圆锥曲线的焦半径(角度式)
- 格式:docx
- 大小:21.27 KB
- 文档页数:6
圆锥曲线二级常用焦半径定理圆锥曲线是数学中的一类重要曲线,它在几何学、物理学和工程学中有着广泛的应用。
在研究圆锥曲线的性质时,我们经常会遇到焦半径及其相关定理的概念。
本文将介绍圆锥曲线二级常用焦半径定理,希望能为读者提供一些指导意义。
圆锥曲线是由一个移动的直线在平面上绕着一个固定点旋转而形成的。
这个固定点被称为焦点,而直线称为准线。
根据准线与焦点的位置关系,圆锥曲线分为椭圆、双曲线和抛物线三种类型。
椭圆是一种封闭曲线,它的特点是离焦点距离之和是一个常数。
关于椭圆的焦半径定理如下:椭圆上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之和等于椭圆的焦半径。
具体来说,我们可以以椭圆的准线上一点为起点,任意作一条切线与椭圆相交于另一点,然后将这两个点与椭圆焦点连线,我们可以发现这个三角形的两条直角边之和是一个定值,即椭圆的焦半径。
双曲线是一种开口的曲线,它的特点是离焦点距离之差是一个常数。
关于双曲线的焦半径定理如下:双曲线上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之差等于双曲线的焦半径。
与椭圆相似,我们以双曲线的准线上一点为起点,任意作一条切线与双曲线相交于另一点,然后连结这两个点与双曲线的焦点,我们可以发现这个三角形的两条直角边之差是一个常量,即双曲线的焦半径。
抛物线是一种开口向上或向下的曲线,它的特点是离焦点距离等于焦准距的一半。
因此,抛物线的焦半径定理可以简单地表述为:抛物线上的任意一条切线与准线和焦点之间的连线构成一个等腰三角形,且这个等腰三角形的底边长度等于焦准距的一半。
同样,我们以抛物线的准线上一点为起点,任意作一条切线与抛物线相交于另一点,然后连结这两个点与抛物线的焦点,我们可以发现这个三角形的底边长度正好是焦准距的一半。
通过了解圆锥曲线二级常用焦半径定理,我们可以更好地理解圆锥曲线的性质和特点。
巧用圆锥曲线的焦半径圆锥曲线的焦半径为:二次曲线上任意一点Q 到焦点的距离.圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的.椭圆焦半径: R 左 = a + x e , R 右 = a - x e ,右支双曲线焦半径:R 左 = x e + a ,R 右 = x e - a ( x > 0) ,左支双曲线焦半径:R 左 = - (x e + a ),R 右 = - (x e - a ) ( x < 0) ,抛物线焦半径:R 抛 = x +2P . 对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(x 0 , y 0)是双曲线b 2x 2 - a 2y 2 = a 2b 2 (a > 0, b > 0) 右支上的一点,F 1, F 2是其左右焦点.则有 左准线方程为 ca x 2-=.由双曲线的第二定义得,左焦半径为 a ex ca x e PF +=+=0201)(||; 由 |PF 1|- |PF 2| =2a ,得 |PF 2| = |PF 2| - 2a = ex 0 - a .( |PF 2|亦可由第二定义求得).例1 已知F 1,F 2是椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足 |PF 1| = e | PF 2 |,则e 的值为 ( )22)( 33)( 32)( 22)(--D C B A解法1 设F 1(- c, 0 ),F 2(c , 0),P(x 0 , y 0),于是,抛物线的方程为 y 2 = 2 (4 c )(x + c ) , 抛物线的准线 l :x =- 3 c ,椭圆的准线 m :ca x 2-=, 设点P 到两条准线的距离分别为d 1 , d 2.于是,由抛物线定义,得 d 1 = | PF 2 | , ……………………① 又由椭圆的定义得 |PF 1| = ed 2,而 |PF 1| = e | PF 2 |,………………………………②由①②得 d 2 = | PF 2 |, 故 d 1 = d 2,从而两条准线重合.∴ 3331322=⇒=⇒-=-e e c a c .故选 (C).解法2 由椭圆定义得 |PF 1| + | PF 2 | = 2a ,又 |PF 1| = e | PF 2 |,∴ | PF 2 | (1+ e ) = 2a ,………①又由抛物线定义得 | PF 2 | = x 0 + 3c , 即 x 0 = | PF 2 | - 3c ,……………………………② 由椭圆定义得 | PF 2 | = a - ex 0 , ………………………………………③由②③ 得 | PF 2 | = a - e | PF 2 | + 3ec ,即 | PF 2 | (1+ e ) = a + 3ec , ………………… ④ 由①④得 2a = a + 3ec ,解得 33=e ,故选 (C). 点评 结合椭圆、抛物线的定义,并充分运用焦半径是解答本题的基本思想.例2 设椭圆E :b 2x 2 + a 2y 2 = a 2b 2 (a> b> 0),的左、右焦点分别为 F 1, F 2,右顶点为A, 如果点M 为椭圆E 上的任意一点,且 |MF 1|·|MF 2| 的最小值为243a .(1) 求椭圆的离心率e ;(2) 设双曲线Q :是以椭圆E 的焦点为顶点,顶点为焦点,且在第一象限内任取Q 上一点P ,试问是否存在常数λ(λ> 0),使得∠PAF 1 =λ∠PF 1A 成立?试证明你的结论.分析 对于(1)可利用焦半径公式直接求解.而 (2) 是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而∠PF 1A 显然是一锐角,又易知∠PAF 1是(0, 120o ) 内的角,且90o 是斜率不存在的角.于是,抓住90o 这一特殊角试探,可得解法1,若注重斜率的研究,考查所两角差的正切,可得解法2;若转变角的角度来观察,将∠PF 1A 变为∠PNF 1,使∠PAF 1变成△PNA 的外角,可得解法3;若考查角平分线的性质可得解法4;若从图像与所求式的特点分析得知,所求的λ必须是大于1的正数,从常规看来可以猜想到它可能是二倍角或三倍角的关系.由此先探索一下二倍角的情形,考查角平分线定理,可得解法5;若是考查∠PF 1A 与∠PAF 1的图形位置,直接解三角形PAF 1,可得到解法6.(1) 解 设M(x 0, y 0), 由椭圆的焦半径定义得|MF 1| = a + ex 0,|MF 2| = a - ex 0,|MF 1|·|MF 2| = (a + ex 0)(a - ex 0) = a 2- e 2x 02,∵ |MF 1|·|MF 2| 的最小值为243a , 且 |x 0|≤a ,∴ a 2- e 2x 02 ≥a 2- e 2a 2 =243a ,解得 21=e . (2) 解法1 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c ,半焦距为2c , 故 设双曲线Q 的方程为132222=-c y c x , 假设存在适合题意的常数λ(λ> 0),① 考虑特殊情形的λ值.当PA ⊥x 轴时,点P 的横坐标为2c , 从而点P 的纵坐标为y = 3c ,而 |AF 1| = 3c , ∴ △PAF 1是等腰直角三角形,即 ∠PAF 1 =2π , ∠PF 1A =4π, 从而可得 λ= 2. ② PA 不与x 轴垂直时,则要证∠PAF 1 = 2∠PF 1A 成立即可.