昆山市城北中学2020-2021学年第一学期九年级上数学质量调研月考试卷
- 格式:docx
- 大小:82.05 KB
- 文档页数:6
一、选择题:(每题3分,共30分)1.若反比例函数y x=-1的图象经过点A (2,m ),则m 的值是( ).A .-2B .2C .-12D .212.二次函数3)1(2+--=x y 图象的顶点坐标是( ) A .(-1,3) B .(1,3) C .(-1,-3)D .(1,-3)3.如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上, 且不与A B ,重合,则BPC ∠等于( ) A .30°B .45°C.60°D .90°4.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( ) A. 1 B. 2C. 3D. 45.⊙O 的弦AB 的长为8cm ,弦AB 的弦心距为3cm ,则⊙O 的半径为( )A .4cm B. 5cmC. 8cmD. 10cm6.已知),(),,(222111y x P y x P 是反比例函数2y x=的图象上的两点,且210x x <<,则21,y y 的大小关系是( )A.21y y φB.21y y πC.21y y =D.无法判断7.四条线段d c b a ,,,满足dcba =,则以下比例式不成立的是( ) A .db ca = B.cda b =C.ab a =+ D.dc dc b a b a -+=-+ 8.已知c bx ax y ++=2的图象如图,那么关于x 的方程2ax 况( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 以上答案均不对 9.下列说法:① 三角形的外心到三角形三边的距离相等。
② 在直径为20的圆中,长为10的弦所对圆心角是030 ③ 垂直平分弦的直线必经过圆心 ④ 平分弦的直径垂直于弦 ⑤ 等弧所对的圆周角相等其中正确的个数有 ( ) A .2个 B. 3个 C. 4个 10. 如图:等腰直角三角形ABC 位于第一象限AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k ≤≤C .14k ≤≤D .14k <≤ 二、填空题:(每题4分,共24分)11.把二次函数x x y 422-=改写成k m x a y ++=2)(的形式是__________, 其顶点坐标是__________。
CBA2020—2021学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 点P (2,1)关于原点对称点的坐标是A .(2,1)B .(2,1)C .(1,2)D .(1,2)2.抛物线2yx 的对称轴是A .直线1xB .直线1xC .y 轴D .x 轴3.如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,AD CD ,如果∠CAB =40°,那么∠CAD的度数为 A .25° B .50° C .40°D .80°7.如果左图是一个正方体的展开图,那么该正方体是A B C DxyOABxyOCA8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25分钟 B .4.00分钟 C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分) 9.已知∠A 为锐角,1sin 2A =,那么∠A = °. 10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B11.写出一个图象位于第一,三象限的反比例函数的表达式 . 12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 . 15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点, 那么a 的取值范围是 .16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大? 答: .xyO 三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB , 又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP图1图 2OPNMC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).xyO ABC(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径'AA 的长度为 (结果保留π); ② 点'B 的坐标为 .21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB =求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-). (1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个 公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,AD DC =,连接AC 和AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是.(2)下表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为.(3)如下图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yO x(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为,当x>5时,y与x之间的函数表达式为.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为min.26.在平面直角坐标系xOy 中,抛物线22y x mx n 经过点A (0,2),B (3,4).(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”.(1)当⊙O 的半径为2时,① 在点P 1(2,0),P 2(1,1),P 3(0,3)中,⊙O 的“关联点”是 ; ② 如果点P 在射线3yx (x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围.(2)⊙C 的圆心C 在x 轴上,半径为4,直线22yx与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.xyO第(1)问图xyO第(2)问图2020—2021学年度第一学期期末调研试卷九年级数学答案及评分参考三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1 0112cos454-⎛⎫+-︒+ ⎪⎝⎭124=+…………………………………………………………………………………………4分5.=……………………………………………………………………………………………………………5分18.(本小题满分5分)解:(1)配方正确;……………………………………………………………………………………………3分(2)图象正确.……………………………………………………………………………………………5分19.(本小题满分5分)解:(1)补图正确;……………………………………………………………………………………………3分(2)依据正确.……………………………………………………………………………………………5分20.(本小题满分5分)解:(1)画图正确;…………………………………………………………………………………………3分(2)①52;……………………………………………………………………………………………4分②(-1,3). ………………………………………………………………………………………5分21.(本小题满分5分) 解:过点D 作DE ⊥BC 于E . ……………………………………………………………………………1分∵ 在Rt △ABD 中,∠BAD = 90°,2ABAD,∴ 由勾股定理得B D =2. ………………………………………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴DE =1, (4)分又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°, ∴ 由勾股定理得2CD.…………………………………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <……………………………………………………………………………………………2分(2)∵ k 为正整数,∴ k =1,2.………………………………………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-±不是整数;………………………………4分当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………………………5分23.(本小题满分6分)解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴24a -=-,……………………………………………………………………………………1分∴2.a =……………………………………………………………………………………………2分又∵ 双曲线ky x=(0k ≠)过点A (1,2-), ∴21k-=,…………………………………………………………………………………………3分 ∴2.k =-………………………………………………………………………………………4分(2)b <-4,b >4. ………………………………………………………………………………………6分24.(本小题满分6分)(1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线, ∴ AB ⊥BM .∵ CD ∥BM , ∴ AB ⊥CD .∴ AD AC .…………………………………………1分∵ AD DC .∴AD AC DC .………………………………………………………………………………2分∴ AD =AC =DC . ∴ △A C D 是等边三角形. …………………………………………………………3分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径,∴ ∠ADB =90°. ∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°. 在Rt △BDE 中,DE =2,可得BE =4,BD = ………………………………………………………………………………………………………4分在Rt △ADB 中,可得AB =∴OB = . ……………………………………………………………………………………5分在R t △O B E 中,由勾股定理得O E =. ……………………………………………………6分25.(本小题满分6分) 解:(1)x≥0;…………………………………………………………………………………………………1分 (2)20;……………………………………………………………………………………………………2分 (3)略;……………………………………………………………………………………………………3分(4)915y x ,300yx;……………………………………………………………………………5分 A E MA BE M(5)25.3……………………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………………………1分 解得4,2.m n =⎧⎨=⎩...................................................................................................2分 ∴ 抛物线的表达式为y =-2x 2+4x +2. (3)分 ∴ 抛物线的对称轴为x =1. ………………………………………………………………………4分 (2)43≤t<4. ……………………………………………………………………………………………6分27.(本小题满分7分) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD , ∴ ∠ACB =∠AEB = 90°, 又∵ ∠1=∠2,∴ ∠CAE =∠CBD .………………………………3分(2)① 补全图形如图2. ………………………………………4分②2EFCEBE (5)分证明:在AE 上截取AM ,使AM =BE . 又∵ AC =CB ,∠CAE =∠CBD , ∴ △ACM ≌△BCE .∴ CM =CE ,∠ACM =∠BCE . 又∵ ∠ACB =∠ACM +∠MCB =90°, ∴ ∠MCE =∠BCE +∠MCB =90°. ∴ 2.MECE又∵ 射线AE 绕点A 顺时针旋转45°后得到AF ,且∠AEF =90°,图2图1∴EF=AE=AM+ME=BE.