x =5.一、选择题1.下列说法正确的是( )A .零向量有确定的方向B .数轴上等长的向量叫做相等的向量C .向量AB →的坐标AB =-BAD .|AB →|=AB 答案 C解析 零向量的方向是任意的,数轴上等长的向量方向不一定相同,不一定是相等向量;向量AB→的坐标AB =-BA ,正确;AB 为负数,|AB →|=AB 不正确.2.数轴上的点A(-2),B(3),C(-7),则有:①AB +AC =0;②AB +BC =0;③BC>CA ;④|AB →|+|AC →|>|BC →|.其中,正确结论的个数为( ) A .3个 B .2个 C .1个 D .0个 答案 C解析 由数轴上的点A(-2),B(3),C(-7)得,AB +AC =5-5=0,①正确; AB +BC =5-10=-5,②不正确; BC =-10>CA =5,③不正确;|AB→|+|AC →|=5+5=10=|BC →|,④不正确. 3.已知数轴上两点A ,B ,若点B 的坐标为3,且A ,B 两点间的距离d(A ,B)=5,则点A 的坐标为( )A .8B .-2C .-8D .8或-2 答案 D解析 已知B(3),记点A(x 1),则d(A ,B)=|AB|=|3-x 1|=5,解得x 1=-2或x 1=8.4.数轴上点P(x),A(-8),B(-4),若|PA|=2|PB|,则x 等于( )A .0B .-163 C .163 D .0或-163 答案 D解析 ∵|PA|=2|PB|,∴|x +8|=2|x +4|,解得x =0或-163.5.当数轴上的三个点A ,B ,O 互不重合时,它们的位置关系共有六种情况,其中使AB =OB -OA 和|AB→|=|OB →|-|OA →|同时成立的情况有( )A .1种B .2种C .3种D .4种 答案 B解析 AB =OB -OA 恒成立,而|AB →|=|OB →|-|OA →|成立,则只有点A 在O 和B 中间,共有2种可能.二、填空题6.已知A(2),B(-3)两点,则AB =________,|AB|=________. 答案 -5 5解析 AB =-3-2=-5,|AB|=|-5|=5.7.在数轴上,已知AB →=2,BC →=3,CD →=-6,则AD →=________.答案 -1解析 AD→=AB →+BC →+CD →=2+3-6=-1.8.数轴上的点A(3a +1)总在点B(1-2a)的右侧,则a 的取值范围是________. 答案 (0,+∞)解析 因为A(3a +1)在B(1-2a)的右侧,所以3a +1>1-2a ,所以a >0. 三、解答题9.已知数轴上的点P(x)的坐标分别满足以下情况,试指出x 的各自的取值范围.(1)|x|=2;(2)|x|>2;(3)|x -2|<1.解 (1)|x|=2表示与原点距离等于2的点, ∴x =2或x =-2.(2)|x|>2表示与原点距离大于2的点, ∴x>2或x<-2.(3)|x -2|<1表示与点P(2)的距离小于1的点, ∴1<x<3.10.在数轴上,已知AB →=3,BC →=-2, (1)求|AM→+BC →+MB →|; (2)若A(-1),线段BC 的中点为D ,求DC . 解 (1)|AM →+BC →+MB →|=|AM →+MB →+BC →|=|AB→+BC →|=1. (2)由于A(-1),AB→=3,BC →=-2,得x B -x A =3,x C -x B =-2, 即x B =3+x A =2,x C =x B -2=0.所以线段BC 的中点D 的坐标为1.∴DC =-1.►2.1.2 平面直角坐标系中的基本公式1.已知A(1,2),B(a ,6),且|AB|=5,则a 的值为( ) A .4 B .-4或2 C .-2 D .-2或4 答案 D 解析(a -1)2+(6-2)2=5,∴a =4或-2.2.已知△ABC 的三个顶点A(-1,0),B(1,0)和C ⎝ ⎛⎭⎪⎫12,32,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形 答案 C解析 ∵d(A ,B)=[1-(-1)]2+02=2,d(B ,C)=⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫32-02=1, d(A ,C)=⎣⎢⎡⎦⎥⎤12-(-1)2+⎝ ⎛⎭⎪⎫32-02=3, ∴|AC|2+|BC|2=|AB|2,∴△ABC 为直角三角形.故选C .点的距离是( )A .4B .13C .15D .130 答案 D解析 根据中点坐标公式,得⎩⎨⎧-3=x +12,-2=5+y2,解得⎩⎪⎨⎪⎧x =-7,y =-9.∴|PO|=(-7)2+(-9)2=130.4.已知点P(a +3,a -2)在y 轴上,则点P 关于原点的对称点的坐标为________. 答案 (0,5)解析 由点P(a +3,a -2)在y 轴上,得a +3=0, a =-3,∴a -2=-5,即点P(0,-5)关于原点的对称点的坐标为P ′(0,5).解 取AB 的中点为坐标原点,AB 所在直线为x 轴建立平面直角坐标系xOy(如图).设A 点,B 点,C 点的坐标分别为A(-a ,0),B(a ,0)(a>0),C(b ,c), 由平行四边形的性质知D 点的坐标为(-2a +b ,c).再设AC ,BD 的中点分别为E(x 1,y 1),F(x 2,y 2),由中心公式得⎩⎨⎧x 1=-a +b 2,y 1=0+c2,即E -a +b 2,c 2.⎩⎨⎧x 2=a -2a +b 2,y 2=0+c 2,即F -a +b 2,c 2.∴点E 与点F 重合,∴▱ABCD 的对角线相交且平分.一、选择题1.点A(2,-3)关于坐标原点的中心对称点是( ) A .(3,-2) B .(-2,-3) C .(-2,3) D .(-3,2) 答案 C解析 设所求点的坐标为B(x ,y),则由题意知坐标原点是点A ,B 的中点,则⎩⎨⎧2+x2=0,-3+y2=0,解得⎩⎪⎨⎪⎧x =-2,y =3.故选C .2.已知直线上两点A(a ,b),B(c ,d),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是中点D .以上结论都不对 答案 D 解析 由a 2+b 2-c 2+d 2=0得a 2+b 2=c 2+d 2,即A ,B 两点到坐标原点的距离相等,所以原点在线段AB 的垂直平分线上,故选D .3.已知A(1,3),B(5,-2),点P 在x 轴上,则使|AP|-|BP|取最大值时的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0) 答案 B解析 如图,点A(1,3)关于x 轴的对称点为A ′(1,-3),连接A ′B 交x 轴于点P ,即为所求.