双曲线焦半径应用举例
- 格式:doc
- 大小:10.50 KB
- 文档页数:1
圆锥曲线二级常用焦半径定理圆锥曲线是数学中的一类重要曲线,它在几何学、物理学和工程学中有着广泛的应用。
在研究圆锥曲线的性质时,我们经常会遇到焦半径及其相关定理的概念。
本文将介绍圆锥曲线二级常用焦半径定理,希望能为读者提供一些指导意义。
圆锥曲线是由一个移动的直线在平面上绕着一个固定点旋转而形成的。
这个固定点被称为焦点,而直线称为准线。
根据准线与焦点的位置关系,圆锥曲线分为椭圆、双曲线和抛物线三种类型。
椭圆是一种封闭曲线,它的特点是离焦点距离之和是一个常数。
关于椭圆的焦半径定理如下:椭圆上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之和等于椭圆的焦半径。
具体来说,我们可以以椭圆的准线上一点为起点,任意作一条切线与椭圆相交于另一点,然后将这两个点与椭圆焦点连线,我们可以发现这个三角形的两条直角边之和是一个定值,即椭圆的焦半径。
双曲线是一种开口的曲线,它的特点是离焦点距离之差是一个常数。
关于双曲线的焦半径定理如下:双曲线上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之差等于双曲线的焦半径。
与椭圆相似,我们以双曲线的准线上一点为起点,任意作一条切线与双曲线相交于另一点,然后连结这两个点与双曲线的焦点,我们可以发现这个三角形的两条直角边之差是一个常量,即双曲线的焦半径。
抛物线是一种开口向上或向下的曲线,它的特点是离焦点距离等于焦准距的一半。
因此,抛物线的焦半径定理可以简单地表述为:抛物线上的任意一条切线与准线和焦点之间的连线构成一个等腰三角形,且这个等腰三角形的底边长度等于焦准距的一半。
同样,我们以抛物线的准线上一点为起点,任意作一条切线与抛物线相交于另一点,然后连结这两个点与抛物线的焦点,我们可以发现这个三角形的底边长度正好是焦准距的一半。
通过了解圆锥曲线二级常用焦半径定理,我们可以更好地理解圆锥曲线的性质和特点。
双曲线角度焦半径公式
双曲线是一种重要的数学曲线,它具有许多特殊的性质和公式。
其中,双曲线的焦半径公式是描述双曲线焦点到曲线上任意一点的
距离的公式。
对于双曲线的标准方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,焦点到曲线上任意一点的距离可以用焦半径公式来表示。
设双曲线
的焦点为F1(c, 0)和F2(-c, 0),则曲线上任意一点P(x, y),其到两个焦点的距离之差等于常数2a。
即PF1-PF2=2a。
根据点到点的距离公式,可以得出焦半径公式为:
$\sqrt{(x-c)^2+y^2}-\sqrt{(x+c)^2+y^2}=2a$。
这就是描述双曲线焦点到曲线上任意一点的距离的焦半径公式。
从几何角度来看,焦半径公式可以帮助我们理解双曲线的形状
和性质。
它表达了双曲线上各点到两个焦点的距离之差为常数的特性,这也是双曲线与椭圆和抛物线不同的地方之一。
通过这个公式,我们可以更深入地理解双曲线的几何特性。
另外,焦半径公式还可以帮助我们进行双曲线的图形绘制和分析。
通过计算不同点到焦点的距离,我们可以确定双曲线的形状和位置,从而更好地理解和利用双曲线的性质。
总之,焦半径公式是描述双曲线焦点到曲线上任意一点的距离的重要公式,它有助于我们从数学和几何角度理解和应用双曲线的性质。
希望这个回答能够全面地解答你的问题。
圆锥曲线的焦半径巧用圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的. 椭圆焦半径: R 左 = a + x e , R 右 = a - x e ,右支双曲线焦半径:R 左 = x e + a ,R 右 = x e - a ( x > 0) ,左支双曲线焦半径:R 左 = - (x e + a ),R 右 = - (x e - a ) ( x < 0) ,抛物线焦半径:R 抛 = x +2P . 对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(x 0 , y 0)是双曲线b 2x 2 - a 2y 2 = a 2b 2 (a > 0, b > 0) 右支上的一点,F 1, F 2是其左右焦点. 则有 左准线方程为 ca x 2-=. 由双曲线的第二定义得,左焦半径为 a ex ca x e PF +=+=0201)(||; 由 |PF 1|- |PF 2| =2a ,得 |PF 2| = |PF 2| - 2a = ex 0 - a .( |PF 2|亦可由第二定义求得).例1 已知F 1,F 2是椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足 |PF 1| = e | PF 2 |,则e 的值为 ( )22)( 33)( 32)( 22)(--D C B A解法1 设F 1(- c, 0 ),F 2(c , 0),P(x 0 , y 0),于是,抛物线的方程为 y 2 = 2 (4 c )(x + c ) , 抛物线的准线 l :x =- 3 c ,椭圆的准线 m :c a x 2-=, 设点P 到两条准线的距离分别为d 1 , d 2.于是,由抛物线定义,得 d 1 = | PF 2 | , ……………………① 又由椭圆的定义得 |PF 1| = ed 2,而 |PF 1| = e | PF 2 |,………………………………②由①②得 d 2 = | PF 2 |, 故 d 1 = d 2,从而两条准线重合.∴ 3331322=⇒=⇒-=-e e c a c .故选 (C). 