………………………………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1). ……………………………………………………………………………3分设:射线3y x(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m……………………………………………………………………………………5分(2)23≤n<3,1<n≤ 3.…………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2020-2021学年九年级(上)月考数学试卷一、选择题(本大题共12小题,共36.0分)1.下列方程一定是一元二次方程的是()A. 3x2+2x−1=0 B. 5x2−6y−3=0 C. ax2+bx+c=0 D. 3x2−2x−1=02.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A. 众数是80B. 方差是25C. 平均数是80D. 中位数是753.菱形的两条对角线的分别为60cm和80cm,那么边长是()A. 60cmB. 50cmC. 40cmD. 80cm4.如图,在矩形ABCD中,点A的坐标是(−1,0),点C的坐标是(2,4),则BD的长是()A. 6B. 5C. 3√3D. 4√25.如图,在▱ABCD中,AD=12,AB=8,AE平分∠BAD,交BC边于点E,则CE的长为()A. 8B. 6C. 4D. 26.如图,在正方形ABCD中,点F是AB上一点,CF与BD交于点E.若∠BCF=25°,则∠AED的度数为()A. 60°B. 65°C. 70°D. 75°7.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A. B.C. D.8.若顺次连接对角线互相垂直的四边形ABCD四边的中点,得到的图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形9.若m是方程x2−2x−1=0的根,则1+m−12m2的值为()A. 12B. 1C. 32D. 210.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A. 255分B. 84分C. 84.5分D. 86分11.已知A(x1,y1),B(x2,y2)是二次函数图象上y=ax2−2ax+a−c(a≠0)的两点,若x1≠x2且y1=y2,则当自变量x的值取x1+x2时,函数值为()A. −cB. cC. −a+cD. a−c12.已知二次函数y=−x2+mx+m(m为常数),当−2≤x≤4时,y的最大值是15,则m的值是()A. −19或315B. 6或315或−10 C. −19或6 D. 6或315或−19二、填空题(本大题共6小题,共18.0分)13.已知函数关系式:y=√x−1,则自变量x的取值范围是______.14.已知x1,x2是方程x2+x−1=0的两根,则x2x1+x1x2=______.15.将直线y=2x+1平移后经过点(5,1),则平移后的直线解析式为______.16.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为______.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为______.18.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(−12,0),对称轴为直线x=1,下列5个结论:①abc<0;②a−2b+4c=0;③2a+b>0;④2c−3b<0;⑤a+b≤m(am+b).其中正确的结论为______.(注:只填写正确结论的序号)三、解答题(本大题共8小题,共66.0分)19.已知一个二次函数的图象经过点A(−1,0)、B(3,0)和C(0,−3)三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.20.解一元二次方程:(1)x2+4x+1=0(配方法);(2)用公式法解方程:2x2+3x−1=0.21.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是______,中位数是______.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?22.如图,矩形ABCD,AB=6,BC=4,过对角线BD中点O的直线分别交AB、CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当四边形DEBF是菱形时,求菱形的边长.23.庆阳市是传统的中药材生产区,拥有丰富的中药材资源,素有“天然药库”“中药之乡”的美称.优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种.某种植户2016年投资20万元种植中药材,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植中药材.24.如图,在平面直角坐标系xOy中,直线y=−43x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=12S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.25.某公司生产一种健身产品在市场上很受欢迎,该公司每年的年产量为6万件,每年可在国内和国外两个市场全部销售,若在国内销售,平均每件产品的利润y1(元)与国内销售量x(万件)的函数关系式为y1={80(0≤x≤1)−x+81(1<x≤6)若在国外销售,平均每件产品的利润为71元.(1)求该公司每年的国内和国外销售的总利润w(万元)与国内销售量x(万件)的函数关系式,并指出x的取值范围.(2)该公司每年的国内国外销售量各为多少时,可使公司每年的总利润最大?最大值是多少?(3)该公司计划在国外销售不低于5万件,并从国内销售的每件产品中捐出2m(5≤m≤10)元给希望工程,从国外销售的每件产品中捐出m元给希望工程,若这时国内国外销售的最大总利润为393万元,求m的值.26.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是______三角形;(2)若抛物线y=−x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=−x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.(4)若抛物线y=−x2+4mx−8m+4与直线y=3交点的横坐标均为整数,是否存在整数m的值使这条抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长?若存在,直接写出m的值;若不存在,说明理由.答案和解析1.【答案】D【解析】解:A、含有分式,3x2+2x−1=0不是一元二次方程,故此选项不合题意;B、含有2个未知数,5x2−6y−3=0不是一元二次方程,故此选项不合题意;C、当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不合题意;D、3x2−2x−1=0是一元二次方程,故此选项符合题意;故选:D.利用与一元二次方程定义进行分析即可.此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】D【解析】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:16×[3×(80−80)2+(90−80)2+2×(80−75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.根据众数,方差、平均数,中位数的概念逐项分析即可.本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.【答案】B【解析】解:∵菱形的两条对角线长分别为60cm和80cm,∴该菱形的边长为√302+402=50,故选:B.由菱形的性质以及两条对角线长可求出其边长.此题考查了菱形的性质与勾股定理.此题比较简单,注意掌握菱形的面积的求解方法是解此题的关键.4.【答案】B 【解析】解:∵点A的坐标是(−1,0),点C的坐标是(2,4),∴线段AC=√(4−0)2+(2+1)2=5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.利用矩形的性质求得线段AC的长即可求得BD的长.本题考查了矩形的性质,能够求得对角线AC的长是解答本题的关键,难度不大.5.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD//BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8,∴CE=BC−BE=4.故选:C.由平行四边形的性质得出BC=AD=12,AD//BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.6.【答案】C【解析】解:∵四边形ABCD是正方形,∴∠ABC=90°,DC=DA,∠ADE=∠CDE=45°.又DE=DE,∴△ADE≌△CDE(SAS).∴∠DAE=∠DCE=90°−25°=65°.∴∠AED=180°−45°−65°=70°.故选:C.先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°−25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.7.【答案】D【解析】解:由二次函数图象,得出a<0,−b2a<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.【答案】B【解析】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD(三角形的中位线平行于第三边),∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:B.根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查了中点四边形.矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.9.【答案】A【解析】解:∵m是方程x2−2x−1=0的根,∴m2−2m−1=0,∴m2−2m=1,∴1+m−12m2=1−12(m2−2m)=1−12=12,故选:A.根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.10.【答案】D【解析】【分析】根据题意列出算式,计算即可得到结果.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.【解答】解:根据题意得:85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分),故选:D.11.【答案】D【解析】【分析】本题考查了二次函数图象与系数的关系.先求出抛物线的对称轴为直线x=1,则可判断A(x1,y1)和B(x2,y2)关于直线x=1对称,所以x2−1=1−x1,即x1+x2=2,然后计算自变量为2对应的函数值即可.【解答】解:抛物线的对称轴为直线x=−−2a2a=1,∵x1≠x2且y1=y2,∴A(x1,y1)和B(x2,y2)关于直线x=1对称,∴x2−1=1−x1,∴x1+x2=2,当x=2时,y=ax2−2ax+a−c=4a−4a+a−c=a−c.故选:D.12.【答案】C【解析】解:∵二次函数y=−x2+mx+m=−(x−m2)2+m24+m,∴抛物线的对称轴为x=m2,∴当m2<−2时,即m<−4,∵当−2≤x≤4时,y的最大值是15,∴当x=−2时,−(−2)2−2m+m=15,得m=−19;当−2≤m2≤4时,即−4≤m≤8时,∵当−2≤x≤4时,y的最大值是15,∴当x=m2时,m24+m=15,得m1=−10(舍去),m2=6;当m2>4时,即m>8,∵当−2≤x≤4时,y的最大值是15,∴当x=4时,−42+4m+m=15,得m=315(舍去);由上可得,m的值是−19或6;故选:C.根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值,从而可以解答本题.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.13.【答案】x≥1【解析】解:根据题意得,x−1≥0,解得x≥1.故答案为:x≥1.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.【答案】−3【解析】解:根据题意得x1+x2=−1,x1x2=−1,所以x2x1+x1x2=x22+x12x1x2=(x1+x2)2−2x2x1x1x2=1+2−1=−3.故答案为−3.根据根与系数的关系得到x1+x2=−1,x1x2=−1,然后利用整体代入的方法计算代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.15.