利用待定系数法可求出一次函数的表达式为:y =14x -134,令y =0,得x =13. 所以点P 的坐标为(13,0).4.已知A ,B 的坐标分别为(1,1),(4,3),点P 在x 轴上,则|PA|+|PB|的最小值为( )A .20B .12C .5D .4答案C解析 如图,作点A 关于x 轴的对称点A ′(1,-1),由平面几何知识得|PA|+|PB|的最小值为|A ′B|=(1-4)2+(-1-3)2 =9+16=5.5.如果一条平行于x 轴的线段的长为5,它的一个端点是(2,1),那么它的另一个端点是( )A .(-3,1)或(7,1)B .(2,-3)或(2,7)C .(-3,1)或(5,1)D .(2,-3)或(2,5) 答案 A解析 由线段平行于x 轴知,两个端点的纵坐标相等,都是1,故可设另一个端点为(x ,1),则|x -2|=5,所以x =7或x =-3,即端点坐标为(7,1)或(-3,1).二、填空题6.已知点M(2,2)平分线段AB ,且A(x ,3),B(3,y),则x =________,y =________.答案 1 1解析 “点M(2,2)平分线段AB ”的含义就是点M 是线段AB 的中点,可以用中点坐标公式把题意转化为方程组进行求解.∵点M(2,2)平分线段AB ,∴⎩⎨⎧x +32=2,3+y2=2,解得⎩⎪⎨⎪⎧x =1,y =1.7.已知A(1,5),B(5,-2),则在坐标轴上与A ,B 等距离的点有________个.答案 2解析 若点在x 轴上,设为(x ,0),则有(x -1)2+25=(x -5)2+4,∴x =38;若点在y 轴上,设为(0,y),则有1+(5-y)2=25+(-2-y)2,∴y =-314.8.已知点A(5,2a -1),B(a +1,a -4),则当|AB|取得最小值时,实数a 等于________.答案 12解析 |AB|2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2⎝ ⎛⎭⎪⎫a -122+492,所以当a =12时,|AB|取得最小值.三、解答题9.已知△ABC 的两个顶点A(3,7),B(-2,5),若AC ,BC 的中点都在坐标轴上,求点C 的坐标.解 设点C(x ,y).由直线AB 与x 轴不平行,可设边AC 的中点为D ,BC的中点为E ,则DE 綊12AB .线段AC 的中点D 的坐标为⎝ ⎛⎭⎪⎫3+x 2,7+y 2, 线段BC 的中点E 的坐标为⎝ ⎛⎭⎪⎫-2+x 2,5+y 2. 若点D 在y 轴上,则3+x 2=0,所以x =-3,此时点E 的横坐标不为零,点E要在坐标轴上只能在x 轴上,所以5+y 2=0,所以y =-5,即C(-3,-5).若点D 在x 轴上,则7+y 2=0,所以y =-7,此时点E 只能在y 轴上,即-2+x 2=0,所以x =2,此时C(2,-7).如图所示.综上可知,符合题意的点C 的坐标为(2,-7)或(-3,-5).10.已知正三角形ABC 的边长为a ,在平面上求点P ,使|PA|2+|PB|2+|PC|2最小,并求出最小值.解 以正三角形的一边所在直线为x 轴,此边中线所在直线为y 轴建立坐标系,如图.则A ⎝ ⎛⎭⎪⎫-a 2,0,B ⎝ ⎛⎭⎪⎫a 2,0,C ⎝⎛⎭⎪⎫0,32a . 设P(x ,y),则有|PA|2+|PB|2+|PC|2=⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2+x 2+⎝⎛⎭⎪⎫y -32a 2 =3x 2+3y 2-3ay +54a 2=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2, ∴当P ⎝⎛⎭⎪⎫0,36a 时,|PA|2+|PB|2+|PC|2有最小值a 2.。
第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r6、(1)×; (2)√; (3)√; (4)×.习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对 2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r.练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC uuu r 与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r; (3)2ya r . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r . 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r,34DB a =u u u r r ,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题 B组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.(第11题)(第12题)EHGFC AB乙(第1题)(第4题(2))BCD(第4题(3))DCB证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线.7、2(2,4)OA OA '==u u u r u u u r,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r ,35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题 A 组(P108)1、a b ⋅=-r r222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r 2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r ()cos a b a b λλθ⋅=r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r, ∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩,或55x y ⎧=-⎪⎪⎨⎪=-⎪⎩.于是a =r或(a =r . 11、解:设与a r 垂直的单位向量(,)e x y =r,则221420x y x y ⎧+=⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=-⎪⎩或55x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是e =r或(e =r . 