解法2 由椭圆定义得 |PF 1| + | PF 2 | = 2a ,又 |PF 1| = e | PF 2 |,∴ | PF 2 | (1+ e ) = 2a ,………① 又由抛物线定义得 | PF 2 | = x 0 + 3c , 即 x 0 = | PF 2 | - 3c ,……………………………②由椭圆定义得 | PF 2 | = a - ex 0 , ………………………………………③由②③ 得 | PF 2 | = a - e | PF 2 | + 3ec ,即 | PF 2 | (1+ e ) = a + 3ec , ………………… ④由①④得 2a = a + 3ec ,解得 33=e ,故选 (C). 点评 结合椭圆、抛物线的定义,并充分运用焦半径是解答本题的基本思想.例2 设椭圆E :b 2x 2 + a 2y 2 = a 2b 2 (a> b> 0),的左、右焦点分别为 F 1, F 2,右顶点为A, 如果点M 为椭圆E 上的任意一点,且 |MF 1|·|MF 2| 的最小值为243a .(1) 求椭圆的离心率e ;(2) 设双曲线Q :是以椭圆E 的焦点为顶点,顶点为焦点,且在第一象限内任取Q 上一点P ,试问是否存在常数λ(λ> 0),使得∠PAF 1 =λ∠PF 1A 成立?试证明你的结论.分析 对于(1)可利用焦半径公式直接求解.而 (2) 是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而∠PF 1A 显然是一锐角,又易知∠PAF 1是(0, 120o ) 内的角,且90o 是斜率不存在的角.于是,抓住90o 这一特殊角试探,可得解法1,若注重斜率的研究,考查所两角差的正切,可得解法2;若转变角的角度来观察,将∠PF 1A 变为∠PNF 1,使∠PAF 1变成△PNA 的外角,可得解法3;若考查角平分线的性质可得解法4;若从图像与所求式的特点分析得知,所求的λ必须是大于1的正数,从常规看来可以猜想到它可能是二倍角或三倍角的关系.由此先探索一下二倍角的情形,考查角平分线定理,可得解法5;若是考查∠PF 1A 与∠PAF 1的图形位置,直接解三角形PAF 1,可得到解法6.(1) 解 设M(x 0, y 0), 由椭圆的焦半径定义得|MF 1| = a + ex 0,|MF 2| = a - ex 0,|MF 1|·|MF 2| = (a + ex 0)(a - ex 0) = a 2- e 2x 02,∵ |MF 1|·|MF 2| 的最小值为243a , 且 |x 0|≤a ,∴ a 2- e 2x 02 ≥a 2- e 2a 2 =243a ,解得 21=e . (2) 解法1 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c ,半焦距为2c ,故 设双曲线Q 的方程为 132222=-c y c x , 假设存在适合题意的常数λ(λ> 0),① 考虑特殊情形的λ值.当PA ⊥x 轴时,点P 的横坐标为2c ,从而点P 的纵坐标为y = 3c ,而 |AF 1| = 3c ,∴ △PAF 1是等腰直角三角形,即 ∠PAF 1 =2π , ∠PF 1A =4π, 从而可得 λ= 2. ② PA 不与x 轴垂直时,则要证∠PAF 1 = 2∠PF 1A 成立即可.由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在,从而,有A PF c x y k PF 111tan 1∠=+=, 111tan 2PAF cx y k PA ∠-=-=,且有 ))((31121c x c x y -+=,………… ※ 又∵21211121)()(2122tan 11y c x y c x k k A PF PF PF -++=-=∠, 将※代入得PA k c x y y c x y c x A PF -=--=-++=∠2)()(22tan 112121111, 由此可得 tan2∠PF 1A = tan ∠PA F 1, ∵ P 在第一象限,A(2c , 0), ∴ )32,2()2,0(1πππ⋃∈∠PAF , 又∵ ∠PF 1A 为锐角,于是,由正切函数的单调性得 2∠PF 1A =∠PA F 1.综合上述得,当λ= 2时,双曲线在第一象限内所有点均有∠PAF 1 = 2∠PF 1A 成立.解法2 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c , 半焦距为2c ,故 设双曲线Q 的方程为 132222=-c y c x ,由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在.且∠PF 1A 为锐角.又∵ ))((31121c x c x y -+=, …………………………………………………… ※设∠PF 1A =β,则 ,tan 111cx y k PF +==β 设∠PAF 1=λβ, λβ≠90o 时, 则 tan(λβ)c x y k PA 211--=-=, 而 tan(λβ-β)βλββλβtan )tan(1tan )tan(+-=))(2(1211111111cx y c x y c x y c x y +--++---=212121112)2(y c cx x c x y -----= ))((3))(2()2(111111c x c x c x c x c x y -+-+---=)()2)(()2(111111c x y x c c x c x y +=-+--=. ∴ tan(λβ-β) = tan β.∵ ∠PF 1A =β为锐角,又 ∠P A F 1 =λβ∈)32,0(π, ∴ tan(λβ-β) = tan β > 0, 故λβ-β是锐角, 由正切函数的单调性得 λ= 2.显然,当λβ= 90o 时亦成立.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立.