【答案】y=2x−9【解析】解:设平移后的解析式为:y=2x+b,∵将直线y=2x+1平移后经过点(5,1),∴1=10+b,解得:b=−9,故平移后的直线解析式为:y=2x−9.故答案为:y=2x−9.直接利用一次函数平移的性质假设出解析式进而得出答案.此题主要考查了一次函数图象与几何变换,正确假设出解析式是解题关键.16.【答案】x(x−1)=1056【解析】解:∵全班有x名同学,∴每名同学要送出(x−1)张;又∵是互送照片,∴总共送的张数应该是x(x−1)=1056.故答案为:x(x−1)=1056.如果全班有x名同学,那么每名同学要送出(x−1)张,共有x名学生,那么总共送的张数应该是x(x−1)张,即可列出方程.本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.17.【答案】√262【解析】解:根据勾股定理,AB=√12+52=√26,BC=√22+22=2√2,AC=√32+33=3√2,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=12AB=12×√26=√262.故答案为:√262.根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.18.【答案】②⑤【解析】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(−12,0)代入函数表达式得:a−2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=−b2a=1,即b=−2a,故2a+b=0,故③错误,不符合题意;④由②③得:a−2b+4c=0,b=−2a,则c=−5a4,故2c−3b=7a2>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.19.【答案】解:(1)设二次函数解析式为y=a(x+1)(x−3),∵抛物线过点C(0,−3),∴−3=a(0+1)(0−3),解得a=1,∴y=(x+1)(x−3),∴y二次函数的解析式=x2−2x−3.(2)由y=x2−2x−3=(x−1)2−4,∴对称轴是直线x=1,顶点坐标是(1,−4).【解析】(1)根据A与B的坐标设出抛物线的解析式,把C坐标代入确定出即可;(2)把解析式化成顶点式即可求得.此题考查了待定系数法求二次函数解析式,二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.20.【答案】解:(1)∵x2+4x+1=0,∴x2+4x+4=3,∴(x+2)2=3,∴x+2=±√3,∴x1=−2+√3,x2=−2−√3;(2)∵a=2,b=3,c=−1,∴△=32−4×2×(−1)=17>0,则x=−3±√174.∴x1=−3+√174,x2=−3−√174.【解析】(1)利用配方法求解可得;(2)利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】7环7环【解析】解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,故答案为:7环,7环.(2)6+7×5+8×2+9×210=7.5环,答:这10名学生的平均成绩为7.5环.(3)500×210=100人,答:全年级500名学生中有100名是优秀射手.(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.(2)根据平均数的计算方法进行计算即可,(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.考查平均数、众数、中位数的意义及求法,理解样本估计总体的统计方法.22.【答案】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6−x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6−x)2,解得:x=133,∴菱形的边长为133.【解析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出DF的长即可求得菱形的边长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.23.【答案】解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=−3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).【解析】(1)设这两年该该种植户每年投资的年平均增长率为x.根据题意2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元.根据题意得方程求解;(2)用种植户每年投资的增长率即可预测2019年该种植户投资额.主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.24.【答案】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=−43x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB=√OA2+OB2=5.∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,−6).(3)∵S△PAB=12S△OCD,∴S△PAB=12×12×6×8=12.∵点Py轴上,S△PAB=12,∴12BP⋅OA=12,即12×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,−4).【解析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB= x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,−6).(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.本题主要考查的是一次函数的综合应用,解答本题主要应用了翻折的性质、勾股定理、待定系数法求函数解析式、三角形的面积公式,依据勾股定理列出关于x的方程是解题的关键.25.【答案】解:(1)w=y1⋅x+71(6−x)={80x +426−71x(0≤x ≤1)−x 2+81x +426−71x(1<x ≤6) ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6) ∴w ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6)(2)由(1)知,当x =1时,9x +426的最大值为435;当1<x ≤6时,−x 2+10x +426的最大值为x =5时的值,即451,451>435∴当该公司每年的国内销售量为5万件国外销售量为1万件时,可使公司每年的总利润最大,最大值是451万元.(3)∵该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 ∴该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 显然当10≥m ≥9时,w 的值小于393,当5≤m <9时,9−m >0,当x =1时,令w =(9−m)×1+426−6m =393 解得m =6,当x =0时,令w =426−6m =393,解得m =5.5 经验证,发现当5.5≤m ≤6时符合题意,其他值都不符合. ∴m 的值为5.5≤m ≤6.【解析】(1)由利润等于每件的利润乘以件数,代入分段函数解析式,化简可得解; (2)结合(1)分别计算分段利润函数的最大值,最后得出最大值即可; (3)该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 则该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 按照x 值的范围代入,结合最大利润为393万元,可分析求得.本题考查了二次函数在成本利润问题中的应用,前两问相对比较简单,第三问由于含有两个变量,分析难度较大,总体来说,本题中等难度略大.26.【答案】等腰【解析】解:(1)如图;根据抛物线的对称性,抛物线的顶点A 必在O 、B 的垂直平分线上,所以OA =AB ,即:“抛物线三角形”必为等腰三角形. 故答案为:等腰.(2)当抛物线y =−x 2+bx(b >0)的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点(b 2,b 24),满足b2=b 24(b >0).则b =2.(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当OA =OB 时,平行四边形ABCD 是矩形, 又∵AO =AB , ∴△OAB 为等边三角形. ∴∠AOB =60°, 作AE ⊥OB ,垂足为E , ∴AE =OEtan∠AOB =√3OE . ∴b′24=√3×b′2(b >0).∴b′=2√3.∴A(√3,3),B(2√3,0). ∴C(−√3,−3),D(−2√3,0).设过点O 、C 、D 的抛物线为y =mx 2+nx ,则 {12m −2√3n =03m −√3n =0, 解得{m =1n =2√3,故所求抛物线的表达式为y =x 2+2√3x. (4)由−x 2+4mx −8m +4=3,x =4m±√16m2−4(8m−1)2=2m ±√4m 2−8m +1,当x 为整数时,须4m 2−8m +1为完全平方数,设4m 2−8m +1=n 2(n 是整数)整理得: (2m −2)2−n 2=3,即(2m −2+n)(2m −2−n)=3两个整数的积为3,∴{2n −2+n =12m −2−n =3或{2m −2+n =32m −2−n =1或{2m −2+n =−12m −2+n =−3或{2m −2+n =−32m −2+n =−1解得:{m =2n =−1或{m =2n =1或{m =0n =1或{m =0n =−1,综上,得:m =2或m =0;根据题意,抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长,当m =2时,抛物线方程为y =−x 2+8x −12=−(x −4)2+4,满足抛物线三角形的底边长等于这边的中线长;当m=0时,抛物线方程为y=−x2+4,满足抛物线三角形的底边长等于这边的中线长;∴抛物线与直线y=3交点的横坐标均为整数时m=2或m=0.(1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定是等腰三角形.(2)观察抛物线的解析式,它的开口向下且经过原点,由于b>0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b 的值.(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA= OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b′表示出AE、OE的长,通过△OAB 这个等边三角形来列等量关系求出b′的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式.(4)联立两个函数的解析式,通过所得方程先求出这个方程的两个根,然后通过这两个根都是整数确定m的整数值.本二次函数综合题融入了新定义的形式,涉及到:二次函数的性质及解析式的确定、等腰三角形的判定和性质、矩形的判定和性质等知识,重在考查基础知识的掌握情况,解题的思路并不复杂,但计算过程较为复杂,间接增大了题目的难度.。
2020—2021学年度第一学期初三期末质量检测数 学 试 卷考生须知1. 本试卷共8页,三道大题,28道小题,满分100分。
考试时间120分钟。
2. 认真填写第1、5页密封线内的学校、姓名、考号。
3. 考生将选择题答案一律填在选择题答案表内。
4. 考生一律用蓝色或黑色钢笔、圆珠笔、碳素笔在试卷上按题意和要求作答。
5. 字迹要工整,卷面要整洁。
