逆合成分析法
- 格式:ppt
- 大小:2.74 MB
- 文档页数:113
有机合成化学逆合成分析法Retrosynthesis in Organic Chemistry第一节切断与逆合成分析法理想的合成:用简单的、安全的、环境友好的、资源有效的操作,快速、定量的把价廉、易得的起始原料转化为天然或设计的目标分子。
合理的路线设计:逆合成分析法适当的实验技术有机合成,首要的任务都是设计合成路线。
合成路线的设计是合成工作的第一步,也是最重要的一步。
任何一条合成路线,只要能合成出所需产物,应该说都是合理的。
但是同样被认为是合理的路线之间,却有着有效程度大小的差别。
例如,1915年获得诺贝尔化学奖的Willstatter在1896年设计了一条颠茄酮的合成路线,经历21步:OH 2NOHNOHNa/C2H5OHNH21)CH3I2)AgOHN(CH3)21)CH3I2)AgOH Br2quinoline1)2)1)HBr2)(CH3)2NH(CH3)2NNaC2H5OH(CH3)2NBr21)2)1)Br22)(CH3)2NHN(CH3)2BrBr1)NaOH,2)HCl+这条合成路线虽然每一步反应的产率都在80%以上,但是,由于步骤太多,路线太长,总的收率只有0.75%。
21年后,R.Robinsen 于1917年设计成第二条合成路线既合理又简单,仅用三步,总收率高达90%。
合成的关键是巧用Mannich 反应:N(CH 3)2NCH 3NCH 3OCl -130 C MeCl1)HBr 2)NaOH 3)CrO 3R.Robinsen的方法CHO CHOCH2COO-CCH2COO-ONH2CH3pH=5++NCH3COO-O COO-NCH3COOHOCOOHNCH3OH+90%由此可见,首先必须要有一个好的思维路线,才能设计出一条好的合成路线。
Retrosynthesis AnalysisE. J. CoreyABC Dintermediates starting materialtarget moleculeintermediatesDCBAstarting materialtarget moleculeSynthesis of methyl methacrylateO +HCN( NaCN + H2SO4 )dilutedCNOHOOCH3OHH2SO4+ NH4HSO4OOOOHOOHOHOOHOHOOOHHCHO + CH 3CHBrCOOCH 3CN O+HCNCH 3CHBrCOOHSynthesis of 1,5-diphenylpentan-3-olMgBr+OOHTHFBrHBrH2SO41) Mg, ether2) HCO2Et3) H2OOHOHMgBr+H OEtOBrOHMgBr+OOMe NHMe OMeO OAcOMeMe OH HO抗癌抗生素FR901464(1)abO MeAcO OHAN 3MeOMeMe IBMeOMeOTES TMSMeMe OTES B21O TMSH B22OOTESOHICOHOTESOTESC1C21HOTES OOTES C22逆合成分析:在有机合成中,通过分析目标分子原子或基团间的连接方式,在能够较为容易的重新键合的恰当地方“切断”原子间的键连,从而产生较为简单的分子片断。
第 6 章 逆合成分析法与合成路线设计20世纪60年代,Corey 在总结前人和他自己成功合成多种复杂有机分子的基础上,提出了合成路线设计与逻辑推理方法。
创立了由合成目标逆推到合成用起始原料的方法—逆合成分析法。
该方法现在已成为合成有机化合物特别是对复杂分子的合成具有独特体系的有效方法。
6.1 逆合成分析法6.1.1 逆合成分析法概念有机合成是利用一种或数种结构简单的原料经一步或数步有机化学反应得到既定目标产物的过程,可表示如下:逆合成分析法是将合成目标经过多种逆合成操作转变成结构简单的前体,在将前体按同样方法进行简化,反复进行直到得出与市售原料结构相同为止,可表示如下:图6-1 多路线逆合成分析示意图1.合成子原料反应反应( 产物 )目标分子官能团转换另外的目标分子逆合成转变前体(合成子)逆合成转变前体的前体原料目 标 分 子A D EF BG HK JCO L M N多路线逆合成分析示意图Corey 的定义:合成子是指分子中可由相应的合成操作生成该分子或用反向操作使其降解的结构单元。