解法3 由上述①,得λ= 2,设P ′是射线PA 上的一点, 其横坐标为x 0 ( x 0 > c ),在x 轴上取一点N (2 x 0 +c , 0),使△P ′F 1N 为等腰三角形,∴∠P ′F 1N =∠P ′NF 1.故当∠P ′AF 1 = 2∠P ′F 1A 时,有∠P ′AF 1 = 2∠P ′NA ,从而∠AP ′N =∠P ′NA, 则 |AN| = |AP ′|,又 A(2c ,0),于是 |AN| = |AP ′| = 2x 0-c . 过P ′作P ′H 垂直于准线l 于H ,如图9-5.则 |P ′H| = x 0-c 21. 故 22||||00c x c x H P A P --='' = 2 = e . 故 点P ′是双曲线上的点,且与P 重合.由x 0 > c 的任意性得,当λ= 2时,双曲线在第一象限内所有点均有2∠PF 1A =∠PAF 1成立.解法4 由题意得,设点P(x 1 , y 1),∵ 点P 是双曲线在第一象限内的点,又A(2c , 0)是一焦点,∴ |AP| = 2x 1- c ,|AF 1| = 3c ,设AD 为∠F 1AP 的平分线, ……… ※由角平分线性质及定比分点公式,得 222)32(23123111111c c x x c x c cx c x c x c c x D =+++-=-+-+-=, 由此可得,点D 在双曲线的右准线上,从而可得准线是AF 1故△AF 1D 为等腰三角形,且∠PF 1A =∠DAF 1,又由※得∠PAF 1 = 2∠PAD =2∠DAF 1, ∴ ∠PA F 1 = 2∠PF 1A ,故λ=2.解法5 由题意得,设点P(x 1 , y 1),因为点P 又A(2c , 0)是一焦点,于是,有|AP| = 2x 1- c ,|AF 1| = 3c ,| PF 1| 2 = (x 1 + c )2 + y 12 = x 12 + 2 x 1c+ c 2 + 3 x 12- 3 c 2 = 4 x 12 + 2 x 1c - 2 c 2, 在△APF 1中有 21212121212122432)2(2249cos c c x x c c x c c x x c F -+⨯⨯---++=∠)2(2))(2(26)(611111c x c x c x c x c c x c -+=+-+=, )2(32)224()2(9cos 12121212c x c c c x x c x c A -⨯⨯-+--+=∠c x x c c x c c x c --=-⨯⨯--=111122)2(32)2(6, 于是,有 2()2(211c x c x -+)2- 1 =cx x c --1122, 即 2(co s ∠F 1)2- 1 = cos 2∠F 1 = cos ∠A, ∵ ∠A 、∠F 1是△APF 1中的内角,且∠F 1是锐角,故有 2∠F 1 =∠A, 即 ∠PA F 1 = 2∠PNF 1, 所以λ= 2时,能使得双曲线在第一象限内所有点均有 ∠PA F 1 = 2∠PF 1A .解法6 设点P(x 1 , y 1)是双曲线第一象限的点.∵ A(2c , 0),F 1(- c , 0),连AP ,F 1P ,如图 9-5. 由双曲线的焦半径定义得 |AP| = 2x 1- c ,又设点N 是点F 1关于直线x = x 1的对称点,则有 |PF 1| = |PN|, 且N (2x 1+ c , 0),从而 ∠PF 1N =∠PNF 1.又 |AN| = 2x 1 + c - 2c = 2x 1- c = |AP| , ∠APN =∠PNF 1.由此可得 ∠F 1AP = 2∠PNF 1 ,即 ∠F 1AP = 2∠PNF 1 = 2∠PF 1N ,所以 λ= 2.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立.点评 对于(1),利用焦半径公式求解是解题的常规方法;对于(2),方法1、先由特殊情形探求出λ的值,然后再证明它对一般的情形也成立,这种方法是解决有关探索性问题的常用方法;方法2巧用了斜率与正切函数的性质直接求得λ;方法6与方法3、思维独到,都是通过变换角,把∠PF 1N 变为∠PNF 1,利用三角形的内角外角的关系,发现到|AN| = |AP|,从而也就发现了相应的解法.且解法3与解法6是不同,解法6事先不知道λ的值是2,它具有探索性.而解法3是先知道λ的值,后推证P 点在双曲线上,它是具有目的的推证.解法4,具有猜想性,是我们分析问题时常用的一种思想方法;解法5,注重对两角所在的三角形的探索,坚定不移地解三角形PAF 1,抓住了问题的本质特征分析,这种方法也是使问题获得巧解的常用一种思想方法.例3 已知抛物线 y 2 = 2P x 的焦点弦AB 被焦点分成长度为m 、n 的两段,求证:P n m 211=+. 证明 设A 、B 在该抛物线的准线上的射影为C 、D ,连AD 交x 轴与E ,如图9-6.由抛物线的焦半径的定义得 |AC| = |AF| = m , |BD| = |BF| = n ,由相似三角形性质知 ||||||||AB AF BD EF =,∴ n m mn EF +=||, 同理 n m mn EH +=||,故 |EF| = |EH|, 即 E 与O 重合. 故A 、O 、D 三点共线.同理B 、O 、C 三点共线.∴ |EF| + |EH| = P =n m mn +2, 故 Pn m 211=+. 图9-6 点评 本题有一个特殊的几何模型,即直角梯形ABCD .由此还可发现许多有用的结论:①∠CFD = 90o ;②∠CAB 的平分线与∠DBA 的平分线交于一点N ,则NA 、NB 为抛物线的切线,且∠ANB= 90o ; ③在准线上任取一点向抛物线引两条切线,则两切线互相垂直;④若M 为AB 中点,则N M 被抛物线平分;⑤若A(x 1 , y 1), B(x 2, y 2),则 |AB| =||2121y y P-,当AB ⊥x 轴时, |AB| = 2 P; ⑥以AB 为直径的圆与抛物线的准线相切;⑦NF ⊥AB; y 1y 2 = - P 2; ….。