一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若O 的半径是2,则正方形的边长是A .1B .2C .2D .226.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .5第2题图yxO第4题图DCBAO第5题图7.若要得到函数()21+2y x =-的图象,只需将函数2y x =的图象 A .先向右平移1个单位长度,再向上平移2个单位长度 B .先向左平移1个单位长度,再向上平移2个单位长度 C .先向左平移1个单位长度,再向下平移2个单位长度 D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为A.-1B.-3C.-5D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .DECBA第6题图第8题图11题图13题图CBA12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 . 14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a b b+.18.计算:2cos30-4sin 45+8︒︒.19.已知二次函数 y = x 2-2x -3.(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB =32,BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5.求证:∠DEC =90°.E DCBA22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P, 使得△P AC ∽△ABC . 作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC , ∴CD = . ∴∠ =∠ . 又∵∠ =∠ ,∴△P AC ∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy 中,直线y=x+2 与双曲线ky x相交于点A (m ,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图;(3)若P 是坐标轴上一点,当OA =P A 时.直接写出点P 的坐标.ABC24. 如图,AB 是O 的直径,过点B 作O 的切线BM ,点A ,C ,D 分别为O 的三等分点,连接AC ,AD ,DC ,延长AD 交BM 于点E , CD 交AB 于点F. (1)求证://CD BM ;(2) 连接OE ,若DE=m ,求△OBE 的周长.25. 在如图所示的半圆中, P 是直径AB 上一动点,过点P 作PC ⊥AB 于点P ,交半圆于点C ,连接AC .已知AB =6cm ,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为y 1cm ,A ,C 两点间的距离为y 2cm.小聪根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值; x /cm 0 1 2 3 4 56 y 1/cm 0 2.24 2.83 2.83 2.24 0 y 2/cm2.453.464.244.905.486(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1), (x ,y 2),并画出函数y 1,y 2的图象;O M F DCA(3)结合函数图象,解决问题:当△APC 有一个角是30°时,AP 的长度约为 cm. 26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P 的坐标.27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计......算结果...)A BCDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12 QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线3y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.2020-2021学年度第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个二、填空题(本题共16分,每小题2分) 9.下10.3411. m 712.32π13.sin ∠BAC >sin ∠DAE 14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53a b =,∴1a b a b b +=+=53+1=83.………………………5分 =218.解:原式3分………………………4分 5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°. ∵sin 2B =, ∴∠B=∠BAD=45°.………………2分 ∵AB =B∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,225AC AD DC =+=.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°. ∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分 ∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分 (2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3).∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,3∴CB AEFGHOPD yx–1–2–3–4–5–6–71234567–1–2–3–4–51234AOACDFM Om.②在Rt △ADB 中利用30°角,解得AB=2m ,…………………4分③在Rt △OBE 中,由勾股定理得出………………………………5分④计算出△OB E 周长为2m.………………………………6分25.(1)3.00…………………………………1分(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方. 由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==.即CAB ∠的正切值等于13.………………4分 (3)点p 的坐标是(1,0).………………6分27.(1)补全图形,如图所示.………………2分(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°.证明:如图,由平移可知,PQ=DC.∵四边形ABCD 是菱形,∠ADC=60°,∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分(3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°.a.在△ABH 中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP 中,由∠A HP=120°,AH=PH ,解得∠PA H=30°.c.在△ADB 中,由∠A DB=∠A BD= 30°,解得∠BAD =120°.由a 、b 、c 可得∠DAP =21°.在△DAP 中,由∠A DP= 60°,∠DAP =21°,AD=1,可解△DAP ,从而求得DP 长.…………………………………7分28.解:(1)∵A (1,0),AB =3∴B (1,3)或B (1,-3) ∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分(2)点A (1,0)关于直线y = x 的对称点为A ′(0,1)∴Q A =Q A ′ ∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分AB C D P H Q x。
2020-2021学年第一学期期中调研测试九年级数学(满分:150分;考试时间:120分钟)友情提醒:所有试题的解答请在所提供的答题纸上作答,否则一律无效!一、选择题 (本大题共有8小题,每小题3分,共24分)1.一元二次方程(1)0x x-=的解是(▲)A.0 B.1 C.0和1 D.0和1-2.如图,⊙O是△ABC的外接圆,∠A=,则∠BOC的大小为(▲)A.40° B.30° C.80° D.100°3.一元二次方程x2+kx﹣3=0的一个根是x=1-,则k的值是(▲)A.0 B.1- C.3 D.2-4.已知⊙O的半径为5,点P在⊙O外,则OP的长可能是(▲)A.3 B.4 C.5 D.65.下列说法正确的是(▲)A.三点确定一个圆 B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线 D.三角形的内心到三角形三个顶点距离相等6.已知线段a=2cm,b=8cm,它们的比例中项c是(▲)A.16cm B.4cm C.±4cm D.±16cm7.若代数式2=21M x-,2(+1)+1N x=,则M与N的大小关系是(▲)A.M N> B.M N< C.M N= D.无法确定,与x的取值有关8.如图,两正方形彼此相邻内接于半圆,若半圆的半径为5cm,则小正方形的边长为(▲)A.2cm B.2.5cm C.5cm D.53cm(第2题图)(第8题图)二、填空题 (本大题共有10小题,每小题3分,共30分.)9.已知23xy=,则x yx y+-= ▲.10.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是▲°.11.若方程2(3)2x a-=-有实数根,则a的取值范围是▲.12.如图,AB是⊙O的直径,弦CD AB⊥于点E,AB=10cm,CD=8cm,则BE=▲cm.13.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为▲°.14.若实数a、b满足(44)(442)80a b a b++--=,则a+b=▲.15.如图,在矩形ABCD中,AB=16,AD>AB,以A为圆心裁出一扇形ABE(E在AD上),将扇形ABE围成一个圆锥(AB和AE重合),则此圆锥的底面圆半径是▲.16.如图,⊙O的两条弦AB和CD相交于点P,若弧AC、弧BD的度数分别为60°、40°,则∠BPC的度数为▲°.17.如图,在平面直角坐标系xoy中,点A 的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).若在x轴的正半轴上有一点D,且∠ADB=∠ACB,则点D的坐标为▲.18.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为▲.(第12题图)(第15题图)(第16题图)(第17题图)(第18题图)(第13题图)三.解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤) 19.(本题满分8分)用适当的方法解方程:(1)2340x x +-=; (2)()()2232x x x -=-.20.(本题满分8分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若CA CD =,试求A ∠的度数.21.(本题满分8分)某市为争创全国文明卫生城,2016年市政府对区绿化工程投入的资金是2000万元,2018年投的资金是2420万元,且2017年和2018年,每年投入资金的年平均增长率相同.求该市对区绿化工程投入资金的年平均增长率.22.(本题满分8分)(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.A A 1 CBOy x51 3 223.(本题满分10分)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =64°,求∠CAD 的度数; (2)若AB =10,DE =2,求AC 的长.24.(本题满分10分)已知关于x 的方程2(1)(22)0x m x m -++-=. (1)若该方程有两个相等的实数根,求m 的值;(2)求证:不论m 为何值,该方程一定有一个实数根是2;(3)若1x 、2x 是该方程的两个根,且[][]11223(1)3(1)25x m x x m x ++-++-=,求m 的值.25.(本题满分10分)如图,在平面直角坐标系中,以A (5,1)为圆心,2个单位长度为半径的⊙A 交x 轴于点B 、C .解答下列问题: (1)将⊙A 向下平移 ▲ 个单位长度与x 轴相切;(2) 将⊙A 向左平移得到⊙A 1,当⊙A 1与y 轴首次..相切,此时阴影部分的面积S = ▲ ; (3)将⊙A 向左平移 ▲ 个单位长度与坐标轴...有三个公共点.26.(本题满分10分)如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作DE ⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)当AB=10,AC=53时,求弧BC的长;(3)当AB=20时,直接写出△ABC面积最大时,点D到直径AB的距离.27.(本题满分12分)某汽车租赁公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.(1)当租金提高多少元时,公司的每日收益可达到10120元?(2)公司领导希望日收益达到10200元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由.(3)汽车日常维护要一定费用,已知外租车辆每日维护费为100元,未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益一维护费).(备用图)(备用图)28.