由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在,从而,有A PF c x y k PF 111tan 1∠=+=, 111tan 2PAF cx y k PA ∠-=-=,且有 ))((31121c x c x y -+=,………… ※ 又∵21211121)()(2122tan 11y c x y c x kk A PF PF PF -++=-=∠, 将※代入得PA k cx y y c x y c x A PF -=--=-++=∠2)()(22tan 112121111, 由此可得 tan2∠PF 1A = tan ∠PA F 1, ∵ P 在第一象限,A(2c , 0), ∴ )32,2()2,0(1πππ⋃∈∠PAF ,又∵ ∠PF 1A 为锐角,于是,由正切函数的单调性得 2∠PF 1A =∠PA F 1.综合上述得,当λ= 2时,双曲线在第一象限内所有点均有∠PAF 1 = 2∠PF 1A 成立. 解法2 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c , 半焦距为2c , 故 设双曲线Q 的方程为132222=-c y c x ,由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在.且∠PF 1A 为锐角. 又∵ ))((31121c x c x y -+=, …………………………………………………… ※ 设∠PF 1A =β,则 ,tan 111cx y k PF +==β 设∠PAF 1=λβ, λβ≠90o 时, 则 tan(λβ)cx y k PA 211--=-=, 而 tan(λβ-β)βλββλβtan )tan(1tan )tan(+-=))(2(1211111111c x y c x y cx y c x y +--++---=212121112)2(y c cx x c x y -----= ))((3))(2()2(111111c x c x c x c x c x y -+-+---=)()2)(()2(111111c x y x c c x c x y +=-+--=.∴ tan(λβ-β) = tan β.∵ ∠PF 1A =β为锐角,又 ∠P A F 1 =λβ∈)32,0(π, ∴ tan(λβ-β) = tan β > 0, 故λβ-β是锐角, 由正切函数的单调性得 λ= 2. 显然,当λβ= 90o 时亦成立.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立. 解法3 由上述①,得λ= 2,设P ′是射线PA 上的一点, 其横坐标为x 0 ( x 0 > c ), 在x 轴上取一点N (2 x 0 +c , 0),使△P ′F 1N 为等腰三角形,∴∠P ′F 1N =∠P ′NF 1.故当∠P ′AF 1 = 2∠P ′F 1A 时,有∠P ′AF 1 = 2∠P ′NA , 从而∠AP ′N =∠P ′NA, 则 |AN| = |AP ′|,又 A(2c ,0),于是 |AN| = |AP ′| = 2x 0-c . 过P ′作P ′H 垂直于准线l 于H ,如图9-5. 则 |P ′H| = x 0-c 21. 故22||||00c x cx H P A P --='' = 2 = e . 故 点P ′是双曲线上的点,且与P 重合.由x 0 > c 的任意性得,当λ= 2时,双曲线在第一象限内所有点均有2∠PF 1A =∠PAF 1成立. 解法4 由题意得,设点P(x 1 , y 1),∵ 点P 是双曲线在第一象限内的点,又A(2c , 0)是一焦点,∴ |AP| = 2x 1- c ,|AF 1| = 3c ,设AD 为∠F 1AP 的平分线, ……… ※由角平分线性质及定比分点公式,得 222)32(23123111111cc x x c x c cx c x c x cc x D =+++-=-+-+-=, 由此可得,点D 在双曲线的右准线上,从而可得准线是AF 1故△AF 1D 为等腰三角形,且∠PF 1A =∠DAF 1,又由※得∠PAF 1 = 2∠PAD =2∠DAF 1, ∴ ∠PA F 1 = 2∠PF 1A ,故λ=2.解法5 由题意得,设点P(x 1 , y 1),因为点P 又A(2c , 0)是一焦点,于是,有|AP| = 2x 1- c ,|AF 1| = 3c ,| PF 1| 2 = (x 1 + c )2 + y 12 = x 12 + 2 x 1c+ c 2 + 3 x 12- 3 c 2 = 4 x 12 + 2 x 1c - 2 c 2,在△APF 1中有 21212121212122432)2(2249cos c c x x c c x c c x x c F -+⨯⨯---++=∠)2(2))(2(26)(611111c x cx c x c x c c x c -+=+-+=,)2(32)224()2(9cos 12121212c x c c c x x c x c A -⨯⨯-+--+=∠c x x c c x c c x c --=-⨯⨯--=111122)2(32)2(6, 于是,有 2()2(211c x cx -+)2- 1 =c x x c --1122, 即 2(co s ∠F 1)2- 1 = cos 2∠F 1 = cos ∠A,∵ ∠A 、∠F 1是△APF 1中的内角,且∠F 1是锐角,故有 2∠F 1 =∠A, 即 ∠PA F 1 = 2∠PNF 1,所以λ= 2时,能使得双曲线在第一象限内所有点均有 ∠PA F 1 = 2∠PF 1A .解法6 设点P(x 1 , y 1)是双曲线第一象限的点.∵ A(2c , 0),F 1(- c , 0),连AP ,F 1P ,如图 9-5. 由双曲线的焦半径定义得 |AP| = 2x 1- c ,又设点N 是点F 1关于直线x = x 1的对称点,则有 |PF 1| = |PN|, 且N (2x 1+ c , 0),从而 ∠PF 1N =∠PNF 1.又 |AN| = 2x 1 + c - 2c = 2x 1- c = |AP| , ∠APN =∠PNF 1.由此可得 ∠F 1AP = 2∠PNF 1 , 即 ∠F 1AP = 2∠PNF 1 = 2∠PF 1N ,所以 λ= 2.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立. 例3 已知抛物线 y 2 = 2P x 的焦点弦AB 被焦点分成长度为m 、n 的两段,求证:Pn m 211=+. 证明 设A 、B 在该抛物线的准线上的射影为C 、D ,连AD 交x 轴与E , 如图9-6.由抛物线的焦半径的定义得 |AC| = |AF| = m , |BD| = |BF| = n ,由相似三角形性质知 ||||||||AB AF BD EF =,∴ n m mn EF +=||, 同理 nm mnEH +=||,故 |EF| = |EH|, 即 E 与O 重合.故A 、O 、D 三点共线.同理B 、O 、C 三点共线. ∴ |EF| + |EH| = P =n m mn+2, 故 Pn m 211=+. 图9-6 点评 本题有一个特殊的几何模型,即直角梯形ABCD .由此还可发现许多有用的结论:①∠CFD = 90o ;②∠CAB 的平分线与∠DBA 的平分线交于一点N ,则NA 、NB 为抛物线的切线,且∠ANB= 90o ; ③在准线上任取一点向抛物线引两条切线,则两切线互相垂直; ④若M 为AB 中点,则N M 被抛物线平分; ⑤若A(x 1 , y 1), B(x 2, y 2),则 |AB| =||2121y y P-,当AB ⊥x 轴时, |AB| = 2 P; ⑥以AB 为直径的圆与抛物线的准线相切; ⑦NF ⊥AB; y 1y 2 = - P 2; ….。
圆锥曲线焦半径公式的应用
敖华尔
【期刊名称】《《中学数学研究》》
【年(卷),期】2006(000)012
【摘要】在高考数学中,圆锥曲线占有非常重要的位置,而熟练应用焦半径公式是解决圆锥曲线问题的一种简单快捷的方法.一、圆锥曲线的焦半径公式1.设 M