焦半径公式的三角形式及其应用重庆清华中学 张 忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新,故值得我们进一步总结与研究。
焦半径公式的代数形式:设21,F F 是曲线的左、右焦点,点),(00y x P 在曲线上,记11PF r =、22PF r =为左、右焦半径。
则在椭圆中:0201,ex a r ex a r -=+=;在双曲线中:a ex r a ex r -=+=0201,;在抛物线)0(22>=p px y 中:20p x r +=。
若焦点在y 轴上时,则把相应的0x 改为0y 即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为θ,则 (1)|PF 1|=a +ccosθ; (2)|PF 2|=a -ccosθ. 证明:∵ 椭圆的离心角为θ,由椭圆参数方程知点P 的横坐标为acosθ,依焦半径的代数形式知:|PF 1|=a +ex p =a +ea·cosθ=a +c·cosθ,|PF 2|=a -ex p =a -c·cosθ.例1. F 1、F 2是椭圆+y 2=1的左右焦点,点P 在椭圆上运动,则|PF 1|·|PF 2|的最大值 是______, 最小值是_________. (1996年第七届“希望杯”赛)解:设椭圆的离心角为θ,又知a =2,c 2=3,由定理1得 |PF 1|c·|PF 2|=a 2-c 2cos 2θ=4-3cos 2θ∵ 0≤cos 2θ≤1 故知 |PF 1|c·|PF 2|max =4-3·0=4 |PF 1|·|PF 2|min =4-3·1=1例2. 椭圆的左右焦点为F 1、F 2,试问此椭圆的离心率e 在什么值范围内,椭圆上恒存在点P,使得PF1⊥PF2。
解:设椭圆方程为b2x2+a2y2=a2b2(a>b>0),离心角为θ,依题设、定理1及勾股定理得(2c)2=(a-ccosθ)2+(a+ccosθ)2化简得cos2θ=.∵0≤cos2θ≤1,∴0≤2-≤1,结合0<e<1得≤e<1为所求。
高中数学:焦半径公式及其应用从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方程),分别为椭圆或双曲线的左、右焦点,是抛物线的焦点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.设是椭圆上任意一点,则有从而焦半径而,所以其中为椭圆的离心率.事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足即分子有理化得于是有(1)(2)两式相加得即为椭圆上一点到椭圆左焦点的距离.于是我们得到椭圆的焦半径公式(I):同理有双曲线的焦半径公式(I):当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.抛物线的焦半径公式可以直接由抛物线的定义得到,即例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.正确答案是.解设,则有,即解得又因为,所以有两边同除可解得由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.设与轴正半轴形成的角度为,则有整理得,于是有解得同理可以推得右焦点对应的焦半径公式其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:于是我们得到椭圆的焦半径公式(II):其中为焦半径与轴正半轴所成的角.对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):当在双曲线的左支时,有当在双曲线的右支时,有其中为焦半径与轴正半轴所成的角.抛物线的焦半径公式为:其中为焦半径与轴正半轴所成的角.椭圆的焦半径公式(II)有两个常用的推论:推论1 椭圆的焦点弦长公式:其中为椭圆的焦点弦,的倾斜角为.圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.证明设是过椭圆左焦点的焦点弦,的倾斜角为,不妨设点在轴上方,如图:由焦半径公式(II)知于是这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:其中为双曲线的焦点弦,的倾斜角为.不论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.抛物线的焦点弦长公式更为简单,即其中是抛物线的焦点弦,的倾斜角为.例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别过,,求证:为定值.解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知所以为定值.推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).证明由焦半径公式(I)知于是我们知道与的调和平均数为定值,即这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.几道练习:练习1椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,求的值.练习2椭圆的左右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边形面积的取值范围.答案练习1 .提示设,则,于是于是.练习2 .提示设的倾斜角为,则的倾斜角为,于是四边形的面积练习3备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知设直线:,称为椭圆的左准线,记点到的距离为,则有即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决于的大小.当时为椭圆,当时为抛物线,当时为双曲线.从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围在与上时,对应的定义被称为椭圆与双曲线的第二定义.备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,则椭圆上任意一点的坐标满足:这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为▍▍ ▍▍。
圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF ,=2PF ,记忆方式:2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF ,=2PF ,②当点P 在左支上时,=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF ,=2PF ,②当点P 在下支上时,=1PF ,=2PF ,记忆方式:(3)若弦AB 过左焦点,则=AB ;若弦AB 过右焦点,则=AB 3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF (2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF (3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF (4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;(2)设过椭圆)0(12222>>=+b a bx a y 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF ;=BF ;=AB ,弦AB 在双曲线一支上时,焦点弦最短为(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF ;=BF ;=AB ,弦AB 交双曲线两支上时,焦点弦最短为3.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF ;=BF ;=AB (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF ;=BF ;=AB 例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e ;=e (2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θsin e ;=e 例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为。
焦半径与焦点三角形性质例1、 (1)设P 是椭圆()2222=1,0x y a b a b+>上的一点,12,F F 为焦点,若12F PF θ∠=,求12F PF S ∆(2)设P 是双曲线()22221,0x y a b a b-=>上的一点,12,F F 为焦点,若12F PF θ∠=,求S 21PF F ∆例2、 (1)椭圆()222210x y a b a b+=>> P 为椭圆上一点12,F F 为焦点,P 在____________时 12F PF ∠最大。
(2)椭圆14922=+y x 的焦点为12,F F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是______________.例3、(1)设P 为双曲线2222by a x -=1上任一点,2F 为双曲线的右焦点,分别以2PF 和双曲线实轴为直径作圆,求证:两圆相切。
(2)设P 是椭圆()22221,0x y a b a b+=>上的一点,以2F 为右焦点,分别以线段2PF 和长轴为直径作圆,证明两圆相切。
(3)设P 为抛物线22(0)y px p =>上任一点,求证以PF 为直径的圆与y 轴相切。
例4、过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于()11,A x y ,()22,A x y 两点,求证:(1)221212,4p x x y y p == (2)12AB x x p =++ (3)过焦点F 的弦的倾斜角为(0)θθπ<<,求证: 22sin pAB θ= (4)焦点弦长通径最短。
(5)FB FA 11+=p2 练1、设O 为坐标原点,F 是抛物线()220y px p =>的焦点,A 是抛物线上一点,FA与x 轴正向的夹角为60°,则||OA为分析:本题可以由直线方程与抛物线方程求点A 的坐标,再由两点间距离公式求||OA,也可以用抛物线的焦半径公式求出.解:设点A 的横坐标为0x ,则由抛物线定义及题意得,00cos 22p p x p x ⎛⎫+=++ ⎪⎝⎭60°,032x p =,点A 的纵坐标为00sin 2p y x ⎛⎫=+ ⎪⎝⎭60°3p =,则||OA 212p =练2、设椭圆22214x y a+=(a >2)的焦点为F 1和F 2,P 是椭圆上任一点,若∠F 1PF 2的最大值为π32,求椭圆的方程。
焦半径公式的三角形式及其应用重庆清华中学 张 忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新,故值得我们进一步总结与研究。