习题 B 组(P108) 1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r.先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--r r,所以()0a b c ⋅-=r r r再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+u u u r u u u r u u u r u u u r .3、证明:构造向量(,)u a b =r ,(,)v c d =r.cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r4、AB AC ⋅u u u r u u u r的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r,而AM BAC AC∠=u u u u r u u u r所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥ 证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r,所以AC BD ⊥(第4题)(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.(2)因为1()2AE a b =+u u u r r r所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-r u u r u u r;(2)v r 在A v u u r方向上的投影为135A Av v v ⋅=r u u ru u r .4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F uu r 的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r的夹角为150°.习题 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r.ODFEABC(第2题)(第4题)设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r为重力加速度 所以,最大高度为220sin 2v gθu u r ,最大投掷距离为20sin 2v gθu u r .2、解:设1v u r与2v u u r 的夹角为θ,合速度为v r,2v u u r与v r的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u rrr ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r.将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r1133EF a b =--u u u r r r,1233FA DC a b ==-u u u r u u u r r r1233CD a b =-+u u u r r r ,2133AB a b =-u u ur r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r.6、AB u u u r 与CD u u ur 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u ur 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r.222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r rr r r r .再证a b a b a b +=-⇒⊥r r r r r r.由于222a b a a b b +=+⋅+r rr r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥r r r u r(第6题)又a b =r r,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r.由c d ⊥r u r 得0c d ⋅=r u r,即22()()0a b a b a b +⋅-=-=r r r r r r所以a b =r r【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r而34EF a =u u u r r,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r,所以3OP OD =-u u u r u u u r ,1OD =u u u r所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r 同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;P 2(第5题)(4)d =第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()444252510πππααα-=+=-+=.3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以81158cos()cos cos sin sin 33317217234πππθθθ-+-=+=-⨯+⨯=.4、解:由23sin ,(,)32πααπ=-∈,得cos α===又由33cos ,(,2)42πββπ=∈,得sin β===.所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=.练习(P131)1、(1 (2 (3 (4)2-2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ===;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ=-;所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=.4、解:tan tan314tan()241311tan tan 4παπαπα+++===--⨯-⋅. 