(本题满分12分)如图1,矩形ABCD,AB=6cm,AD=8cm,点O从点B出发,以1cm/s 的速度向点C运动,设O点运动时间为t(单位:s)(0<t<4),以点O为圆心,OB为半径作半圆⊙O交BC于点M,过点A作⊙O的切线交BC于点N,切点为P.(1)如图2,当点N与点C重合时,求t;(2)如图3,连接AO,作OQ⊥AO交AN于点Q,连接QM,求证:QM是⊙O的切线;(3)如图4,连接CP,在点O整个运动过程中,求CP的最小值.九年级数学参考答案一、选择题 (本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案 C D D D B B D C二、填空题 (本大题共有10小题,每小题3分,共30分.)9.-5 10.60 11.0a≤ 12.2 13.7014.11,2- 15.4 16.130 17.(7,0) 18.3或3(图2)(图3)(图4)(图1)三.解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤)19.(1)121,4x x ==- …………………………………4分(2)1222,3x x ==- …………………………………4分 20.解:连结OC , ∵CD 为⊙O 的切线 ∴OC ⊥CD∴∠OCD =90° …………………………………2分 又∵OA =OC ∴∠A =∠ACO 又∵AC =CD , ∴∠A =∠D∴∠A =∠ACO =∠D , …………………………………6分 而∠A +∠ACD +∠D =180°﹣90°=90°,∴∠A =30°. …………………………………8分 21.解:设该区对区绿化工程投入资金的年平均增长率为x ,根据题意得:2000(1+x )2=2420, …………………………………5分 解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去). ………………………………7分 答:该区对区绿化工程投入资金的年平均增长率为10%.……………………………8分 22.(1)1- ……………………………4分 (2) 625- ……………………………8分23.(1)32°; ……………………………5分(2)8. ……………………………10分 24.(1)3m = ……………………………3分 (2)∵121,2x m x =-=,∴不论m 为何值,该方程一定有一个实数根是2 ………6分 (3)3,2m m ==- ……………………………10分 25.(1)3 ……………………………3分(2)6 ……………………………6分(3)3,53,53,7-+……………………………10分26.解:(1)连接OD.∵D是BC的中点,∴=,∴∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.……………………………4分(2)53π……………………………7分(3)52……………………………10分27.解:(1)设租金提高x元,则每日可租出(50﹣)辆,依据题意,得:(200+x)(50﹣)=10120,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30.答:当租金提高20元或30元时,公司的每日收益可达到10120元.………………4分(2)假设能实现,依题意,得:(200+x)(50﹣)=10200,整理,得:x2﹣50x+1000=0,∵24b ac =(﹣50)2﹣4×1×1000=﹣1500<0, ∴该一元二次方程无解,∴日收益不能达到10200元. …………………8分(3)依题意,得:(200+x )(50﹣)﹣100(50﹣)﹣50×=5500,整理,得:x 2﹣100x +2500=0, 解得:x 1=x 2=50, ∴200+x =250.答:当租金为250元时,公司的利润恰好为5500元. …………………12分28.(1)3 ………………………4分(2)连接O P . 证明△OPQ ≌△OMQ , ∴∠OMQ =∠OPQ =90°,∴EC 是⊙P 的切线. ………………………8分 (3)4 ………………………12分。
2020-2021学年九年级(上)月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2018年产量为100吨,则2019年蔬菜产量为100(1+x)吨,2020年蔬菜产量为100(1+x)(1+x)吨,预计2020年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴S菱形ABCD=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程x2﹣3x+2=0,解得x1=1,x2=2,然后分别把x=1和x =2代入元二次方程(x﹣1)x2+x+x﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程x2﹣3x+x=0变形为方程x2﹣3x+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(x﹣1)x2+x+x﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(x﹣1)x2+x+x﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2020-2021年秋季九年级(上)月考数学试卷一、选择题(共10题;共30分)1.对于函数 y =(x −2)2+5 ,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线 x=2 对称D. 函数最大值为52.已知关于x 的一元二次方程 x 2+bx −1=0 ,则下列关于该方程根的判断,正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数与实数b 的取值有关3.用配方法解方程 x 2−4x +1=0 ,配方后的方程是 ( )A. (x +2)2=3B. (x −2)2=3C. (x −2)2=5D. (x +2)2=54.在平面直角坐标系中,将抛物线y=x 2﹣2x ﹣1先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( )A. y=(x+1)2+1B. y=(x ﹣3)2+1C. y=(x ﹣3)2﹣5D. y=(x+1)2+25.已知关于 x 的一元二次方程 x 2−2x +k =0 有两个不相等的实数根,则k 的值可以是( )A. -2B. 1C. 2D. 36.点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax+4的图象上.则m ﹣n 的最大值等于( )A. 154B. 4C. ﹣ 154D. ﹣ 174 7.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 43 ,则这种植物每个支干长出的小分支个数是( )A. 4B. 5C. 6D. 78.我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x ,可得方程( )A. 4000(1+x )2=15000B. 4000+4000(1+x )+4000(1+x )2=15000C. 4000(1+x )+4000(1+x )2=15000D. 4000+4000(1+x )2=150009.如图,在四边形 ABCD 中, AD//BC , ∠A =45° , ∠C =90° , AD =4cm , CD =3cm .动点M ,N 同时从点A 出发,点M 以 √2cm/s 的速度沿 AB 向终点B 运动,点N 以 2cm s ⁄ 的速度沿折线 AD −DC 向终点C 运动.设点N 的运动时间为 ts , △AMN 的面积为 S cm 2 ,则下列图象能大致反映S 与t 之间函数关系的是( )A. B. C. D.10.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中:①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m−3)(m+3)⩽b(3−m);⑤若AB≥3,则4b+3c>0,正确的个数是()A. 5B. 4C. 3D. 2二、填空题(共6题;共24分)11.方程x2+2x−3=0的两根为x1、x2则x1⋅x2的值为________.12.方程(x+1)2=9的解是________.13.下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.14.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是________秒.15.一个三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,则该三角形的周长为________.16.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣1.其中正确结论的序号是________.a三、解答题(共8题;共66分)17.解答下列各题:(1)用配方法解方程:x²-8x-4=0。
2020-2021学年度第一学期第七周联考九年级数学试卷(A 卷)(试卷满分120分,考试时间90分钟)亲爱的同学:你好!数学就是力量,自信决定成绩。
请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功! 一、 精心选一选(本大题共10小题,每小题3分,共30分)1. 下列性质中菱形不一定具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形 2.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 3.已知x y =32,那么下列等式中,不一定正确的是( )A.x +2y +2=32 B .2x =3y C.x +y y =52 D.x x +y =354. 若x 1,x 2是一元二次方程x 2-2x -3=0的两个根,则x 1x 2的值是( ) A .-3 B .-2 C .4 D .25. 一个口袋中有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球,则摸出的球是黄球的概率是( ) A 、41 B 、31 C 、127 D 、74 6.三角形两边长分别为2和4,第三边是方程x 2-6x +8=0的解,则这个三角形的周长是( )A.8B.8或10C.10D.8和107.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2019年年收入200美元,预计2021年年收入将达到1000美元,设2019年到2021年该地区居民年人均收入平均增长率为x ,可列方程为( )A .200(1+2x )=1000B .200(1+x )2=1000C .200(1+x 2)=1000 D .200+2x =1000 8. 如图,无法保证△ADE 与△ABC 相似的条件是( ) A .∠1=∠C B .∠A=∠C C .∠2=∠B D .9.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-310.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF.正确的有( )A.4个 B.3个C.2个 D.1个二、细心填一填(本大题共7小题,每小题4分,共28分)11.若线段a,b,c,d成比例,其中a=3cm,b=6cm,c=2cm,则d=______.12.已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为____.13.代数式x2+4x+7的最小值为______.14.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球4000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.6附近波动,据此可以估计黑球的个数约是________.15.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,=,DE=6,则BC的长___.16.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为________.17.如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4…在射线ON上,点B1,B2,B3,B4…在射线OM上,依此类推,则第n个正方形的周长C n=________.三、用心做一做(本大题共3小题,每小题6分,共18分)18.解方程:x2-3x+2=0.19.如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接DE.求证:四边形OCED是矩形.20.一个布袋里装有4个只有颜色不同的球,其中3个红球,一个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出1个球.请用列表或树状图的方法,求摸出一个红球,一个白球的概率.四、沉着冷静,缜密思考(本大题共3小题,每小题8分,共24分)21.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1,x2是原方程的两根,且|x1-x2|=22,求m的值,并求出此时方程的根.22.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.23.如图,在△ABC中,点D,E分别在边BC,AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF·EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF·AD=AB·EF.五、灵动智慧,超越自我(本大题共2小题,每小题10分,共20分)24. 某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200 件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售, 根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二 个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月 单价降低x 元. (1)(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?25. 在矩形ABCD 中,已知AD >AB .在边AD 上取点E ,使AE =AB ,连结CE .过点E 作 EF ⊥CE ,与边AB 或其延长线交于点F .猜想:如图①,当点F 在边AB 上时,线段AF 与DE 的大小关系为__________;探究:如图②,当点F 在边AB 的延长线上时,EF 与边BC 交于点G .判断线段AF 与DE 的大小关系并说明理由.应用:如图②,若AB =2,AD =5,利用探究得到的结论,求线段BG 的长.F FCBD A图① 图②。