焦半径公式的代数形式:设21,F F 是曲线的左、右焦点,点),(00y x P 在曲线上,记11PF r =、22PF r =为左、右焦半径。
则在椭圆中:0201,ex a r ex a r -=+=;在双曲线中:a ex r a ex r -=+=0201,;在抛物线)0(22>=p px y 中:20p x r +=。
若焦点在y 轴上时,则把相应的0x 改为0y 即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为θ,则 (1)|PF 1|=a +ccosθ; (2)|PF 2|=a -ccosθ. 证明:∵ 椭圆的离心角为θ,由椭圆参数方程知点P 的横坐标为acosθ,依焦半径的代数形式知:|PF 1|=a +ex p =a +ea·cosθ=a +c·cosθ,|PF 2|=a -ex p =a -c·cosθ.例1. F 1、F 2是椭圆+y 2=1的左右焦点,点P 在椭圆上运动,则|PF 1|·|PF 2|的最大值 是______, 最小值是_________. (1996年第七届“希望杯”赛)解:设椭圆的离心角为θ,又知a =2,c 2=3,由定理1得 |PF 1|c·|PF 2|=a 2-c 2cos 2θ=4-3cos 2θ∵ 0≤cos 2θ≤1 故知 |PF 1|c·|PF 2|max =4-3·0=4 |PF 1|·|PF 2|min =4-3·1=1例2. 椭圆的左右焦点为F 1、F 2,试问此椭圆的离心率e 在什么值范围内,椭圆上恒存在点P,使得PF1⊥PF2。
解:设椭圆方程为b2x2+a2y2=a2b2(a>b>0),离心角为θ,依题设、定理1及勾股定理得(2c)2=(a-ccosθ)2+(a+ccosθ)2化简得cos2θ=.∵0≤cos2θ≤1,∴0≤2-≤1,结合0<e<1得≤e<1为所求。
椭圆与双曲线的焦半径公式
在平面几何中,椭圆与双曲线是两种常见的二次曲线。
它们具有非常重要的性质,特别是它们的焦半径公式。
本文将详细介绍椭圆与双曲线的焦半径公式,并为读者提供指导意义。
首先,我们来了解一下椭圆的焦半径公式。
椭圆是所有到两个定点距离之和恒定的点所组成的图形。
这两个定点称为椭圆的焦点。
椭圆的焦半径公式是指从焦点到椭圆上任意点的线段长度都等于该点到椭圆左右两个焦点的距离之差。
换句话说,如果将椭圆的两个焦点记为F1和F2,将椭圆上任意一点记为P,将P点到F1、F2的距离分别为d1、d2,则焦半径公式可以表示为:
PF1 - PF2 = d1 - d2
这个公式的实际应用非常广泛,例如在太阳系行星轨道以及卫星通信中均有应用。
接下来,我们来介绍双曲线的焦半径公式。
双曲线与椭圆非常相似,它们都是二次曲线。
不同的是,双曲线的焦点到曲线的距离之差恒定为一个定值,而不是和椭圆一样固定等于曲线上点到两个焦点的距离之差。
换句话说,如果将双曲线的两个焦点记为F1和F2,在曲线上取任意一点P,将P点到F1、F2的距离分别为d1、d2,则焦半径公式可以表示为:
PF1 - PF2 = 2a
其中,a是双曲线的半轴长度。
双曲线的焦半径公式同样有许多应用,例如在天文学中用于描述天体轨道的形状,以及在工程学中用于计算电磁波的传播。
总之,无论是椭圆还是双曲线,它们的焦半径公式在科学研究与实践中都具有非常重要的意义。
它们不仅是数学知识,更是实际应用的基础。
希望读者可以通过本文对椭圆与双曲线的焦半径公式有更深入的了解,并能在实践中灵活应用。
焦半径公式的三角形式及其应用重庆清华中学张忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新, 故值得我们进一步总结与研究。
焦半径公式的代数形式:设F I,F2是曲线的左、右焦点,点P(X o,y。
)在曲线上,记r1PF1、r2PF2为左、右焦半径。
则在椭圆中:r i a ex o, r2 a ex o ;在双曲2 p线中:r1ex0a, r2ex0a ;在抛物线y 2px(p 0)中:r x0专。
若焦点在y轴上时,则把相应的X。
改为y o即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为贝U (1)|PF i| = a + ccos 0; (2)|PF 2| = a —ccos 0.证明:•••椭圆的离心角为0,由椭圆参数方程知点P的横坐标为acos0,依焦半径的代数形式知:|PF i| = a+ex p= a + ea • cos 0= a + c • cos 0 ,|PF 2| = a—ex p= a —c • cos 0.例1. F i、F2是椭圆+ y2= 1的左右焦点,点P在椭圆上运动,则|PF1| • |PF2|的最大值是_______ ,最小值是__________ .(1996年第七届“希望杯”赛)解:设椭圆的离心角为0,又知a= 2, c2= 3,由定理1得2 2 2 2|PF 1|c • |PF 2| = a —c cos 0 = 4 —3cos 0•/0< cos 0W1 故知|PF1|c • |PF 2| max= 4—3 • 0= 4|PF1| • |PF2| min= 4 —3 • 1= 1例2.椭圆的左右焦点为F1、F2,试问此椭圆的离心率e在什么值范围内,椭圆上恒存在点P,使得PF i ± PR。
解:2 2 2 2 2 2设椭圆方程为b x + a y = a b (a > b> 0),离心角为B,依题设、定理1及勾股定理得(2 c) 2= (a —ccos 0) 2+ (a + ccos 0) 2化简得cos20 =2O w cos20<1 , ••• 0W2<1结合0 v e v 1PFeFH 1 ecos ep 1 ecos,这里p 为焦准距,在椭圆和双曲线中,b 2W e v 1为所求。
双曲线焦半径应用举例双曲线上任意一点到其焦点的距离称为该点的焦半径。
