1.4.2有理数的除法(2)加减乘除混合运算1
- 格式:doc
- 大小:51.00 KB
- 文档页数:2
1.4.2有理数的除法(1)教学目标:知识与技能:理解除法是乘法的逆运算,理解倒数概念,会求有理数的倒数,掌握除法法则,会进行有理数的除法运算;过程与方法:通过自主探索的方法观察、交流、归纳出有理数除法法则及倒数的方法。
情感态度价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神、转化思想.学习重难点:重点:有理数除法法则难点:(1)商的符号的确定;(2)0不能作除数的理解;教学方法:引导法,鼓励法,讲解法学习方法:做练习法,独立思考教学工具:彩色粉笔教学过程:复习引入1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有 1000 米,列出的算式为 50X20=1000 。
2)放学时,小红仍然以每分钟50米的速度回家,应该走 20 分钟。
列出的算式为 1000从上面这个例子你可以发现,有理数除法与乘法之间的关系是 。
自主学习自学教材中第 页的内容。
(要求理解倒数的概念,掌握倒数的求法)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ; 提问:37,52,321和5的倒数各是多少? 0有没有倒数?π有没有倒数?有则请求出来。
合作讨论比较大小: 1、 8÷(-4) 8×(41-); 2、(-15)÷3 (-15)×31; 3、(411-)÷(一2) (411-)×(21-); 与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
有理数的除法法则是: 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0.当堂检测1、计算(1) ; (2) 0÷(-1000);(3) ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷2332375 (4)÷课堂小结倒数的求法:乘积是1的两个数互为倒数。
有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是( )A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是( )A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.小华在小凡的南偏东30°方位,则小凡在小华的( )方位A .南偏东60° B.北偏西30° C.南偏东30° D.北偏西60°2.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB 等于( )A.90° B .80° C.70° D.60°3.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是( )A. B. C. D.4.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2 B.0 C.32 D.12- 5.下面运算中,结果正确的是( ) A.()235a a = B.325a a a += C.236a a a ⋅= D.331(0)a a a ÷=≠6.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 27.观察下列等式:第一层 1+2=3第二层 4+5+6=7+8第三层 9+10+11+12=13+14+15第四层 16+17+18+19+20=21+22+23+24……在上述的数字宝塔中,从上往下数,2018在( )A .第42层B .第43层C .第44层D .第45层8.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .379.下列四个选项中,所画数轴正确的是( )A.AB.BC.CD.D10.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0 D .|a|≥011.|-3|的相反数是( )A.-3B.-13C.13D.312.如图是一个正方体的表面展开图,则这个正方体是( )A. B. C. D.二、填空题13.如图,将三个同样的正方形的一个顶点重合放置,如果∠l=50°,∠3=25°时,那么∠2的度数是_______.14.43°29′7″+36°30′53″=__________.15.小明在黑板上写有若干个有理数.若他第一次擦去m 个,从第二次起,每次都比前一次多擦去2个,则5次刚好擦完;若他每次都擦去m 个,则10次刚好擦完.则小明在黑板上共写了________个有理数.16.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x 天可以追上慢马,则可以列方程为______.17.写出一个与单项式22xy 是同类项的单项式__________.18.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为______.19.计算 ()234⨯+- 的结果为________________.20.