(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上一点,F1(-c,0)、F2(c,0)是左、右焦点,e 是椭圆的离心率,则(1)|MF1|=a+ex0,|MF2|=a-ex0.设 M
(x0,y0)是椭圆x2/b2+y2/a2=1(a>b>0)上一点,F1(0,c)、F2(0,-c)是上、下焦点,e 是椭圆的离心率,则(2)|MF1
【总页数】3页(P28-30)
【作者】敖华尔
【作者单位】江西新余市一中 330800
【正文语种】中文
【中图分类】O1
【相关文献】
1.圆锥曲线中的焦半径公式的应用 [J], 宁利伟
2.圆锥曲线的焦半径公式及其应用 [J], 刘光红
3.圆锥曲线的焦半径公式及其应用 [J], 郭海先
4.圆锥曲线的焦半径公式及应用 [J], 杨新兰
5.圆锥曲线的焦半径公式及其应用 [J], 郭海先
因版权原因,仅展示原文概要,查看原文内容请购买。
圆锥曲线的焦半径公式圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径。
利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式。
1.椭圆的焦半径公式(1)若P(x 0,y 0)为椭圆22x a +22y b =1(a>b>0)上任意一点,F 1、F 2分别为椭圆的左、右焦点,则1PF =a+e x 0,2PF =a-e x 0.(2) 若P(x 0,y 0)为椭圆22y a +22x b =1(a>b>0)上任意一点,F 2、F 1分别为椭圆的上、下焦点,则1PF =a+e y 0,2PF =a-e y 0.2.双曲线的焦半径公式(1)若P(x 0,y 0)为双曲线22x a -22y b =1(a>0,b>0)上任意一点,F 1、F 2分别为双曲线的左、右焦点,则①当点P 在双曲线的左支上时,1PF =-e x 0-a,2PF = -e x 0+a. ②当点P 在双曲线的右支上时,1PF =e x 0+a,2PF = e x 0-a.(2)若P(x 0,y 0)为双曲线22y a -22x b =1(a>0,b>0)上任意一点, F 2、 F 1分别为双曲线的上、下焦点,则①当点P 在双曲线的下支上时,1PF =-e y 0-a,2PF = -ey 0+a. ②当点P 在双曲线的上支上时,1PF =ey 0+a,2PF = ey 0-a.3.抛物线的焦半径公式(1)若P(x 0,y 0)为抛物线y 2=2px(p>0)上任意一点,则PF = x 0+2p(2) 若P(x 0,y 0)为抛物线y 2=-2px(p>0)上任意一点,则PF = -x 0+2pp (3) 若P(x0,y0)为抛物线x2=2py(p>0)上任意一点,则PF= y0+2p (4)若P(x0,y0)为抛物线x2=-2py(p>0)上任意一点,则PF= -y0+2不能,请说明理由.(答案:点P不存在)。
圆锥曲线的焦半径——角度式一 椭圆的焦半径设P 是椭圆22221x y a b +=(0a b >>)上任意一点,F 为它的一个焦点,则PFO θ∠=,则2cos b PF a c θ=- 上述公式定义PFO θ∠=,P 是椭圆上的点,F 是焦点,O 为原点,主要优点是焦点在左右上下均适用,无需再单独讨论证明:设PF m =,另一个焦点为F ',则PF FF FP ''=-u u u u r u u u u r u u u r两边平方得:2222PF FF FF FP FP '''=-⋅+u u u u r u u u u r u u u u r u u u r u u u r即:222(2)44cos a m c cm m θ-=++得:2cos b PF a c θ=-1 过椭圆22143x y +=的右焦点F 任作一直线交椭圆于A 、B 两点,若AF BF +=AF BF λ,则λ的值为2 (2002全国理)设椭圆22221x y a b+=(0a b >>)的一个焦点F ,过F 作一条直线交椭圆于P 、Q 两点,求证:11PF QF+为定值,并求这个定值结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即2112a AF BF b+=3(2007重庆理)在椭圆22221x y a b+=(0a b >>)上任取三个不同的点1P ,2P ,3P ,使122223321PF P P F P P F P ∠=∠=∠,2F 为右焦点,证明122232111PF P F P F ++为定值,并求此定值结论:若过F 作n 条夹角相等的射线交椭圆于1P ,2P ,L ,n P ,则212111n naPF P F P F b +++=L 4 F 是椭圆2212x y +=的右焦点,由F 引出两条相互垂直的直线a ,b ,直线a 与椭圆交于点A 、C ,直线b 与椭圆交于B 、D ,若1FA r =u u u r ,2FB r =u u u r , 3FC r =u u u r,4FD r =u u u r,则下列结论一定成立的是( )A1234r r r r +++= B1234r r r r +++=C12341111r r r r +++= D12341111r r r r +++=5 F 是椭圆22143x y +=的右焦点,过点F 作一条与坐标轴不垂直的直线交椭圆于A 、B ,线段AB 的中垂线l 交x 轴于点M ,则ABFM的值为6(2010辽宁理)设椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,2AF FB =u u u r u u u r(1) 求椭圆C 的离心率 (2) 如果154AB =,求椭圆C 的方程7(2010全国Ⅱ理)已知椭圆C :22221x y a b+=的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =u u u r u u u r,则k =( )A 1BCD 28 已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,若2BF AF =u u u r u u u r,则椭圆的离心率e 的取值范围是( )A 10,2⎛⎤ ⎥⎝⎦B 0,2⎛ ⎝⎦C 1,12⎡⎫⎪⎢⎣⎭ D 1,13⎛⎫⎪⎝⎭9(2007全国Ⅰ理)已知椭圆22132x y +=的左右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,求四边形ABCD 的面积的最小值10(2005全国卷Ⅱ理)P ,Q ,M ,N 四点都在椭圆2212y x +=上,F 为椭圆在y 轴正半轴上的焦点,已知PF u u u r 与FQ uuu r 共线,MF u u u r 与FN u u ur 共线,且0PF MF ⋅=u u u r u u u r ,求四边形PQMN 面积的最大值和最小值11 已知过椭圆221259x y +=左焦点1F 的弦(非长轴)交椭圆于A ,B 两点,2F 为右焦点,求使2F AB ∆的面积最大时直线AB 的方程二 双曲线的焦半径设P 是椭圆22221x y a b -=(0a >,0b >)上任意一点,F 为它的一个焦点,则PFO θ∠=,则2cos b PF c aθ=±式中“±”记忆规律,同正异负,即当P 与F 位于轴的同侧时取正,否则取负,取PFO θ∠=,无需讨论焦点位置,上式公式均适用1(2009全国Ⅱ理)已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,过F 且斜率为的直线交C 于A ,B 两点,若4AF FB =u u u r u u u r,则C 的离心率为( ) A 65 B 75 C 58 D 952 (2007重庆理)过双曲线224x