已知点P(x 0,y 0)在双曲线22a x -22by = 1 (a >0,b >0)上,F 1, F 2分别为双曲线的左、右焦点。
若点P 在右半支上,则| PF 1| =e x 0+ a ,| PF 2| =e x 0-a ;若点P 在左半支上,则| PF 1| =-(e x 0+ a) ,| PF 2| =-(e x 0-a).利用焦半径公式解题,可使解题过程简单明了,下面列举几例,供参考。
一、求双曲线的标准方程例1、 设F 1、F 2是双曲线22a x -22by = 1 (a >0,b >0)的左、右两个焦点,l 为左准线,离心率e=23,P(-328,m)是左支上一点,P 到l 的距离为d ,且d ,| PF 1|,| PF 2|成等差数列,求此双曲线方程。
分析;利用焦半径,结合双曲线的第二定义列出等式,求出待定系数.解:由双曲线的第二定义知:d =32| PF 1|,又| PF 1| =-(e x 0+ a) = 14-a, | PF 2| =-(e x 0-a) = 14+a,由已知得:d +| PF 2| = 2| PF 1|,即32(14-a)+(14+a)=28-2a 得:a = 2, c =3, b =5,故双曲线的方程为42x -52y =1。
评注:利用焦半径公式,可使运算过程简便易行。
二、求值例2 双曲线92x -162y =1的两个焦点为F 1、F 2,点P 在双曲线上,若P F 1⊥P F 2,则点P 到x 轴的距离为_____________.分析;利用焦半径及勾股定理,列出等式,求出P 点纵坐标即可。
解:不妨设P 在双曲线上右支上,设P(x 0,y 0), 则| PF 1| =e x 0+ a = 3+35x 0,| PF 2| =e x 0-a =35x 0-3,则| PF 1|2+| PF 2|2= |F 1F 2|2,即:(3+35x 0)2+(35x 0-3) 2=100, 所以20x=25369,又920x -1620y =1,所以20y =25256,所以点P 到x 轴的距离为516。
双曲线极坐标焦半径公式概述及解释说明1. 引言1.1 概述在数学中,双曲线是一类重要的几何图形,其形状特征与椭圆和抛物线不同。
双曲线在各个科学领域中广泛应用,尤其在物理学、工程学和计算机图形学等方面具有重要意义。
本文将介绍双曲线极坐标焦半径公式的概念、解释及其具体应用场景。
1.2 文章结构本文共分为五个部分。
首先,在引言部分我们将对文章进行整体介绍以及所要讨论的问题。
然后,在第二部分,我们将概述双曲线的定义,并简要介绍极坐标系的基本概念。
接着,在第三部分,我们将详细解释双曲线在极坐标系中表示的方法,包括焦点与半焦距的定义以及如何求解双曲线的焦点与半焦距。
最后,在第四部分,我们将通过实例展示和应用场景解析来进一步说明该公式的意义和实际价值。
最后,在结论和总结部分,我们将对文章进行回顾总结,并探讨未来双曲线极坐标研究的发展方向。
1.3 目的本文的目标是介绍双曲线极坐标焦半径公式的概念和解释,以及阐述该公式在实际应用中的意义和价值。
通过本文的阐述,读者将能够全面了解双曲线在极坐标系中表示以及如何利用焦半径公式求解双曲线的焦点与半焦距。
同时,本文还将提供具体示例和应用场景,以帮助读者更好地理解和应用该公式。
以上是“1. 引言”部分内容的详细描述。
2. 双曲线极坐标焦半径公式概述2.1 双曲线定义双曲线是一种常见的平面曲线,它在数学和物理学中具有重要的应用。
双曲线由两个分离的曲线支构成,其形状类似于两个向外张开的抛物线。
根据双曲线的定义,它与直角坐标系存在一定关系。
2.2 极坐标系简介极坐标系是一种用距离和方位角表示点位置的坐标系统。
与直角坐标系不同,极坐标系使用一个原点和一个方位角来确定一个点的位置。
方位角表示与参考轴之间的夹角,而距离表示点到原点的距离。
2.3 双曲线在极坐标系中的表示将双曲线引入极坐标系中,可以通过方程表达该双曲线在该坐标系中的特征。
具体而言,在极坐标系中,双曲线通常由以下公式表示:r = e^(θ) / a。
双曲线焦半径焦点弦双曲线是一种经典的二次曲线,具有许多有趣的性质和特点。
在本文中,我们将重点介绍双曲线的焦半径和焦点弦。
首先,我们先来了解一下什么是双曲线。
双曲线是由平面上的点P(x, y)满足一定的几何关系而形成的曲线。
具体来说,双曲线的定义是两个焦点F1和F2,以及到这两个焦点的距离差的绝对值等于常数a。
我们可以用以下方程来表示双曲线:(x^2 / a^2) - (y^2 / b^2) = 1其中,a和b分别表示双曲线的两个半轴的长度。
接下来,我们将重点介绍双曲线的焦半径。
焦半径是指从曲线上的任意一点到其对应焦点的直线距离。
在双曲线上,对于任意一点P(x, y),它到焦点F1和F2的距离之和等于常数2a。
这意味着焦半径r可以通过以下公式计算:r = √(x^2 + y^2) + √(x^2 + y^2 - 2a)另外,定点P(x, y)到双曲线的准线上的点Q(x, b^2 / y)的距离同样等于焦半径r。
这个性质对于双曲线的求解和分析十分重要。
最后,让我们来讨论一下焦点弦。
焦点弦是指通过双曲线的两个焦点的直线。
在双曲线上,任意一条通过F1和F2的直线都是焦点弦。
与焦半径类似,焦点弦也有一些特殊的性质。
首先,焦点弦在双曲线上的交点称为双曲线的顶点。
其次,焦点弦与曲线的斜率之积始终为-1。
这个性质在求解焦点弦和双曲线的相关问题时非常有用。
通过对双曲线的焦半径和焦点弦的研究,我们可以更深入地理解并分析双曲线的性质和特点。
例如,我们可以通过求解焦半径和焦点弦来确定双曲线的形状和位置,进一步研究其几何性质和数学性质。
同时,这些知识也可以应用于实际问题中,如天体运动轨迹的研究和椭圆轨道的分析等。
总之,双曲线的焦半径和焦点弦是双曲线研究中的重要概念和工具。
通过深入理解和应用这些概念,我们可以更好地解决和分析与双曲线相关的问题,进一步拓宽数学知识和应用领域。
希望本文对你理解双曲线的焦半径和焦点弦有所帮助!。