5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=12(cos )2(sin cos cos sin )2sin()22666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()()()()444525210πππβββ+=+=--+--=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α==-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α===,所以sintan (2)cos ααα==-=. 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 8842πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos452︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=+⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α==又由33cos ,(,)42πββπ=-∈,得sin β==,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+==所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++ 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+===-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒ 6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α==又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角 ∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ===-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯.31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒ 13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+; (47sin()12x π-;(5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α=∴sin22sin cos 20.80.60.96ααα==⨯⨯= 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ==∴sin 22sin cos 2((3ϕϕϕ==⨯⨯=16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=(第12题)17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin α==∴1sin 22sin cos 2(3ααα==⨯⨯=∴78cos(2)cos2cos sin 2sin (444929218πππααα-+=-=---⨯=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12; (2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143)1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒= 3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+=又tantan 22αβ=tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ=+,其中cos ϕϕ==所以,y ;(第4题)第三章 复习参考题A 组(P146)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2 (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin10sin 40(sin 40cos10cos10︒︒︒︒=︒⋅︒︒=2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒=sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-;(4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++=++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为2210、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 444πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=.又由1sin cos 5αα-=,得sin()410πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->. 所以(0,)44ππα-∈,即(,)42ππα∈ 所以2(,)2παπ∈,7cos225α=-.sin(2)450πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++=可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-=4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x+++==---由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=, 所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--,5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=. 变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数. 考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +=,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