y -=的右焦点F 作倾斜角为105°的直线交双曲线于P 、Q 两点,则FP FQ ⋅的值为三 抛物线的焦半径已知A 是抛物线C :22y px =(0p >)上任意一点,F 为焦点,AFO θ∠=,则1cos pAF θ=+证明:PN 为准线,于是AF AN =,其中PF p =,cos FM AF θ=⋅ 于是cos AN PF FM P AF θ=-=- 所以cos AF P AF θ=- 故1cos pAF θ=+1 过抛物线22y x =的焦点F 作直线交抛物线于A ,B 两点,若111AF BF-=,则直线l 的倾斜角θ(02πθ<≤)等于( )A 2πB 3πC 4πD 6π2(2008江西)过抛物线22x py =(0p >)的焦点F 作倾斜角为30°的直线与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则AFFB= 3(2008全国理)已知F 为抛物线C :24y x =的焦点,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,设FA FB >,则FA 与FB 的比值等于4(2010重庆理)已知以F 为焦点的抛物线24y x =上的两点A ,B 满足3AF FB =u u u r u u u r,,则弦AB 的中点到准线的距离为5 已知抛物线24y x =,准线与x 轴交于E 点,过点E 的直线(1)y k x =+交抛物线于A ,B 两点,F 是焦点,且满足060AFB ∠=,求AB6 已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AB DE +的最小值为7 抛物线1C :22y px =和圆2C :222()24p p x y -+=,直线l 经过1C 的焦点,与1C 交于A 、D ,与2C 交于B 、C ,则AB CD ⋅u u u r u u u r的值为( )A 24pB 23pC 22p D 2p。
圆锥曲线焦点公式
圆锥曲线焦点公式可用于确定圆锥曲线上任意一点到焦点的距离。
根据圆锥曲
线的类型,焦点公式会有所不同。
对于椭圆、抛物线和双曲线,其焦点公式可分别表示为:
椭圆的焦点公式:c = √(a² - b²)
其中,c表示焦距,a和b分别表示椭圆的长半轴和短半轴。
抛物线的焦点公式:焦点为(x = h + p, y = k),其中(h, k)为抛物线的顶点,p为
焦半径。
双曲线的焦点公式:c = √(a² + b²)
双曲线有两个焦点,分别位于双曲线的主轴上,c表示焦距,a和b分别表示
双曲线的长半轴和短半轴。
这些焦点公式有助于我们确定圆锥曲线上各个点与其对应焦点之间的距离,从
而更好地理解和分析圆锥曲线的性质和特点。
需要注意的是,焦点公式仅适用于标准形式的圆锥曲线,在一些特殊的情况下,可能需要根据具体曲线方程进行推导和计算。
高中数学:焦半径公式及其应用从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方程),分别为椭圆或双曲线的左、右焦点,是抛物线的焦点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.设是椭圆上任意一点,则有从而焦半径而,所以其中为椭圆的离心率.事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足即分子有理化得于是有(1)(2)两式相加得即为椭圆上一点到椭圆左焦点的距离.于是我们得到椭圆的焦半径公式(I):同理有双曲线的焦半径公式(I):当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.抛物线的焦半径公式可以直接由抛物线的定义得到,即例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.正确答案是.解设,则有,即解得又因为,所以有两边同除可解得由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.设与轴正半轴形成的角度为,则有整理得,于是有解得同理可以推得右焦点对应的焦半径公式其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:于是我们得到椭圆的焦半径公式(II):其中为焦半径与轴正半轴所成的角.对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):当在双曲线的左支时,有当在双曲线的右支时,有其中为焦半径与轴正半轴所成的角.抛物线的焦半径公式为:其中为焦半径与轴正半轴所成的角.椭圆的焦半径公式(II)有两个常用的推论:推论1 椭圆的焦点弦长公式:其中为椭圆的焦点弦,的倾斜角为.圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.证明设是过椭圆左焦点的焦点弦,的倾斜角为,不妨设点在轴上方,如图:由焦半径公式(II)知于是这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:其中为双曲线的焦点弦,的倾斜角为.不论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.抛物线的焦点弦长公式更为简单,即其中是抛物线的焦点弦,的倾斜角为.例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别过,,求证:为定值.解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知所以为定值.推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).证明由焦半径公式(I)知于是我们知道与的调和平均数为定值,即这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.几道练习:练习1椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,求的值.练习2椭圆的左右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边形面积的取值范围.答案练习1 .提示设,则,于是于是.练习2 .提示设的倾斜角为,则的倾斜角为,于是四边形的面积练习3备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知设直线:,称为椭圆的左准线,记点到的距离为,则有即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决于的大小.当时为椭圆,当时为抛物线,当时为双曲线.从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围在与上时,对应的定义被称为椭圆与双曲线的第二定义.备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,则椭圆上任意一点的坐标满足:这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为▍▍ ▍▍。
圆锥曲线的焦半径和焦点弦的三角公式
李耘
【期刊名称】《湖南教育(下旬刊)》
【年(卷),期】2010(000)010
【摘要】@@ 圆锥曲线的焦半径与焦点弦问题一直都是解析几何的重要内容,也是高考命题的热点之一.处理这类问题通常采用的是列方程求交点的方法.实际上,圆锥曲线的第二定义即涉及到圆锥曲线的焦半径.沿此思路,本文给出圆锥曲线焦半径长度的一个三角公式,进而给出圆锥曲线的焦点弦弦长的一个三角公式,从而给出圆锥曲线的焦半径与焦点弦这两类问题的一个简单的处理方法.