2020-2021学年九年级(上)月考数学试卷一、选择题(本大题共8小题,每题3分,共24分)1.已知α为锐角,且,则α的度数为A.30︒B.45︒ C.60︒D.90︒2.下列事件中,是必然事件的是A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯3.比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是A.sin A=B.cos A=C.tan A=D.sin A=(第3题)4.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是A.5B.10C.12D.155.现有三张正面分别标有数字﹣1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为A.12B.13C.23D.296.如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则AOB∠的正弦值是A.31010B.12C.13D.1010(第6题) (第7题) (第8题)7.如图,斜面AC 的坡度为1:2,AC =35米,坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连,若AB =10米,则旗杆BC 的高度为A .5 米B .6米C .8米D .(3+5)米8.如图,将一块菱形ABCD 硬纸片固定后进行投针训练.已知AE ⊥BC 于E ,CF ⊥AD 于F ,4sin 5D =.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是 A .15 B .25 C .35 D .45二、填空题(本大题共6小题,每小题3分,共18分)9.若关于x 的一元二次方程x 2﹣2x +m =0有两个相等的实数根,则实数m 的值为 . 10.一个不透明的袋子中装有5个小球,其中2个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是 .11.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数 200 300 400 1000 1600 2000 摸到白球的频数 72 93 130 334 532 667 摸到白球的频率0.36000.31000.32500.33400.33250.3335该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是 (精确到0.01). 12.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,搅匀后从这三张卡片中同时抽取两张,则抽取的两张卡片上数字之和为奇数的概率是 .(第13题) (第14题)13.如图,在四边形ABCD 中,AB =10,BD ⊥A D .若将△BCD 沿BD 折叠,点C 与边AB 的中点E恰好重合,则四边形BCDE 的周长为 .14.如图,在Rt ABC ∆中,90C ∠=︒,点E 在AC 边上.将A ∠沿直线BE 翻折,点A 落在点A '处,连接A B ',交AC 于点F .若A E AE '⊥,4cos 5A =,则A F BF '= .三、解答题(本大题共10小题,共78分)15.(6分)计算:112726cos30 3-⎛⎫++--︒ ⎪⎝⎭16. (6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(6分)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高C D为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)18.(7分)如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.19.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+10.(3)连接EG,请直接写出线段EG= .20.(7分)小明和小亮玩一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则小明获胜,若抽出的两张卡片标记的数字之和为奇数,则小亮获胜.你认为这个游戏公平吗?请说明理由.21.(8分)如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tan B=34.(1)求AD的长;22.(9分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.23.(10分)【问题情境】如图①,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D 为AB 中点,连结CD ,点E 为CB 上一点,过点E 且垂直于DE 的直线交AC 于点F .易知BE 与CF 的数量关系为____________.【探索发现】如图②,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D 为AB 中点,连结CD ,点E 为CB 的延长线上一点,过点E 且垂直于DE 的直线交AC 的延长线于 点F .【问题情境】中的结论还成立吗?请说明理由.【类比迁移】如图③,在等边△ABC 中,AB =4,点D 是AB 中点,点E 是射线AC 上一点(不与点A 、C 重合),将射线DE 绕点D 逆时针旋转60°交BC 于点F . 当CF =2CE 时,CE =____________.24.(12分)如图,在矩形 ABCD 中,AB =2cm ,∠ADB =30°.P 、Q 两点分别从 A , B 同时出发,点 P 沿折线 AB ﹣BC 运动,在 AB 上的速度是 2cm/s ,在 BC 上的速度是23 cm/s ;点 Q 在 BD 上以 2cm/s 的速度向终点 D 运动,过点P 作 PN ⊥AD ,垂足为点 N .连接 PQ ,以 PQ ,PN 为邻边作□PQMN .设运动的时间为x (s ),□PQMN 与矩形 ABCD 重叠部分的图形面积为 y (cm 2).(1)当 PQ ⊥AB 时,x = .(2)若直线MQ 与AD 交于点E ,当43x 时,求EQ 的长; (3)求 y 关于x 的函数解析式,并写出x 的取值范围;(4)直线AM将矩形ABCD 的面积分成1:3 两部分时,直接写出x 的值.数学答案一、1.B; 2.A; 3.A; 4.A; 5.D; 6.D;7.A;8.B.二、9.1;10.25;11.0.33;12.23;13. 20;14.13.三、15.5;16.解:树状图如下:(1 = 9P两次抽取的卡片上图案都是“保卫和平”)列表法如下表:(1 = 9P两次抽取的卡片上图案都是“保卫和平”)17.∵DE⊥AB∴四边形BCDE为矩形DE=BC=24米,CD=BE=1.5米,在Rt△ADE中,∵∠ADE=39°∴AE=DE⋅tan39°≈24×0.81=19.44(米)∴AB=AE+EB=19.44+1.5=20.94≈20.9(米).答:建筑物的高度AB约为20.9米. 18.(1)证明:∵四边形ABCD是平行四边形∴OB=OD∵BE⊥AC,DF⊥AC∴∠OEB=∠OFD=90°∵∠DOF=∠BOE∴△OEB≌△OFD∴OE=OF(2)由(1)得:OE=OF∵OF=2∴OE=2∵∠OEB=90°∴tan∠OBE=25 OEBE=19. (1)如图所示,正方形ABEF即为所求.(2).如图所示,即为所求.(3)由勾股定理,得22125EG=+=.21. (1)在Rt △ABC 中,∠C=90°,AB=5,tanB=34, 设3AC k =(k >0),则BC=4k ,由勾股定理,得 222AC BC AB +=,即222(3)(4)5k k +=, 整理,得2=1k , ∵0k > ∴=1k∴BC=4k=4,AC=3k=3 ∵BD=1,∴CD=BC-BD=4-1=3, 在Rt △ACD 中,22223332AD AC CD =+=+=,即AD 的长为32;(2)过点D 作DE ⊥AB 于点E ,如图:在Rt △BDE 中,BD=1,tanB=34,可设DE=3x(x >0), 则BE=4x ,由勾股定理,222DE BE BD +=, 即222(3)(4)1x x +=,整理,得2125x =, ∵0x >,∴15x =, ∴DE=3x=35在Rt △ADE 中,325sin 1032DE AD α=== 22.(1)机器每分钟加油量为303(L)10=机器工作的过程中每分钟耗油量为0.5()601050L ==-.(2)设机器工作时y 关于x 的函数关系式为y kx b =+把(10,30),(60,5)代入上式,得1030605k b k b +=⎧⎨+=⎩解得0.535k b =-⎧⎨=⎩∴机器工作时y 关于x 的函数关系式为0.535y x =-+自变量x 的取值范围为1060x ≤≤(3)综上,=5x 或=40x 时,油箱中油量为油箱容积的一半. 23.【问题情境】BE =CF ; 【探索发现】成立,理由:∵在Rt △ABC 中,D 为AB 中点,∴CD =BD , 又∵AC =BC , ∴DC ⊥AB ,∴∠DBC =∠DCB =45°, ∵DE ⊥DF , ∴∠EDF =90∘,∴∠EDB +∠BDF =∠CDF +∠BDF =90°, ∴∠CDF =∠BDE , ∴∠ADF =∠CDE , ∴AF =CE , ∴CF =BE ;【类比迁移】33-或17-+ 24. (1)当PQ ⊥AB 时,BQ =2PB ,∴2x =2(2−2x ),∴x =23s . (2)EQ=54;(3)①如图1中,当203x <≤时,重叠部分是四边形PQMN .22323y x x x =⋅=.②如图2中,当23x ≤<1时,重叠部分是四边形PQEN .11 21322)3322y x x x x x =-+⋅=+( ③如图3中,当x 1<<2时,重叠部分是四边形PNEQ .21322)[323(1)]334322y x x x x x x =-+⋅--=++( 综上所述222223(0)3323()2333343()2x x x x x y x x x ⎧⎪⎪⎪+≤⎪=⎨⎪⎪++⎪⎪⎩<≤<11<<2 (4)当25x =或47x =时,直线AM 将矩形ABCD 的面积分成1:3两部分.。