人教A版高中数学必修2《一课一练》全册汇编含答案《1.1 空间几何体的结构》一课一练1《1.1 空间几何体的结构》一课一练2《1.2 空间几何体的三视图》一课一练1《1.2 空间几何体的直观图》一课一练2《1.3 柱体、锥体、台体的体积》一课一练2《1.3 柱体、锥体、台体的表面积》一课一练1《2.1 直线与平面、平面与平面位置关系》一课一练2《2.1 空间中直线与直线之间的位置关系》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练2《2.2 直线、平面平行的判定及其性质》一课一练3《2.2 直线、平面平行的判定及其性质》一课一练4《2.3 直线、平面垂直的判定及其性质》一课一练1《2.3 直线、平面垂直的判定及其性质》一课一练2《2.3 直线、平面垂直的判定及其性质》一课一练3《2.3 直线、平面垂直的判定及其性质》一课一练4《3.1 直线的倾斜角与斜率》一课一练1《3.1 直线的倾斜角与斜率》一课一练2《3.2 直线的方程》一课一练1《3.2 直线的方程》一课一练2《3.2 直线的方程》一课一练3《3.2 直线的方程》一课一练4《3.2 直线的方程》一课一练5《3.2 直线的方程》一课一练6《3.3 直线的交点坐标与距离公式》一课一练1《3.3 直线的交点坐标与距离公式》一课一练2《4.1 圆的方程》一课一练1《4.1 圆的方程》一课一练2《4.1 圆的方程》一课一练3《4.1 圆的方程》一课一练4《4.2 直线、圆的位置关系》一课一练1《4.2 直线、圆的位置关系》一课一练2《4.3 空间直角坐标系》一课一练1《4.3 空间直角坐标系》一课一练2新课标高一数学同步测试(1)—1.1空间几何体本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( ) A .平面 B .曲面 C .直线 D .锥面 2.一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( ) A .棱锥 B .棱柱 C .平面 D .长方体 3.有关平面的说法错误的是 ( )A .平面一般用希腊字母α、β、γ…来命名,如平面α…B .平面是处处平直的面C .平面是有边界的面D .平面是无限延展的4.下面的图形可以构成正方体的是 ( )A B C D5.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是 ( ) A .等边三角形 B .等腰直角三角形 C .顶角为30°的等腰三角形 D .其他等腰三角形 6.A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 7.四棱锥的四个侧面中,直角三角最多可能有 ( ) A .1 B .2 C .3 D .4 8.下列命题中正确的是 ( ) A .由五个平面围成的多面体只能是四棱锥 B .棱锥的高线可能在几何体之外 C .仅有一组对面平行的六面体是棱台 D .有一个面是多边形,其余各面是三角形的几何体是棱锥 9.长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到C ′的最短矩离是( )A .5B .7C .29D .3710.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( ) A .E F D C B A ⊂⊂⊂⊂⊂ B .A C B F D E ⊂⊂⊂⊂⊂ C .C A B D F E ⊂⊂⊂⊂⊂ D .它们之间不都存在包含关系第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连结构成长方体ABCD—A′B′C′D′.①该长方体的高为;②平面A′B′C′D′与面CD D′C′间的距离为;③A到面BC C′B′的距离为 .12.已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.13.下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A在多面体的底面,那么哪一面会在上面;②如果面F在前面,从左边看是面B,那么哪一个面会在上面;③如果从左面看是面C,面D在后面,那么哪一个面会在上面.14.长方体ABCD—A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)15.(12分)根据图中所给的图形制成几何体后,哪些点重合在一起.16.(12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由.17.(12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高.18.(12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长.19.(14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.20.(14分)有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P . 问:①依据题意制作这个几何体;②这个几何体有几个面构成,每个面的三角形为什么三角形; ③若正方形边长为a ,则每个面的三角形面积为多少.参考答案(一)一、DBCCA DDBAB二、11.①3CM ②4CM ③5CM ; 12.圆锥、圆台、圆锥; 13.①F ②C ③A ; 14.52.三、15.解:J 与N ,A 、M 与D ,H 与E ,G 与F ,B 与C.16.解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点. 小结:棱台的定义,除了用它作判定之外,至少还有三项用途: ①为保证侧棱延长后交于一点,可以先画棱锥再画棱台;②如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;③可以利用两底是相似多边形进行有关推算.17.分析:棱台的有关计算都包含在三个直角梯形B E BE E E O O B B O O ''''''和,及两个直角三角形OBE 和E B O '''∆中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两底面的外接圆半径(B O OB '',)内切圆半径(E O OE '',)的差,特别是正三、正四、正六棱台.略解:hOO B F h EE B G ='=''='=',2222)(222)(21)(21)(22a b c a b c h a b BG a b BF --=--=∴-=-='=--=--h c b a c b a 222214124()()18.