【总页数】2页(P52-53)
【作者】李耘
【作者单位】新疆自治区乌鲁木齐市第六十一中学
【正文语种】中文
【中图分类】O1
【相关文献】
1.关于抛物线y 2=2 px(p>0)焦点弦长及焦半径长问题的解题策略
2.圆锥曲线三个性质的统一推广——与焦半径、焦点弦长、中心半径有关的定值
3.圆锥曲线中焦点分焦点弦所成的比与焦点弦所在直线倾斜角之间一个重要关系
4.多种角度探究椭圆的焦半径、焦点弦、∠F1PF2的最大值问题
5.例谈焦半径夹角公式和焦点弦性质的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
第8讲 椭圆、双曲线的角版焦半径、焦点弦公式知识与方法1.椭圆()222210x y a b a b +=>>的一个焦点为F ,P 为椭圆上任意一点,设PFO α∠=,则椭圆的焦半径2cos b PF a c α=−,若延长PF 交椭圆于另一点Q ,则椭圆的焦点弦22222cos ab PQ a c α=−. 2.双曲线()222210,0x y a b a b −=>>的一个焦点为F ,P 为双曲线上任意一点,设PFO α∠=,则双曲线的焦半径2cos b PF c aα=±,若直线PF 交双曲线于另一点Q ,则双曲线的焦点弦22222cos ab PQ a c α=−.(焦半径公式中取“+”还是取“-”由P 和F 是否位于y 轴同侧决定,同正异负)典型例题【例1】已知椭圆22:142x y C +=的左焦点为F ,过F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则AB =______;若AF BF >,则:AF BF =______. 【解析】如图,设AFO α∠=,则45α=︒由焦点弦公式,2222222228cos 42cos 453ab AB a c α︒⨯⨯===−−⨯,由焦半径公式,22cos b AF a c α===−,23BF ==,所以:3:1AF BF =.【答案】83,3:1变式1 已知椭圆22:142x y C +=的左焦点为F ,过F 且斜率为2的直线l 交椭圆C 于A 、B 两点,则AB =______【解析】设直线l 的倾斜角为α,则tan 2α=,所以cos α=,由焦点弦公式,22222222220cos 942ab AB a c α⨯⨯===−−⨯⎝⎭. 【答案】209变式2 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AF =,则AB =______.【解析】设AFO α∠=,则由焦半径公式,23cos b AF a c α===−,解得:cos 3α=,由焦点弦公式,2222218cos 5ab AB a c α==−. 【答案】185变式3 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若AF BF AF BF λ+=⋅,则λ=________.【解析】设AFO α∠=,则BFO πα∠=−,由焦半径公式,2cos b AF a c α==−,()2cos b BF a c πα==−−,所以112AF BF +==,从而2AF BF AF BF +=⋅,即2λ=.【反思】一般地,设椭圆()2222:10x y C a b a b+=>>的一个焦点为F ,过F 的直线l 交椭圆C于A 、B 两点,则2112aAF BF b +=.变式4 已知椭圆222:14x y C b+=()02b <<的右焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,若167AB =,则椭圆C 的离心率为________. 【解析】由焦点弦公式,()222222222216cos 744cos 60ab b AB a c b α⨯⨯===−−−⨯︒,解得:22b =,所以e =.变式5 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若2AF 、AB 、2BF 成等差数列,则椭圆C 的离心率为______. 【解析】直线l 的斜率为1l ⇒的倾斜角45α=︒,由焦点弦公式,22222cos 45ab AB a c =−︒,2AF 、AB 、2BF 成等差数列222223AB AF BF AB AF BF AB ⇒=+⇒=++, 如图,由椭圆定义可得224AF BF AB a ++=, 所以34AB a =,故222264cos 45ab a a c =−︒, 化简得:22232b a c =−,所以2222332a c a c −=−,从而224a c =,故椭圆C 的离心率12c e a ==.【答案】12【例2】过双曲线22:142x y C −=的右焦点且斜率为的直线截该双曲线所得的弦长为【解析】k =⇒直线的倾斜角60α=︒,由焦点弦公式,222222222165cos 46cos 60ab AB a c α⨯⨯===−−︒. 【答案】165变式1 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若8AB =,则直线l 的方程为_______.【解析】由题意,2a =,b =,c =)F,设直线AFO α∠=,则由焦点弦公式,22222248cos 23cos ab AB a c αα===−−,解得:25cos 6α=或12,若25cos 6α=,则21sin 6α=,所以21tan 5α=,从而直线l 的斜率tan 5k α==,故直线l 的方程为y x =−; 若21cos 2α=,则21sin 2α=,所以2tan 1α=,从而直线l 的斜率tan 1k α==±,故直线l 的方程为(y x =±;综上所述,直线l 的方程为5y x =或(y x =±【答案】5y x =±−或(y x =± 变式2 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若23AF =,则BF =______.【解析】设AFO α∠=,因为23AF =,所以点A 必在双曲线右支上,由焦半径公式,22cos 3b AF c a α===+,解得:cos α=,所以sin α=,从而tan αC 的渐近线的斜率为2±,2>,所以点B 也在双曲线的右支上,如图, 由图可知,BFO AFO ππα∠=−∠=− 所以()22cos b BF c a πα==−+.【答案】2强化训练1.