2020-2021学年九年级(上)月考数学试卷一.选择题:(每小题3分 共36分)1.一元二次方程0142=--x x 配方后可化为( )A .3)2(2=+x B.5)2(2=+x C.3)2(2=-x D.5)2(2=-x2.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5 B .20C .24D .323.一元二次方程x 2+2x +1=0的解是( ) A .x 1=1,x 2=﹣1B .x 1=x 2=1C .x 1=x 2=﹣1D .x 1=﹣1,x 2=24.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( ) A .72 B .24C .48D .965. x =1是关于的一元二次方程x 2+ax +2b =0的解,则2a +4b =( ) A. -2 B. -3 C. 4 D. -66.若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是(B) A .a <1 B .a >1 C .a≤1 D .a≥17.如图,正方形ABCD 的边长为4,点E 在AB 上且BE=1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( ). A. 5 B. 6 C. 7 D. 88.若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10C .4D .﹣49.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A .互相平分B .相等C .互相垂直D .互相垂直平分10.已知x 1.x 2是一元二次方程了x 2﹣2x =0的两个实数根,下列结论错误的是( ) A .x 1≠x 2 B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=211.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( ) A .4B .4C .10D .812.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为( ) A .6或8 B .4或10 C .5或9 D .7 二、填空题(每小题4分 共24分)13.(1)一元二次方程(x-2)(x-3)=0的根是 .(2)以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是_________.14..菱形一对角线长为8,其边长是方程x 2﹣9x +20=0的一个根,则菱形周长为 .15.如图,在矩形ABCD 中,AD =8,对角线AC 与BD 相交于点O , AE ⊥BD ,垂足为点E ,且AE 平分∠BAC ,则AB 的长为 . 16.已知实数m、n(m≠n)满足._______,027,02722=+=+-=+-nmm n n n m m 则17.如图,三个边长均为2的正方形重叠在一起,O 1,O 2是其中两个正方形的对角线交点,若把这样的n 个小正方形按如图所示方式摆放,则重叠部分的面积为________.18.如图,在矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处,当△CEB′为直角三角形时,BE 的长为__________.三.解答题 (解答要写出必要的文字说明或演算步骤 共60分.) 19.解方程(每小题5分 本题满分10分)(1)09102=+-x x (2) 05232=--x x20、(本题满分10分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形..21.(本题满分8分)已知关于x的一元二次方程0a+a,其中a、b、c分别为△+x cbx+c()2)(2=-ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;22.(本题满分10分)关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值23.(本题满分10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.24.(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.数学答案一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DB CCABBACDAA二.填空题(每小题4分,共24分) 13. 14. 20 15.16.17. n-1 18.三.解答题:(解答要写出必要的文字说明或演算步骤. 共60分) 19.解方程(每小题5分,本题满分10分)(1)09102=+-x x (2) 05232=--x x X1=1 x2=9 x2=-—120.(本题满分10分)证明:∵AE ∥BF , ∴∠ADB =∠DBC , ∵BD 平分∠ABC , ∴∠DBC =∠ABD , ∴∠ADB =∠ABD , ∴AB =AD , 又∵AB =BC , ∴AD =BC ,∵AE ∥BF ,即AD ∥BC , ∴四边形ABCD 为平行四边形, 又∵AB =AD ,∴四边形ABCD 为菱形.21.(本题满分8分)解:(1)△ABC是等腰三角形;理由:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,所以△ABC为等腰三角形;,......4分(2)△ABC为直角三角形;理由:根据题意得△=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,所以△ABC为直角三角形;,......8分22.(本题满分10分)解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k ≤,......5分(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m =;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m 的值为.,......10分23.(本题满分12分)(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,......1分∵MN∥AB,即C E∥AD,∴四边形ADEC是平行四边形,∴CE=AD;......4分(2)解:四边形BECD是菱形,......5分理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;......8分(3)当∠A=45°时,四边形BECD是正方形,......9分理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,......12分即当∠A=45°时,四边形BECD是正方形24.(本题满分10分)解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DE,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAE+∠AEB=90°,∴∠BGA=90°,∴BE⊥AF,,......5分(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=,∵S△ADF=AD×FD=AD×DN,∴DN=,∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,易证,△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,∴∠DGN=∠MGN=45°,∴△DGN是等腰直角三角形,∴GD=DN=;,......10分。
2021年苏教版九年级数学上册月考考试(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠10.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解:_____________.3.若二次根式x 2-有意义,则x 的取值范围是__________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.如图,在ABC中,ACB90∠=,AC BC=,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;2()当AD BF=时,求BEF∠的度数.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、C7、B8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、≥3、x24、72°5、12.6、-2三、解答题(本大题共6小题,共72分)x=-1、322∠=.3、()1略;()2BEF67.54、(1)略;(2)45°;(3)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
2021年苏教版九年级数学上册月考考试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±13.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁5.已知正多边形的一个外角为36°,则该正多边形的边数为(). A.12 B.10 C.8 D.66.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.2539B.2539+C.18253+D.25318+二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:a 3-ab 2=____________.3.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.先化简,再求值:233()111a a a a a -+÷--+,其中2.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、B7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、a (a+b )(a ﹣b )3、44、8.5、6、35r <<.三、解答题(本大题共6小题,共72分)1、x =7.2、3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)理由见详解;(2)2BD =或1,理由见详解.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
2021年苏教版九年级数学上册月考测试卷带答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±13.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=24.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)5.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.86.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<327.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A .15B .16C .17D .188.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A.8 B.9 C.10 D.11 二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________.2.分解因式:2242a a++=___________.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD =3,则S△AOC=__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、C6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、432、22(1)a +3、23x -<≤4、35、5.6、45435 3x y x y +=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、3.3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)60,10;(2)96°;(3)1020;(4)236、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