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2016=________三、解答题21.如图所示,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,点E 在∠AOB 内部.(1)根据语句画图形:①画直线CE ;②画射线OE ;③画线段DE.(2)结合图形,完成下面的填空:①与∠ODE 互补的角是 ;②若∠BOE =∠AOE ,则∠BOE 的大小是 .22.直线AB 、CD 相交于点O ,OE ⊥AB 于O ,且∠DOB =2∠COE ,求∠AOD 的度数.23.解下列方程(1)2x+5=3(x ﹣1)(2).24.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少3尺.这根绳子有多长?环绕大树一周要多少尺?25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.已知a =﹣(﹣2)2×3,b =|﹣9|+7,c =111553⎛⎫-⨯ ⎪⎝⎭. (1)求3[a ﹣(b+c )]﹣2[b ﹣(a ﹣2c )]的值.(2)若A =2212119272⎛⎫⎛⎫⎛⎫-÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B =|a|﹣b+c ,试比较A 和B 的大小. (3)如图,已知点D 是线段AC 的中点,点B 是线段DC 上的一点,且CB :BD =2:3,若AB =ab 12c cm ,求BC 的长.27.计算:(1)|-3|-5×(-35)+(-4); (2)(-2)2-4÷(-23)+(-1)2017. 28.计算 (1)(-1)2×5+(-2)3÷4; (2)52-83()×24+14÷31-2()+|-22|. (3)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].【参考答案】***一、选择题1.B2.A3.C4.A5.D6.B7.C8.B9.D10.D11.A12.C二、填空题13.15°14.80°15.4016.240x-150x=150×1217. SKIPIF 1 < 0 解析:2a -18.7219.220.0三、解答题21.(1)答案见解析;(2)①∠BDE;②30°. 22.120°23.(1)x=8;(2)x=424.这根绳子有25尺长,环绕大树一周要7尺.25.26.(1)﹣126;(2)A>B,理由见解析;(3)BC=2cm 27.(1)2;(2)9.28.(1)3;(2)19;(3)7a2-2b2+ab.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A .1B .2C .3D .42.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .3.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .4.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A.7 B.5 C.3 D.05.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位.有下列四个等式:①4010432m m +=-;②1024043n n +-=;③1024043n n -+=;④4010432m m -=+.其中正确的是( ).A.①②②B.②④C.①③D.③④ 6.下列计算正确的是( )A .3x 2﹣x 2=3B .﹣3a 2﹣2a 2=﹣a 2C .3(a ﹣1)=3a ﹣1D .﹣2(x+1)=﹣2x ﹣27.下列计算正确的是( )A .a 5+a 2=a 7B .2a 2﹣a 2=2C .a 3•a 2=a 6D .(a 2)3=a 6 8.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.79.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( )A.0B.1-C.1D.210.-(–5)的绝对值是( )A.5B.-5C.15D.15- 11.若a≠0,则a a +1的值为( ) A .2 B .0 C .±1 D .0或212.有理数a 、b 在数轴上对应的点的位置如图所示,下列各式正确的是( )A.0a b +<B.0a b +>C.0ab >D.a b>0 二、填空题13.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.14.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。
七年级(人教版)集体备课教学设计:1.4.2《有理数的除法(2)》一. 教材分析《有理数的除法(2)》这一节的内容是在学生已经掌握了有理数的加减乘除的基础上进行学习的,目的是让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
教材通过例题和练习题的形式,让学生在实际操作中掌握有理数除法的运算规则。