(★★)已知椭圆22:143x y C +=的左焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,则AB =_______.【解析】由焦点弦公式,22222222316cos 51412ab AB a c α⨯⨯===−⎛⎫−⨯ ⎪⎝⎭. 【答案】1652.(★★)已知椭圆22:193x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AB =,则直线l 的方程为________.【解析】设直线l 的倾斜角为α,由焦点弦公式,2222222333cos 96cos ab AB a c αα⨯⨯===−−⨯,从而cos 2α=,所以45α=︒或135°,从而直线l 的斜率为1±,显然()F ,故直线l的方程为y x =+或y x =−.【答案】y x =+或y x =−−3.(★★★)已知椭圆22:142x y C +=的左、右焦点分别为1F 、2F ,过1F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则2ABF 的面积为________. 【解析】如图,由焦点弦公式,222228cos 3ab AB a c α==−, 所以21218sin 4523ABF SF F AB =⋅⋅︒=.【答案】834.(★★★)已知椭圆()2222:10x y C a b a b+=>>一个焦点为F ,过F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若34AB a =,则椭圆C 的离心率为________.【解析】由题意,直线l 的倾斜角为45°,由焦点弦公式,22222cos 45ab AB a c =−︒,因为34AB a =,所以222264cos 45ab a a c =−︒,结合222b a c =−化简得:222a c =,故离心率2c e a ==.【答案】25.(★★★)已知F 是椭圆22:142x y C +=的左焦点,过F 且不与x 轴垂直的直线交椭圆于A 、B 两点,弦AB 的中垂线交x 轴于点M ,则AB FM=________.【解析】解法1:如图,由对称性,不妨设直线的倾斜角为锐角,A 在x 轴下方, 则22222442cos 2cos AB αα⨯⨯==−−,AF ==,所以21222cos FN AN AF AB AF α=−=−==−,从而cos FN FM α==AB FM=解法2(特值法):考虑AB y ⊥的情形,此时4AB =,M与原点重合,所以FM =AB FM=【答案】6.(★★★)如图,椭圆22:12x C y +=的左焦点为F ,过F 作两条互相垂直的直线分别与椭圆交于A 、B 和D 、E 四点,则四边形ADBE 的面积的取值范围是________.【解析】设AFO α=,不妨假设02πα≤≤,则2EFO πα∠=+,由焦点弦公式,AB =22cos 2DE α=−+ ⎪⎝⎭, 所以四边形ADBE 的面积()()2222114222cos 2sin 2cos 2sin S AB DE αααα=⋅=⨯⨯=−−−− 2222241642sin 2cos sin cos 8sin 2ααααα==−−++,显然20sin 21α≤≤,所以1629S ≤≤,即四边形ADBE 的面积的取值范围是16,29⎡⎤⎢⎥⎣⎦. 【答案】16,29⎡⎤⎢⎥⎣⎦7.(★★★)双曲线22:1C x y −=的右焦点为F ,过F 的直线l 与双曲线C 交于A 、B 两点,若4AB =,则直线l 的方程为________. 【解析】由题意,1a b ==,c =)F,设直线AFO α∠=,则由焦点弦公式,22222224cos 12cos ab AB a c αα===−−,解得:23cos 4α=或14, 若23cos 4α=,则21sin 4α=,所以21tan 3α=,从而直线l的斜率tan k α==, 故直线l的方程为y x =;若21cos 4α=,则23sin 4α=,所以2tan 3α=,从而直线l的斜率tan k α==故直线l的方程为y x =,综上所述,直线l的方程为y x =或3y x =±【答案】y x =−或3y x = 8.(★★★)双曲线22:163x y C −=的左、右焦点分别为1F 、2F ,过1F 的直线l 与双曲线C 交于A 、B 两点,若213AF AF =,则2BF =________.【解析】由题意,21213AF AF AF AF ⎧=⎪⎨−=⎪⎩,所以1AF =1AFO α∠=,则21cos b AF c a α==+,所以=,解得:cos α=,从而sin α==sin tan cos ααα==C的渐近线斜率为,因为<,所以点B 也在左支上,且1BFO πα∠=−, 故()22cos b BF c aπα===−+【答案】39.(★★★)双曲线22:13y C x −=的左焦点为F ,点P 在双曲线C 的右支上,且5PF =,则PFO 的面积为________.【解析】解法1:由题意,1a =,b =2c =,设PFO α∠=,由焦半径公式,23cos 2cos 1b PFc a αα==−−,又5PF =,所以352cos 1α=−,解得:4cos 5α=,所以3sin 5α=,如图,显然113sin 523225PFOSPF OF α=⋅⋅=⨯⨯⨯=. 解法2:由题意,1a =,2c =,离心率2e =,设()00,P x y ,由焦半径公式,0125PF x =+=,又5PF =,所以0125x +=,解得:02x =或3−,因为P 在右支上,所以02x =, 代入双曲线方程可求得03y =±,所以01123322PFOSOF y =⋅=⨯⨯±=. 解法3:如图,设双曲线C 的右焦点为1F ,由双曲线定义,12PF PF −=,又5PF =,所以13PF =, 易求得14FF =,所以22211PF FF PF +=,故11PF FF ⊥, 所以1111143622PFF SFF PF =⋅=⨯⨯=, 显然O 是1FF 的中点,所以1132PFOPFF SS ==.【答案】3。
焦半径公式的三角形式及其应用重庆清华中学张忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新, 故值得我们进一步总结与研究。
焦半径公式的代数形式:设F I,F2是曲线的左、右焦点,点P(X o,y。
)在曲线上,记r1PF1、r2PF2为左、右焦半径。
则在椭圆中:r i a ex o, r2 a ex o ;在双曲2 p线中:r1ex0a, r2ex0a ;在抛物线y 2px(p 0)中:r x0专。