解:设圆锥的母线长为l ,圆台上、下底半径为r R ,.l l rR l l l cm -=∴-=∴=101014403()答:圆锥的母线长为403cm. 19.解:设底面正三角形的边长为a ,在RT △SOM 中SO=h ,SM=n ,所以OM=22l n -,又MO=63a ,即a =2236l n -,)(3343222l n a s ABC-==∴∆,截面面积为)(34322l n -. 20.解:①略.②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP .由平几知识可知DE =DF ,∠DPE =∠EPF =∠DPF =90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形. ③由②可知,DE =DF =5a ,EF=2a ,所以,S△DEF=23a 2。
高中数学必修二2.1.3《空间中直线与平面之间的位置关系》2.1.4《平面与平面之间的位置关系》导学导练【知识要点】1、直线与平面之间的位置关系(重点、难点)1)直线与平面之间的位置关系(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点2)直线与平面之间的位置关系的图形表示及符号表示a α a∩α=A a∥α2、两个平面之间的位置关系(1)两个平面平行——没有公共点(2)两个平面相交——有且只有一条公共直线α∥βα∩β= L【范例析考点】考点一.直线与平面的位置关系问题例1:已知l=⋂βα, a∥α,a∥β,求证:a∥l【针对练习】1、下列命题中正确的个数是( )①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.32.对于直线m、n和平面α,下面命题中的真命题是()A.如果mnm,,αα⊄⊂、n是异面直线,那么α//nB.如果mnm,,αα⊄⊂、n是异面直线,那么α与n相交C.如果mnm,//,αα⊂、n共面,那么nm//D.如果mnm,//,//αα、n共面,那么nm//3.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面a=c,若a∥b,则c与a,b的位置关系是()A.c与a,b都异面 B.c与a,b都相交C.c至少与a,b中的一条相交 D.c与a,b都平行1、已知a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.4.已知m、n是不重合的直线,α、β是不重合的平面,有下列命题①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;其中真命题的个数是()A.0 B.1 C.2 D.35、以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个6、已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个7、下列判断中正确的是( )A. 若平面α内有两条直线都和平面β平行,则α∥βB. 若一条直线l与平面α和β所成的角相等,则α∥βC. 若直线l∥平面β,直线m⊂β,则l∥mD. 若平面α∥平面β,直线l⊂α,则l∥β8、a,b是异面直线,以下四个命题:①过a至少有一个平面平行于b;②过a至少有一个平面垂直于b;③至多有一条直线与a,b都垂直;④至少有一个平面分别与a,b都平行.正确命题的个数是( )A. 0B. 1C. 2D. 39、直线a∥平面α,点A∈α,则过点A且平行于直线a的直线(A)只有一条,但不一定在平面α内αβαβL(B)只有一条,且在平面α内(C)有无数条,但都不在平面α内(D)有无数条,且都在平面α内10、A、B是直线l外的两点,过A、B且和l平行的平面的个数是()(A)0个(B)1个(C)无数个(D)以上都有可能11、直线a,b是异面直线,直线a和平面α平行,则直线b和平面α的位置关系是()A)b⊂αB)b∥αC)b与α相交D)以上都有可能12、如果点M是两条异面直线外的一点,则过点M且与a,b都平行的平面(A)只有一个(B)恰有两个(C)或没有,或只有一个(D)有无数个13、请讨论下列问题:若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.考点二.直线与平面相交关系的证明例2:已知α∩β=l,a⊂α且a⊄β,b⊂β且b⊄α,又a∩b=P.求证:a与β相交,b与α相交.【针对练习】1. 下面说法中正确的是( )A. 如果两个平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β= aB. 两平面α,β有一个公共点A,就说α,β相交于过点A的任意一条直线C. 两平面α,β有一个公共点A,就说α,β相交于点A,并记作α∩β= AD. 两平面ABC与DBC相交于线段BC2、已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交3、空间四点A,B,C,D 共面,但不共线,则下面结论成立的是( )A. 四点中必有三点共线B. 四点中必有三点不共线C. AB,BC,CD,DA 四条直线中总有两条平行D. AB与CD必相交4、已知两条直线m n,,两个平面αβ,.给出下面四个命题:①m n∥,m nαα⇒⊥⊥;②αβ∥,mα⊂,n m nβ⊂⇒∥;③m n∥,m nαα⇒∥∥;④αβ∥,m n∥,m nαβ⇒⊥⊥.其中正确命题的序号是( C )A.①、③B.②、④C.①、④D.②、③5、已知m n,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是()A.m n m nααββαβ⊂⊂⇒,,∥,∥∥B.m n m nαβαβ⊂⊂⇒∥,,∥C.m m n nαα⇒⊥,⊥∥D.n m n mαα⇒∥,⊥⊥考点三.平面与平面的位置关系例3:不在同一条直线上的三点A、B、C到平面α的距离相等,且A∉α,给出以下三个命题:①△ABC中至少有一条边平行于α;②△ABC中至多有两边平行于α;③△ABC中只可能有一条边与α相交.其中真命题是_____________.【针对练习】1、一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角的大小关系是( )A. 相等B. 互补C. 相等或互补D. 不能确定2、下列命题正确的是()A.过平面外一点作与这个平面垂直的平面是唯一的B.过直线外一点作这条直线的垂线是唯一的C.过平面外的一条斜线作与这个平面垂直的平面是唯一的D.