二. 学情分析七年级的学生已经掌握了有理数的加减乘除的基本运算,但是对于除法运算的理解仍然有所欠缺,特别是在处理负数除法的时候,容易出错。
因此,在教学这一节的时候,需要让学生通过实际的操作,理解除法运算的规则,并能够熟练地进行计算。
三. 教学目标1.让学生掌握有理数除法的基本运算方法。
2.让学生能够熟练地进行有理数除法的计算。
3.让学生理解除法运算的规则,并能够灵活运用。
四. 教学重难点1.教学重点:让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
2.教学难点:让学生理解除法运算的规则,特别是在处理负数除法的时候。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,让学生在实际操作中掌握有理数除法的运算规则。
六. 教学准备1.教学PPT2.粉笔、黑板七. 教学过程1.导入(5分钟)通过复习有理数的加减乘除的基本运算,引出有理数的除法运算,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现教材中的例题和练习题,让学生直观地看到有理数除法的运算过程。
3.操练(10分钟)教师通过示范和讲解,让学生跟随老师一起完成一些有理数除法的运算,让学生在实际操作中掌握有理数除法的运算规则。
4.巩固(10分钟)学生独立完成教材中的练习题,教师巡回指导,帮助学生巩固有理数除法的运算方法。
5.拓展(10分钟)教师通过出示一些有理数除法的实际问题,让学生进行讨论和解答,提高学生解决问题的能力。
6.小结(5分钟)教师引导学生对这一节课的学习内容进行小结,帮助学生梳理知识,形成体系。
0 除以任何一个第一章有理数1.4 有理数的乘除法 1.4.2 有理数的除法第 2 课时一、教学目标1.理解有理数加、减、乘、除运算的法则,运算顺序.2.熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题 的能力.二、教学重点及难点重点:理解和掌握有理数加、减、乘、除运算的法则,运算顺序;能运用法则解决实际 问题.难点:能运用法则解决实际问题.三、教学用具电脑、多媒体、课件四、教学过程(一)复习回顾1.我们学习了有理数的除法,你可以说一说有理数的除法法则吗?师生活动:全班一起回答,教师聆听,关注学生是否能在不看教材的基础上自己描述有 理数的两个除法法则.小结:有理数除法法则 1:除以一个不等于 0 的数,等于乘以这个数的倒数. 有理数除法法则 2:两数相除,同号得正,异号得负,并把绝对值相除. 不等于 0 的数,都得 0.2.你能说说小学时加减乘除混合运算顺序是怎样的吗?汇报.师生活动:小组交流,学生回顾小学时加减乘除混合运算顺序,由学生代表总结、小结:先乘除后加减,有括号时先算括号里面的.同级的运算要从左至右.设计意图:通过复习旧知识,为本节课进一步学习有理数的加减乘除混合运算作准备.(二)合作探究在初中,引入有理数以后,加减乘除混合运算顺序是否一样呢?师生活动:学生讨论,教师总结:在有理数中,如无括号指出先做什么运算,与小学所学的混合运算是一样的,按照“先乘除,后加减”的顺序进行.设计意图:通过讨论,使学生重新熟悉法则,得到有理数的加减乘除混合运算,与小学所学的混合运算一样.(三)例题分析例1 计算:(1)—8 + 4+(—2);( 2)(- 7) X (- 5)—90+(—15).师生活动:学生独立完成后,全班交流.教师巡回指导,关注学生运算的顺序的运用是否正确.然后让一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.解:( 1 )—8+4+(—2)=—8 +(—2)=—10 ;(2)(—7) X(—5)—90+(—15)=35 —(—6)=35 + 6=41 .设计意图:通过例题,使学生掌握有理数的混合运算,提高学生的计算能力,培养学生不怕困难,勇于探索的精神.例2某公司去年1〜3月份平均每月亏损1.5万元,4〜6月份平均每月盈利2万元,7〜10月份平均每月盈利1.7万元,11〜12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?师生活动:学生分组讨论解答,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结.解:记盈利额为正数,亏损额为负数•公司去年全年盈亏额(单位:万元)为:(-1.5) X3+ 2X3+ 1.7 >4 +(—2.3) X2=—4.5 + 6 + 6.8—4.6=3.7.答:这个公司去年全年盈利 3.7元.设计意图:利用有理数混合运算解决实际问题,体现数学的应用价值.师生活动:教师播放微课视频《有理数乘除运算易错点》,学生分组讨论解答,各小组进行交流,总结,巩固提高.(四)深入探究计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多•你能用计算器计算例2的结果吗?(4) 8(16-(- 12) -(-3); (2) (-48)吒-(-25) X (- 6);(3)1 .10 ; 解: 25 243;24(-5)12) - (- 3)= 6- 4= 2;师生活动:教师派几名会使用计算器的同学先每小组教会一个,再让学生互相交流,探 讨•然后让学生自己动手实践•教师强调不同品牌的计算器的操作方法可能有所不同,具体 参见计算器的使用说明.