若焦点在y轴上时,则把相应的X。
改为y o即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为贝U (1)|PF i| = a + ccos 0; (2)|PF 2| = a —ccos 0.证明:•••椭圆的离心角为0,由椭圆参数方程知点P的横坐标为acos0,依焦半径的代数形式知:|PF i| = a+ex p= a + ea • cos 0= a + c • cos 0 ,|PF 2| = a—ex p= a —c • cos 0.例1. F i、F2是椭圆+ y2= 1的左右焦点,点P在椭圆上运动,则|PF1| • |PF2|的最大值是_______ ,最小值是__________ .(1996年第七届“希望杯”赛)解:设椭圆的离心角为0,又知a= 2, c2= 3,由定理1得2 2 2 2|PF 1|c • |PF 2| = a —c cos 0 = 4 —3cos 0•/0< cos 0W1 故知|PF1|c • |PF 2| max= 4—3 • 0= 4|PF1| • |PF2| min= 4 —3 • 1= 1例2.椭圆的左右焦点为F1、F2,试问此椭圆的离心率e在什么值范围内,椭圆上恒存在点P,使得PF i ± PR。
解:2 2 2 2 2 2设椭圆方程为b x + a y = a b (a > b> 0),离心角为B,依题设、定理1及勾股定理得(2 c) 2= (a —ccos 0) 2+ (a + ccos 0) 2化简得cos20 =2O w cos20<1 , ••• 0W2<1结合0 v e v 1PFeFH 1 ecos ep 1 ecos,这里p 为焦准距,在椭圆和双曲线中,b 2W e v 1为所求。
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。
圆锥曲线的焦半径一一角度式椭圆的焦半径2设P 是椭圆X 2 a2-yr 1 ( a b 0)上任意一点,F 为它的一个焦点,贝U bPFO,则IPFb 2 a ccos上述公式定义 PFO, P 是椭圆上的点,F 是焦点,0为原点,主要优UUml ULIJU ULIn 证明:设I PF l m ,另一个焦点为F ,则PFFF FP UJLuI 2 UULUI 2 UUllJ UUU UUU 2两边平方得:PF FF 2FF FP FP2 2 2即:(2 a m ) 4c 4cm CoS m得:PFa c cosAF BFl ,贝U 的值为 _______2 22 (2002全国理)设椭圆x 2占1 (a b 0a b2ι过椭圆x ~4 1的右焦点F 任作一直线交椭圆于 A 、B 两点,若AFBF线交椭圆于P Q 两点,求证: 1 PF 1 QF为定值,并求这个定值 结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即 1_ _1_ 2aAF BF b 2的一个焦点F ,过F 作一条直 无需再单独讨论2 3(2007重庆理)在椭圆笃a2y21( a b 0)上任取三个不同的点R , P 2, P 5 , b2 26( 2010辽宁理)设椭圆C :笃占1( aa bIUur UUn直线与椭圆C 相交于A , B 两点,直线I 的倾斜角为60°, AF 2FB使 PF 2 F 2 P 2F 2Fo 〉 并求此定值 F3 F 2pl,F 2为右焦点,证明1 IFiF^1 F 2F 21 P 3F 2为定值,结论:若过 F 作n 条夹角相等的射线交椭圆于P ,P 2,L ,F n ,则 PFP 2F1P n Fna b 24 F 是椭圆 1的右焦点,由F 引出两条相互垂直的直线 直线a 与椭圆交于点 直线b 与椭圆交于UUrUUrIUIFA 「1 FB 「2 , FCa ,b , D ,若 IUU FD「1则下列结论一定成立的是(「14.22 F 是椭圆—4A 、B ,线段AB 的中垂线I 交X 轴于点M ,则AB FM的值为b 0)的左焦点为F ,过点F 的(1)求椭圆C的离心率15(2)如果IAB 寸,求椭圆C的方程2 7 (2010全国U理)已知椭圆C :笃a b23 1的离心率为¥ ,过右焦点F且斜UJU UuIB两点,若AF 3FB ,则k ()A 0,1B θA222 29 (2007全国I理)已知椭圆——1的左右焦点分别为F1 , F2 ,过R的直线3 2交椭圆于B , D两点,过F2的直线交椭圆于A , C两点,且AC BD ,求四边形ABCD的面积的最小值8已知椭圆(a b 0)的右焦点为F ,过点F的直线与椭圆C相交于A,B两点,UJU若BFAF ,则椭圆的离心率e的取值范围是()10 (2005全国卷U理)P ,Q , M , N四点都在椭圆x2F为椭圆在y轴正半轴上的焦点,已知UULr UUU UuLr UUlrPF与FQ共线,MF与FN共线,且PFUUUUJUrMF 0,率为k ( k 0) 的直线与C相交于A ,C A求四边形PQMN 面积的最大值和最小值2 211已知过椭圆— L 1左焦点F l 的弦(非长轴)交椭圆于 A , B 两点,F 2为259右焦点,求使 F 2AB 的面积最大时直线AB 的方程双曲线的焦半径式中“ ”记忆规律,同正异负,即当P 与F 位于轴的同侧时取正,否则取 负,取 PFO,无需讨论焦点位置,上式公式均适用2设P 是椭圆笃ab 21 ( a 0, b 0)上任意一点, F 为它的一个焦点,则 PFO,则PFb 2 CCoS a1 ( a 0,b 0)的右焦点为F ,过F 且斜率为3的直线交C 于A ,B 两点,若AFIUU4FB ,则C 的离心率为(2 (2007重庆理)过双曲线x 2 y 2 4的右焦点F 作倾斜角为105°的直线交双曲线于P 、Q 两点,则IFPFQ 的值为 ________________抛物线的焦半径已知A 是抛物线C : y 2 2px ( P 0)上任意一点,F 为焦点, AFo 贝U AF 一P一1 COS证明:PN 为准线,于是 AF AN ,其中PF P, FM AF cos 于是 AN PF FM P AF cos 所以 AF P AF cos21 11过抛物线y 2x 的焦点F 作直线交抛物线于A , B 两点,若TA^ — 1 ,则直线4的倾斜角(0 -)等于( ) AB— C_ D23462 (2008江西)过抛物线χ2 2py ( P 0)的焦点F 作倾斜角为30°的直线与 AF抛物线分别交于A ,B 两点(点A 在y 轴左侧),则 Lr _______________IFB 3 (2008全国理)已知F 为抛物线C : y 2 4x 的焦点,过F 且斜率为1的直线 与抛物线C 交于A,B 两点,设IFA FB ,则FA 与FB 的比值等于 _________________7 抛物线 C i : y 2 2px 和圆 C 2 : (X -)2 y 22IUU IUU交于A 、D ,与C 2交于B 、C ,则AB CD 的值为() 2P-D故AFP 1 cos55 (2010重庆理)已知以F为焦点的抛物线y2 4x上的两点A , B满足IuIr UurAF 3FB ,,则弦AB的中点到准线的距离为____________5已知抛物线y* 6 4x ,准线与X轴交于E点,过点E的直线y k(x 1)交抛物线于A , B两点,F是焦点,且满足AFB 600,求AB6已知F为抛物线C : y2 4x的焦点,过F作两条互相垂直的直线I1,I2,直线I i与C交于A,B两点,直线∣2与C交于D,E两点,贝U AB2y T 1的右焦点,过点F作一条与坐标轴不垂直的直线交椭圆于2 21 (2009全国U理)已知双曲线 C :务占a b6DE的最小值为2—,直线I经过C i的焦点,与C i 4。
-> 7圆锥曲线的焦半径一角度式
一椭圆的焦半径
设P是椭圆务+条“ S心。
)上任意-点,F为它的-个焦点,则
■ 2
乙PFO = e,则 |PF| = ------
a-ccQsO
上述公式定义ZPFO = &, P是椭圆上的点,F是焦点,0为原点,主要优点是焦点在左右上下均适用,无需再单独讨论
证明:设PF另一个焦点为F,则PF = FF-FP 两边平方得:戸戶2=丽'-2両•帀+帀2
即:(2a — ///)" = 4c" + 4cni cos & + nr
得:叶—
a-ccos0
1过椭圆手+宁】的右焦点F任作-直线交椭圆于A、B衲点,若的+阿=
A AF BE .则>1的值为
2(2002全国理)设椭圆壬+ ^1 (心心0)的-个焦点八过F作-条直
线交椭圆于P、。
两点,求证:网+肉为定值,并求这个定值结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即尙+侖=寻
3< 2007 M庆理)在椭圆4 + 21 = 1 (a>h>0)上任取三个不同的点时,P
「a~ Ir ■
使= = 笃牛耳为右焦点,证明丽+丽+两为定值, 并求此定值
结论^若过F作"条夹角相等的射线交椭圆于L …,吒,则
na
4 F是椭圆+ + r=l的右焦点,山F引出两条相互垂直的直线b,直线"与乙
椭圆交于点A、C ,直线b与椭圆交于3、D ,若FA =/]f
FC
FD=i则下列结论一定成立的是(
B zj + 坊 +Zj+r, =4血
D - + - + - + - = 472 片「2 「3 「4
F是椭圆手+牛]的右焦点,过点F作-条与坐标轴不垂直的直线交椭圆于八B,线段A〃的中垂细如轴于点M,则緡的值为
6伽。
辽宇理)设椭圆C: 5 +壬"5">0)的左焦点为F,过点F的
直线与椭圆C相交于A, 3两点,直线/的倾斜角为60° ,乔=2丽
<1)求椭圆C 的离心率
(2)如果|"=罟,求椭圆C 的方程
7 <2010全国"理)已知椭圆G 召+石"的离心率为孚过右焦点F 且斜 率为£ («>0)的直线与C 相交于A, B 两点,若AF = 3FB,则《=(
B 72
8已知椭圆C : ■ + *" S 心0)的右焦点为八过点F 的直线与椭圆C
13’ )
已知椭圆各+与=1的左右焦点分别为斤,耳,过斤的直线 交椭圆于D 两点,过人的直线交椭圆于A, C 两点,且AC 丄求四边
■ 形4£3的面积的最小值
2
10 (2005全国卷][理)P, 2,M, N 四点都在椭圆%-+^ = 1±, F 为椭圆
2 在y 轴正半轴上的焦点,S 知丽与FS 共线,MF^FN 共线,且丽•丽=0,
相交于A, B 两点, 若BF =2AF ,则椭圆的离心率f 的取值范ffl 是(
9 (2007全国I 理)
求四边形PQMN 面积的最大值和最小值
11已知过椭圆余+壬=1左焦点片的弦(非长轴)交椭圆于A ,B 两点,场为 右焦点,求使AF/B 的面积最大时直线A8的方程
二双曲线的焦半径
设P 是椭圆》卡“ so,心0)上任意-点,F 为它的-个焦点,
式中“土”记忆规律,同正异负,即当位于轴的同侧时取正,否则取 负,取ZPFO = &,无需讨论焦点位置,上式公式均适用
2 2
1 (2009全国II 理)已知双曲线C :亠-厶> =1 («>0, h>0)的右焦点为F,
a- b-
过F 且斜率为^/5的直线交C 于A.B 两点,若乔=4而,则C 的离心率为(
2 (2007重庆理)过双曲线%--/= 4的右•焦点F 作倾斜角为105°的直线交双 曲线于P 、e 两点,则\FP[\FQ\的值为
贝lJZPFO = e,贝Ij PF =——
ccQsO±a
三抛物线的焦半径
已知A 是抛物线C : r =2/zr (卩>0)上任意一点,F 为焦点,ZAFO = e.
所以 AF =P-AFcos3
】过抛物线宀2\的焦点F 作直线交抛物线于B 两点,若两-网 则直细的倾斜角
八。
®守)等于(
2 (2008江西)过抛物线x- = 2py (/7>0)的焦点F 作倾斜角为30°的直线与
3 (2008全国理)己知F 为抛物线C : = 4%的焦点,过尸且斜率为1的直线 与抛物线C 交于A , B 两点,设|fX|>|ra|,贝屮Xl 与|ra|的比值等于
4 (2010重庆理)已知以F 为焦点的抛物线y-=4x 上的两点A, B 满足 乔=3用,,则弦AB 的中点到准线的距离为
则AF =
1+COS&
证明:PN 为准线,于是= 其中PF = [八
FM = AF • cos 切 于是A7V = PF -FM =P-AF COS0
抛物线分别交于A, B 两点(点A 在y 轴左侧),则 AF
5已知抛物线r =4%,准线与戈轴交于f 点,过点£的直线y = Mx + l )交抛物线 于A, B 两点,F 是焦点,且满足ZAra = 60°,求
6已知F 为抛物线C : r=4x 的焦点,过F 作两条互相垂直的直线厶,1"直线 厶与C 交于A, B 两点,直线4与C 交于D, f 两点,则AB + DE 的最小值为
r = 2px 和圆C2:(戈-上)2 + r=£l,直线/经过q 的焦点,与q
2
D /?
7抛物线q : 交于A 、D. 与C2交于B 、C,则丽•阪的值为(。