过直线外一点作与这条直线平行的平面是唯一的3、如图,在正方体ABCD - A1B1C1D1中,点P,Q,R 分别在棱AB,BB1,CC1上,且DP,QR 相交于点O,求证:O,B,C 三点共线.1 11 1【课后练习】 一、选择题. 1、下列命题:①若直线 l 上有无数个点不在平面 α内,则 l ∥α; ②若直线l 与平面 α平行,则l 与平面α内的任意一条直线平行;③两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行;④若一条直线a 和平面α 内一条直线b 平行,则a ∥α. 正确的个数是( )A .0个B .1个C .2个D .3个 2、下列命题中,不正确的是( ) A. 两条平行直线与同一平面所成的角相等 B. 一条直线与两个平行平面所成的角相等C. 一条直线平行于两个平行平面中的一个平面,它也平行于另一个平面D. 如果两条直线与同一平面所成的角相等,那么这两条直线不一定平行3、已知三条直线m ,n ,l ,三个平面α,β,γ,下面四个命题中,正确的是( )α⇒∥βα⊥γβ⊥γA.m ∥βl ⊥m⇒l ∥βB.⇒m ∥n m ∥γn ∥γ C.m ⊥γn ⊥γ⇒m ∥n D.4、正方形 ABCD 沿对角线 AC 折成直二面角后,AB 与CD 所成的角为( )A. 30°B. 45°C. 60°D. 90° 5、若直线a 不平行于平面α,且a ⊄α,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内的直线与a 都相交C.α内存在唯一的直线与a 平行D.α内不存在与a 平行的直线 6、下面四种说法中:(1)两条平行直线中的一条平行于一个平面,则另一条也平行于这个平面;(2)平行于平面内一条直线的直线平行于该平面; (3)过平面外一点只有一条直线和这个平面平行;(4)若一条直线和一个平面平行,则这条直线和这个平面内所有直线都平行.正确说法的个数为( ) A .0 B .1 C .2 D .37、如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是( )A .都平行B .都相交C .一个相交,一个平行D .都异面8、如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行(B )相交 (C )平行或相交 (D )AB ⊂α二、填空题.1、若点M 在直线 a 上,直线 a 在平面 α 内,则 M ,a ,α之间的关系表示为__________.2、设 a ,b ,c 是空间的三条直线,以下四个命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交; ④若a 和b 共面,b 和c 共面,则a 和c 也共面. 正确的个数是_________.3、如图,AA 1∥BB 1∥CC 1,且 AA 1,BB 1,CC 1 不共面,则图中各条线段所在的直线中,共有 ______ 对异面直线.4、如图,正方体 ABCD - A 1B 1C 1D 1 的棱长为 a ,点 E ,F 分别是 BB 1,CC 1 的中点,则A 1D 1 到截面 AEFD 的距离是___________.5、已知三棱锥 P - ABC 的三条侧棱 PA ,PB ,PC 两两垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为______________________.6、△ABC 所在平面 α 外有一点 P ,过点 P 作 PO ⊥平面α,垂足为 O ,连接 PA ,PB ,PC .(1)若 PA = PB = PC ,则点 O 为 △ABC 的________心; (2)若 PA ⊥PB ,PA ⊥PC ,PC ⊥PA ,则点 O 是 △ABC 的______心; (3)若点 P 到三边 AB ,BC ,CA 的距离相等,则点 O 是 △ABC 的______心;(4)若 PA = PB = PC ,∠C = 90º,则点 O 是 AB 边的______点; (5)若 PA = PB = PC ,AB = AC ,则点 O 点在 __________ 线上. 三、判断题:1.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ( ) (2)过平面外一点只能引一条直线与这个平面平行. ( ) (3)若两条直线都和第三条直线垂直,则这两条直线平行.( )(4)若两条直线都和第三条直线平行,则这两条直线平行.()(5)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交.()(6)若直线l与平面α不平行,则l与α内任何一条直线都不平行()四、解答题.1、如图,在正方体ABCD—A1B1C1D1 中,点E,F 分别是棱AA1,CC1的中点,求证:点D1,E,F,B 共面.2、已知平面α∩平面β= a,平面α∩平面γ= b,平面β∩平面γ= c,且a∩b = O. 求证:a,b,c 相交于一点.4、已知四边形ABCD为矩形,PA⊥平面ABCD,点M、N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)当MN⊥平面PCD时,求二面角P - CD - B的大小.5、平面α与⊿ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面α6、空间四边形ABCD,E、F分别是AB、BC的中点,求证:EF∥平面ACD.7、经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B8、已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.9、如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证://MN平面PAD;(2)若4MN BC==,PA=PA与MN所成的角的大小10、如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AM=求证://MN平面CBEF1 A。