小结:如果计算器带有符号键(-),只需按键 o ]0 • §囚目田§冋@ 0 Q • S 卜| 4 0 | (-) ] 2 • 3凶2,就可以得到答案 3.7 •设计意图:通过学生的交流与互教,培养学生的自主学习能力和合作意识•对于简单计 算,要坚持让学生用口算、心算,而一些复杂运算应该利用计算器计算,以逐步培养学生使 用信息技术的能力和意识.(五)练习巩固i •计算:(2)(- 48)吒-(-25) X (- 6)=- 6- 150=- 156;30件1 1 5 1 1 4 “ 4 (3)-103 24 10 6 5325 3 1 3(-5)(4)+ —24 24 8 6 429 24设计意图:考查了对有理数的混合运算和运算定律的掌握.2 •某个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客, 连衣裙的售价不完全相同,若以 47元为标准,超过的钱数记为正,不足的钱数记为负,则记录的结果如下表所示:售出件数763 54 5与标准价的差值(单位:元)+ 3 + 2 + 10 —1 —2问:该服装店在售完这 30件连衣裙后,赚了多少钱?解:该服装店卖出货物所得的钱数为:47 >30 + [ (+ 3) X7 +(+ 2) 0+(+ 1) X3+ 0X5+(— 1) >4+(— 2) X5] =1 410 + 22=1 432 (元).1 432 — 32 X 3圧 1 432 — 960= 472 (元).=253 c, 124—- 24 86=25 — 9—4 + 18—24=251+ 5245—251—52453 124+ 24-45-1 5 1524答:该服装店赚了472 元.设计意图:考查了对有理数的混合运算的应用的理解与掌握.五、课堂小结1.加减乘除混合运算法则:(1)先算乘除;(2)再算加减;(3)有括号时先算括号内的(先小括号,再中括号,最后是大括号);(4)同级运算,按照从左到右.2.对于混合运算中有除法时,可以运用除法法则 2 先将除法变为乘法;可以适当运用运算律使计算简便.设计意图:通过课堂小结,使学生对有理数的加减乘除混合运算有一个系统的认识.六、板书设计1.4.2 有理数的除法(2)有理数的加混合运算加减乘除混合运算法则:先算乘除;再算加减;有括号时先算括号内的(先小括号,再中括号,最后是大括号);同级运算,按照从左到右.。
1.4.2 有理数的加减乘除混合运算(第2课时)(作业)(夯实基础+能力提升)【夯实基础】一.解答题(共10小题)1.(2021秋•吉林期中)下面是小胡同学做过的一道题,请先阅读解题过程,然后回答所提出的问题.计算:(﹣48)÷36×(﹣)解:原式=(﹣48)÷(﹣4)⋯⋯⋯⋯⋯第①步=12⋯⋯⋯⋯⋯第②步问题:(1)上述解题过程中,从第 ① 步开始出错(填“①”或“②”);(2)写出本题的正确解答过程.【分析】(1)根据有理数的乘除混合运算法则,从左到右依次计算.(2)根据有理数的乘除混合运算法则,先将除法运算转换为乘法运算,再计算乘法.【解答】解:(1)根据有理数的乘除混合运算,从左到右依次计算,∴(﹣48)÷36×(﹣)应先计算除法.∴从第一步开始出错.故答案为:①.(2)(﹣48)÷36×(﹣)=﹣48××=.【点评】本题主要考查有理数的乘除混合运算,熟练掌握有理数的乘除混合运算法则是解决本题的关键.2.(2020秋•龙马潭区期末)计算:.【分析】根据有理数的乘法和除法运算法则进行计算即可得解.【解答】解:42×(﹣)+(﹣)÷(﹣0.25),=﹣42×+×4,=﹣28+3,=﹣25.【点评】本题考查了有理数的除法和乘法运算,熟记运算法则是解题的关键.3.(2020秋•鹤山市校级月考)计算:(﹣0.25)×.【分析】把除法转化为乘法,用有理数的乘法法则计算即可.【解答】解:原式=(﹣)×(﹣)×4×(﹣18)×(﹣)=.【点评】本题考查了有理数的乘除法,体现了转化思想,掌握除以一个不为0的数等于乘这个数的倒数是解题的关键.4.(2020秋•西城区校级期中).【分析】利用有理数的乘法的法则与有理数的除法的法则对式子进行运算即可.【解答】解:=×()×=.【点评】本题主要考查有理数的除法与有理数的乘法,解答的关键是对相应的运算法则的掌握.5.(2020秋•高邑县期中)计算:(﹣﹣)÷(﹣).【分析】根据有理数的加减运算法则、乘除运算法则即可求出答案.【解答】解:原式=(﹣﹣)×(﹣18)=×(﹣18)﹣×(﹣18)﹣×(﹣18)==﹣1.【点评】本题考查有理数的除法,解题的关键是熟练运用有理数的除法运算,本题属于基础题型.6.(2020秋•永吉县期中)(﹣48)÷8﹣(﹣25)×(﹣6)【分析】根据除以一个数等于乘以这个数的倒数,可转化成法,根据两数相乘同号得正,异号得负,再把绝对值相乘,可得积,再根据有理数的减法,可得答案.【解答】解:原式=(﹣48)×(﹣6)=﹣6﹣150=﹣(6+150)=﹣156.【点评】本题考查了有理数的除法,先转化成乘法,再进行有理数的乘法运算,注意运算的符号.7.(2020秋•西城区校级期中)()÷(﹣)【分析】先将除法变成乘法,再根据乘法的分配律进行计算即可.【解答】解:原式=()×(﹣60),=﹣×60﹣×60+×60,=﹣45﹣35+50,=﹣30.【点评】本题考查了有理数的除法运算和乘法的分配律,是基础知识要熟练掌握.8.