二次曲线焦半径椭圆焦半径P 是椭圆x a y b2222+=1()a b >>0上一点,E 、F 是左、右焦点,e 是椭圆的离心率,则(1)||PE a ex P =+,(2)||PF a ex P =-。
P 是椭圆y a x ba b 222210+=>>()上一点,E 、F 是上、下焦点,e 是椭圆的离心率,则(3)PE a ey PF a ey P P =-=+,()||4。
例1 已知点P (x ,y )是椭圆12222=+by a x 上任意一点,F 1(-c,0)和F 2(c,0)是椭圆的两个焦点.求证:|PF 1|=a+x a c ;|PF 2|=a -x ac . 【分析】 可用距离公式先将|PF 1|和|PF 2|分别表示出来.然后利用椭圆的方程“消y ”即可.【解答】 由两点间距离公式,可知|PF 1|=22)(y c x ++ (1)从椭圆方程12222=+by ax 解出 )(22222x a a b y -=(2)代(2)于(1)并化简,得|PF 1|=x aca +(-a ≤x ≤a) 同理有 |PF 2|=x aca - (-a ≤x ≤a)【说明】 通过例1,得出了椭圆的焦半径公式r 1=a+ex r 2=a-ex (e=ac ) 从公式看到,椭圆的焦半径的长度是点P (x,y )横坐标的一次函数. r 1是x 的增函数,r 2是x 的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y 轴,关于原点).(二)、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可.例2. P (x,y)是平面上的一点,P 到两定点F 1(-c ,0),F 2(c ,0)的距离的和为2a (a>c>0).试用x ,y 的解析式来表示r 1=|PF 1|和r 2=|PF 2|.【分析】 问题是求r 1=f (x )和r 2=g (x ).先可视x 为参数列出关于r 1和r 2的方程组,然后从中得出r 1和r 2.【解答】 依题意,有方程组⎪⎪⎩⎪⎪⎨⎧+-=++==+③)(②)(① 22222222121 y c x r y c x r a r r ②-③得④ 42221cx r r =-代①于④并整理得r 1-r 2=x ac2 ⑤ 联立①,⑤得 ⎪⎪⎩⎪⎪⎨⎧-=+=xa c a r x ac a r 21【说明】 椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c 而无b ,其基础性显然.二、 焦半径公式与准线的关系用椭圆的第二定义,也很容易推出椭圆的焦半径公式. 如图右,点P (x ,y )是以F 1(-c,0)为焦点,以l 1:x=-ca 2为准线的椭圆上任意一点.PD ⊥l 1于D.按椭圆 的第二定义,则有ex a ca x e PD e PF e PD PF +=+==⇒=)(||||||||2即r 1=a+ex,同理有r 2=a-ex.对中学生来讲,椭圆的这个第二定义有很大的“人为性”.准线ca x 2±=缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.例3. P (x ,y )是以F 1(-c ,0),F 2(c ,0)为焦点,以距离之和为2a 的椭圆上任意一点.直线l 为x=-ca 2,PD 1⊥l 交l 于D 1.求证:e PD PF =||||11. 【解答】 由椭圆的焦半径公式 |PF 1|=a+ex.对|PD 1|用距离公式 |PD 1|=x-)(2c a -=x+ca 2. 故有e ca x c a x e c a x ex a PD PF =++=++=22211)(||||. 【说明】 此性质即是:该椭圆上任意一点,到定点F 1(-c,0)(F 2(c,0))与定直线l 1:x=-c a 2(l 2:x=c a 2)的距离之比为定值e (0<e<1).三、用椭圆的焦半径公式证明椭圆的方程现行教材在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.例4. 设点P (x ,y )适合方程12222=+b y a x .求证:点P (x ,y )到两定点F 1(-c,0)和F 2(c ,0)的距离之和为2a (c 2=a 2-b 2).【分析】 这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】 P (x ,y )到F 1(-c,0)的距离设作r 1=|PF 1|.由椭圆的焦点半径公式可知r 1=a+ex ①同理还有r 2=a-ex ②①+② 得 r 1+r 2=2a即 |PF 1|+|PF 2|=2a.即P (x ,y )到两定点F 1(-c ,0)和F 2(c,0)的距离之和为2a.【说明】 椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便. 四、椭圆焦半径公式的变式P 是椭圆x a y b a b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。
龙源期刊网
双曲线焦半径应用举例
作者:张文明
来源:《电子世界》2012年第19期
评注:点差法是求解双曲线问题的一种常用方法。
例4:已知双曲线的左、右焦点分别为F1、F2,左准线为.能否在双曲线的左支上找到一点P,使|PF1|是P到的距离与|PF2|的等比中项?若能,试求出P点坐标;若不能,请说明理由。
分析;此题为探索题目,一般可设存在点P,再利用焦半径及等比数列概念列等式可求解。
例5:已知双曲线的左焦点为,直线与双曲线的左右支分别交于A,B两点,求证:是定值。
证明:由双曲线对称性可知,A,B两点关于y轴对称,不妨设,则B的坐标是,由焦半径公式得,,则,而,故为定值。