嫌习<9.1页》u ci> mh <2> (3)惟组介而皿的细合体,u>山一个人梭牲挖公一个關仕体彻何的组舍体.2. CD (2)闖他・3. 略.习 ft 1.1 A ftlL Cl) Ci (2) C; (3) I); (1) C2. (I)不址台休・W为儿何休的“關检-不棚交于•点・不WihTIrT "底而”的屮面裁裁冇哉<2)⑶ 也木是台休.讥为不魁由平行于腹惟和圖擁的験临的甲曲战紳的儿何体.3. (1)HI mw台銀令丽诚的向单组合佯;(2>山四維柱和四检弔细合丽戚的简事纲仟体.4・曲个河心的球面僧欣的儿何体(或住•个球体内部挖决•个同心球⑷!I列的简肢级介体》•5. sm血科咯.Mfi aWiftiMf Iftiiu形町以折佻恥.体图%. 0体圈形町以膜斤刈十啲阳形.Bin1. 轲下的几何体址棱“:•裁云的几何休也地梭柱I它们分别尾五檢柱和三梭朴・2. 左侧几何体的主整结轴特征匸惻斤和梭桩组毗的前眼组介体;屮间儿何体的主«MWt>征;卜部址一个IWin啟尖…个醐林细成的简妝组介体・上部也楚—•个恻林裁丿:一个IMHI•细成的爲取组汁体' <1 侧儿何体的忙穀絡阿梢址:卜部足-个囲性体・上邯足•个恻仕戴公•个阀"和•个检住的前小姐合休.练习15页)h (1》略;(2》略.2. (1)冈梭住(Htt)i<2)■健与半球组成的制单组合体(阳略八(3)网陵柱巧球细肢的而取细合体(啊路);(4) WriM台组令Iftj成的徇单自合体(图略人3. <D五校侑(三觇图略“(2)西个iwHfim的简啟组合体(三視圏略人4 •三檢桃・绣习(篥M页)1. 略.2. ⑴ / (2) X:(3) Xi (4> 7.3. 人.4・略.5.略.习«L2 Aftl1. 略.2. (1)三枪仕$ ⑵M台$<3> Wlftlh <4> wrtlkMMftm合E减的简服纽合体.3. 略.I.略.5.略.UtR1. 02. 略.3. 此n傳案不唯一.种祥案灵由is个小IE方体组合m诚的简mtn合体.Anra.劣习q期27页)!•盒、;lax m.2.1.74 T ft.(第2"页》1. » m.2. y w1 cm1.3.104 cm\习H 1.3 A ftlI. 780 cm:.2 主詈• r4 R *3. 駢:哎K力侔的.条检尺分別为“•旅则般出的校竹的S枳V \ X .* atn * ain .创F的几何体的休帜Y二皿訥:必.所以V, : V? = l » 5・4. 解:为三检用形甞器WMift A.4(K,ii/KTtttt时・Hkifti鄒分竝例按贰形・从岛沟处按柱形容H的A. MKAA, 8. AHC水半放WH4.液血离为h. Ihetal条件知h四檢廉KHlfciihifaHC*比为3M・III f种状盪下敲体体枳相毎•所以3X8=4X儿h 6•凶此•半庇肉人攻・水孚故WH4.液血応为6.5. 14 359 cm\6. I 105 500 m*BfH1. 山交杯的・我IllUlifi•漠杯的1:那見M轻为4ew的球;中郡見•个四槪卜I・兀01,下展血是边K分駅为«rm, 4cm的免揺•网个侧肋|啲漪个储顺绘边长分別为20 cm、8 cm的砸盼. >5购个魚面込边K分别为20cm、4 on 的砸形| Fffifi-tPMttfl. J DP上底而足遡氏分别为lOcnh 8crn的血彤.卜底lft|圧边氏分别为20 cm. 16 cm的距形.ff檢台的為为2 cm.冈此它的松血枳和体枳分别为丨193 cm\ I 067 an\2. 炎示r三佝形任盘昭边之和大尸第三边.3. W;议IU"三角形的M条边尼分别为一b.倒边尼为。
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
第二章 2.1 2.1.1
一、选择题
1.用符号表示“点A在直线l上,l在平面α外”,正确的是()
A.A∈l,l∉αB.A∈l,l⊄α
C.A⊂l,l⊄αD.A⊂l,l∉α
答案:B
2.下列说法正确的是()
A.三点可以确定一个平面
B.一条直线和一个点可以确定一个平面
C.四边形是平面图形
D.两条相交直线可以确定一个平面
答案:D
3.空间两两相交的3条直线,可以确定的平面数是()
A.1 B.2
C.3 D.1或3
答案:D
4.下列推断中,错误的是()
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合
答案:C
5.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF 与HG交于点M,那么()
A.M一定在直线AC上
B.M一定在直线BD上
C.M可能在直线AC上,也可能在直线BD上
D.M既不在直线AC上,也不在直线BD上
答案:A
二、填空题
6.线段AB在平面α内,则直线AB与平面α的位置关系是________.
答案:直线AB⊂平面α
7.把下列符号叙述所对应的图形的字母编号填在题后横线上.
(1)A∉α,a⊂α________.
(2)α∩β=a,P∉α且P∉β________.
(3)a⊄α,a∩α=A________.
(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.
答案:(1)C(2)D(3)A(4)B
8.平面α∩平面β=l,点A,B∈α,点C∈平面β且C∉l,AB∩l=R,设过点A,B,C 3点的平面为平面γ,则β∩γ=________.
答案:CR
三、解答题
9.求证:如果两两平行的3条直线都与另一条直线相交,那么这4条直线共面.
解:已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.
求证:直线a,b,c和l共面.
证明:如图所示,因为a∥b,由公理2可知直线a与b确定一个平面,设为α.
因为l∩a=A,l∩b=B,所以A∈a,B∈b,则A∈α,B∈α.又因为A∈l,B∈l,所以由公理1可知l⊂α.
因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l⊂β.
因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2的推论2知,经过两条相交直线,有且只有一个平面,所以平面α与平面β重合,所以直线a,b,c和l共面.10.已知正方体ABCD -A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.
求证:(1)D,B,F,E 4点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R 3点共线.
证明:如图.
(1)连接B1D1,
∵EF是△D1B1C1的中位线,
∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.
∴EF,BD确定一个平面,
即D,B,F,E四点共面.
(2)正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β. ∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.
则Q是α与β的公共点,同理P是α与β的公共点,
∴α∩β=PQ.
又A1C∩β=R,∴R∈A1C.
∴R∈α,且R∈β,则R∈PQ.
故P,Q,R 3点共线.。