(2017秋•庐阳区校级月考)×(﹣6)﹣(﹣)÷(﹣)【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=﹣4﹣×=﹣4﹣6=﹣10.【点评】此题考查了有理数的除法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.9.(2019秋•交城县期中)阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.【分析】原式根据阅读材料中的计算方法变形,计算即可即可得到结果.【解答】解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.10.(2021秋•淮南期中)我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.(1)2020属于 A 类(填A,B或C);(2)①从A类数中任取两个数,则它们的和属于 B 类(填A,B或C);②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们都加起来,则最后的结果属于 B 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C 类,则下列关于m,n的叙述中正确的是 ①④ (填序号).①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于C类;④m,n属于同一类.【分析】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【解答】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,得(15×1+16×2+17×0)=47,47÷3=15…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【点评】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.【能力提升】一.解答题(共5小题)1.(2019秋•大安市期末)阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第 二 步,错误的原因是 运算顺序错误 ,第二处是第 三 步,错误的原因是 得数错误 .(2)把正确的解题过程写出来.【分析】(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是得数错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答】解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、得数错误.【点评】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.2.(2019秋•成安县期末)阅读下列材料:计算50÷(﹣+).解法一:原式=50÷﹣50÷+50÷=50×3﹣50×4+50×12=550.解法二:原式=50÷(﹣+)=50÷=50×6=300.解法三:原式的倒数为(﹣+)÷50=(﹣+)×=×﹣×+×=.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法 一 是错误的.请你选择合适的解法解答下列问题:计算:(﹣)÷(﹣+﹣)【分析】根据有理数的除法,可转化成有理数的乘法,可得答案;根据有理数的运算顺序,先算括号里面的,再算有理数的除法,可得答案.【解答】解:没有除法分配律,故解法一错误;故答案为:一.原式=()÷(﹣)=(﹣)×3=.【点评】本题考查了有理数的除法,先算括号里面的,再算有理数的除法,注意没有除法分配律.3.(2019秋•昌平区校级期中)我们知道,,显然a÷b与b÷a的结果互为倒数关系.小明利用这一思想方法计算的过程如下:因为=﹣20+3﹣5+12=﹣10.故原式=.请你仿照这种方法计算:.【分析】先计算的值,再求出它的倒数即可求解.【解答】解:因为===﹣7+9﹣28+12=﹣14;所以=﹣.【点评】考查了有理数的除法,解题的关键是理解a÷b与b÷a的结果互为倒数关系.4.(2018秋•鄂托克旗期末)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.5.(2018秋•赣州期中)如图是小明的计算过程,请仔细阅读,并解答下列问题.回答:(1)解题过程中有两处错误:第1处是第 二 步,错误原因是 运算顺序错误 .第2处是第 三 步,错误原因是 符号错误 .(2)请写出正确的解答过程.【分析】(1)首先根据有理数四则混合运算的运算顺序,从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答】解:(1)根据分析,可得第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)(﹣15)÷()×6=(﹣15)÷(﹣)×6==故答案为:二、运算顺序错误;三、符号错误.【点评】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。