一个合成子可以大到接近整个分子,也可以小到只含一个氢原子。
分子的合成子数量和种类越多,问题就越复杂。
例如:在这些结构单元中,只有(d)和(e)是有效的,叫有效合成子。
因为(d)可以修饰为C 6H 5COC-HCOOCH 3,(e)可以修饰为 。
识别这些有效合成子特别重要,因其与分子骨架的形成有直接关系。
而识别的依据是有关合成的知识和反应,也就是说有效合成子的产生必须以某种合成的知识和反应为依据。
亲电体和亲核体相互作用可以形成碳-碳键、碳-杂键与环状结构等,从而建立起分子骨架。
例如:若将上述反应中的亲电体、亲核体提出来,反应简化为2CH 2COOCH 3C 6H 5COCHCOOCH 3(a) C 6H 5 (b) C 6H 5CO (c) COOCH 3 (d) C 6H 5COCHCOOCH 3 (g) OCH 3CH 3OCOCH 2CH 23(e) CH 2CH 2COOCH 3(f)C M +CX CC+MX+C MgX OCC OHCOOEtC OEt OOCOOEtC +CCC:C OC +C O :C O OCH 2CH 2COOCH 3再将上述式子反向,便得到将目标分子简化为亲电体、亲核体基本结构单元的方法,从而也就产生了相应的合成子。
模拟类推法和逆合成分析法的区别与联系逆合成分析法又称切断法,是有机合成路线设计的最基本、最常用的方法。
逆合成分析法是一种可逆向的逻辑思维方法,从剖析目标分子的化学结构入手,根据分子中各原子间连接方式(化学键)的特征,综合运用有机化学反应方法和反应机制的知识,选择合适的化学键进行切断,将目标分子转化成一些稍小的中间体;再以这些中间体作为新的目标分子,将其切断成更小的中间体;依次类推,直到找到可以方便购得的起始材料为止。
是从合成产物的分子结构入手,采用“切断一种化学键”分析法,来得到所需合成原料(合成子)的方法。
逆合成分析法是从小分子出发去一次次尝试它们那构成什么样的分子--目标分子的结构入手,分析其中哪些化学键可以断掉。
而模拟类推法是指从药物分子的化学结构出发,将其化学合成过程一步一步逆向推导进行寻源的设计方法,是化学合成。
逆合成分析法的基本原理
逆合成分析法(inverse gas chromatography)是一种测定物质表面特性的方法,其基本原理是利用气相色谱仪将某种极性气体(称为探针气体)引入到固体或液体样品表面,测定探针气体与样品表面相互作用的物理和化学性质,从而推断样品表面的化学组成、分子结构、极性、酸碱性、表面能等特性参数。
具体来说,逆合成分析法通常采用静态方法或动态方法。
静态方法是将已知量的某种探针气体置于封闭的装置中,在不同温度下等待一定时间(通常为数小时以上),然后利用气相色谱仪测定装置中残余探针气体的浓度,从而推断样品表面与探针气体的吸附量和相互作用能力。
动态方法是将某种探针气体连续地通过样品表面,在不同的流量和温度条件下,测定探针气体进出样品表面的速率和浓度,从而计算出样品表面的表面积、吸附活性、表面扩散系数、分子吸附热等参数。
逆合成分析法的优点是可以在室温下测定固体表面性质,对样品量要求低,测定结果具有可重复性和准确性;缺点是需要对探针气体的选择和修饰进行较为严格的控制,且在分子量较大、结构复杂或极性小的样品上测定结果可能受到很大影响。
逆合成分析
逆合成分析( Reverse Synthesis Analysis)是一种用于改进、优化已有设计的结构分析方法。
它可以将复杂的系统划分为若干相互独立的子系统,并对每个子系统进行分析,从而得出改进系统性能的方案。
逆合成分析的步骤如下:
1. 鉴定系统功能:首先要确定系统的功能,根据系统的功能确定被分解的子系统。
2. 分解子系统:将系统分解为一系列相互独立的子系统,每个子系统都有其特定的功能,彼此之间没有相互依赖关系。
3. 分析子系统:对子系统进行详细的分析,找出每个子系统的优缺点,以及应采取的改进措施。
4. 改进子系统:根据分析结果,对子系统进行改进,使其性能达到最优。
5. 综合子系统:将改进后的各个子系统综合起来,形成一个新的系统,从而达到优化整个系统性能的目的。