昆山市城北中学2020-2021学年第一学期九年级上数学质量调研月考试卷2020-2021学年第一学期初三数学质量调研一.选择题(30分)1.下列方程中,关于x的一元二次方程是()A.x+2=3B.x2?2x?3=0C.x+y=1D.x2+1x=12. 在RtΔABC中,∠C=90,AC=12,BC=5,则sin A为()A.512B.125C.513D.12133. 若关于x的一元二次方程x2?2x?k=0没有实数根,则k的取值范围是()A.k>?1B.k≥?1C.k≤?1D.k4. 顶点为(-5,0),且开口方向、形状与函数y=?13x2的图象相同的抛物线是()A.y=?13(x?5)2B.y=?13x2?5C.y=?13(x+5)2D.y=13(x+5)25. 若一个三角形两边的长分别是3和7,且第三边的长是方程x2?8x+12=0的一个实数根,则这个三角形的周长为()A. 12B. 15C. 16D. 176. 若代数式x2+5x+6与?x+1的值相等,则x的值为()A. x1=?1,x2=?5B. x1=?6,x2=1C. x1=?2,x2=?3D. x1=5,x2=?17. 抛物线y=6(x+2)2?3可以由抛物线y=6x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位8.某商品进货价为每件10元,售价每件90元时平均每天可售出20件,经调查发现,如果每件降价2元,那么平均每天可以多出售4件,若想每天盈利1000元,设每件降价x元,可列出方程为()A.(40?x)?(20+x)=1000B. (40?x)?(20+2x)=1000C. (40?x)?(20?x)=1000D. (40?x)?(20+4x)=10009. 用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列了如下表格:A x1=?4,x2=4B.x1=?1,x2=3C..x1=3,x2=4D.x1=?2,x2=410. 如图,正方形的四个顶点坐标依次为(1,1),(3,1)(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共点,则实数a 的取值范围是()A.19≤a≤3 B.19≤a≤1 C.13≤a≤3 D.13≤a≤1二.填空题(24分), 那么锐角A=__________.11.如果sin A=1212.一元二次方程x(x?2)=x的根是__________.13.抛物线y=x2?4x?3的顶点坐标是__________.14.二次函数y=(m+2)x2+2x+(m2?4)的图象经过原点,则m=__________.15.二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,对应x的取值范围是__________.16.关于x的一元二次方程mx2?2x?1=0有两个不相等的实数根,则m的取值范围是__________.17.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为__________.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数)其中正确的结论__________.三.解答题(共76分)19.计算(每题4分,共8分)(1)cos2450-4sin300tan450(2)|√2?1|+sin450-√tan260020. 解方程(每题4分,共8分)(1)x2?10x?24=0(2)(2x?1)2?16=021.(6分)已知关于x的方程2x2+kx+1?k=0,若方程的一个根是-1,求另一个根及k 的值.22.(6分)已知y=(k?1)x k2+k?4是二次函数(1)若其图像开口向下,求k的值(2)若当x<0时,y随x的增大而减小,求函数关系式23.(6分)已知关于x的一元二次方程(m?2)x2+2mx+3+m=0有两个不相等的实数根.(1)求m的取值范围(2)当m取满足条件的最大整数时,求方程的根24.(6分)已知二次函数y=x2?kx+k?5(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点(2)若此二次函数图象的对称轴为x=1,求它的解析式25.(8分)如图二次函数y=ax2+bx+c的图象与x轴交于A,B 两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点(1)求抛物线的函数解析式(2)求ΔMCB的面积(3)根据图形,直接写出直线CM在抛物线上方时x的取值范围26.(8分)某经销商销售一种成本为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元(2)设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润时多少?27.(8分)如图,已知二次函数y=?34x2+94x+3的图象与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P时抛物线上位于第一象限的一个动点,连接CP,当∠BCP=900时,求点P的坐标28.(12分)抛物线y=ax2+bx+c与x轴交于A(-3,0),B(1,0)两点,与y轴交于C (0,2)(1)分别求直线AC及抛物线的解析式;(2)P是线段AC上的一个动点,过P点作x轴的垂线交抛物线于E点,求线段PE长度的最大值;(3)若点G是抛物线上的动点,点F在x轴上,且以A、C、F、G四个点为顶点的四边形是平行四边形,试直接写出所有满足条件的F 点坐标.参考答案1.B2.C3.D4.C5.C6.A7.B8.B9.D10.A11.30012.x1=0,x2=313.(2,-7)14.215.?3<x?1且m≠017.√318.③④⑤</x19.(1)?32(2)220.(1)x1=12,x2=?2(2)x1=52,x2=?3221.x2=14,k=3222.(1)k=-3(2)y=x223.(1)m<6且m≠2(2)x1=?43,x2=?224.(1)Δ=(k?2)2+16>0(2)y=x2?2x?325.(1)y=?x2+4x+5(2)15(3)x<0或x>226.(1)y=?2x+60(10≤x≤18)(2)w=?2x2+80x?600=?2(x?20)2+200X=18时,w max=19227.(1)BC=3 (2)?1≤x≤0或3≤x≤4(3)P(119,125 27)28. (1) AC: y=23x+2y=?23x2?43x+2(2)PE max =32(3)F: (-1,0)或(2+√7,0)或2?√7,0)或(-5,0)。
2021年苏教版九年级数学上册月考考试卷及答案【2021年】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.下列各数:-2,0,13,0.020020002…,π( )A .4B .3C .2D .15.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 2的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____.2.因式分解2242x x-+=_______.3.若式子x2-在实数范围内有意义,则x的取值范围是__________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.41.如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB =6,求平行四边形BCFD 的面积.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、A6、B7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、22(1)x -.3、x 2≥4、425、40°6、24三、解答题(本大题共6小题,共72分)1、x=12、(1)12,32-;(2)证明见解析.3、(1)略(24、(1)略;(2)5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
苏科版初中数学九年级上册第一学期第一次月考试卷姓名 班级 得分一.选择题(每小题3分,共30分)1.下列关系式中,属于二次函数的是(x 为自变量)( )A. y=18x 2B.y=√x 2−1C. y=1x 2 D. y=a 2x 22. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3.抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线2-=xD. 直线2=x4.关于x 的一元二次方程x 2-k=0有实数根,则( )(A)k <0 (B)k >0 (C)k ≥0 (D)k ≤05.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<0 (5题) (7题)6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c7. 二次函数y=ax 2+bx+c 的图象如图所示,则点(b,c a )在第___象限( )A. 一B. 二C. 三D. 四8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9.方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根(C )有两个相等的实数根 (D )有一个实数根10.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A 、%10B 、%15C 、%20D 、%25二.填空题(每小题3分,共30分)11.写出一个有一根为的一元二次方程___________________.12.已知方程x 2+kx+3=0的一个根是-1,则k=______, 另一根为______.13.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________.14. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________.15. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.16.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的根的情况是______________________.17.若关于的方程的根是整数,则k 的值可以是______.(只要求写出一个)18.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________.19.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.20.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三.解答题(24+10+10+12+12+12+12)21.用适当的方法解方程:(1)0152=+-x x (用配方法) (2)()()2232-=-x x x(3)(2x −1)2=9 (4)x 2+3x −4=022.已知函数12-+=bx x y 的图象经过点(3,2).(1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.23.(8分)如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.24.(9分)二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:(1)方程20ax bx c ++=的两个根为 ;(2)不等式20ax bx c ++>的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程2ax bx c k ++=有两个不相等的实数根,则k 的取值范围为 .25.在直角坐标平面内,点 O 为坐标原点,二次函数 y=x 2+(k-5)x-(k+4) 的图象交 x 轴于点A(x 1,0)、B(x 2,0),且(x 1+1)(x 2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C , 顶点为P ,求△POC 的面积.26.某商店经营一种水产品成本为每千克40元的水产品据市场分析若按每千克50元销售一个月能售出500千克销售价每涨1元月销售量就减少10千克请根据销售情况回答下列问题⑴当销售单价为每千克55元时计算销售量和月利润⑵设销售单价为每千克x元月销售利润为y元求y与x的函数关系式⑶销售单价定为多少元时获得的利润最多?。
江苏省昆山市二中2020-2021学年九年级上学期教学质量调研(一)数学试题一、单选题(★) 1. 下列函数是y关于x的二次函数的是()A.B.C.D.(★★) 2. 下列关于x的一元二次方程有实数根的是A.B.C.D.(★★) 3. 把抛物线y=-x 2的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=-x2+2B.y=-x2+l C.y=-(x-2)2+1D.y=-(x+2)2+3(★★★) 4. 若二次函数y=(a-1)x 2+3x+a 2-1的图象经过原点,则a的值必为()A.1或-1B.1C.-1D.0(★★★) 5. 若点M (-2,y 1),N(-1,y 2),P(8,y 3)在抛物线y=-x 2+2x上,则下列结论正确的是()A.y3<y1<y2B.y2<y1<y3C.y1< y2<y3D.y1<y3<y2(★★★) 6. 一次函数与二次函数在同一平面直角坐标系中的图象可能是().A.B.C.D.(★★★) 7. 某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%(★★★) 8. 若二次函数,当时,y随x的增大而减小,则m的取值范围是()A.B.C.D.(★★★) 9. 如图,抛物线y=ax 2+bx+c(a>0)与直线y=1的交点坐标为(1,1),(3,1),则不等式ax 2+bx+c-1>0的解集为()A.x>1B.1<x<3C.x<1或x>3D.x>3(★★★) 10. 我们定义一种新函数:形如y=|ax 2+bx+c|(a≠0,且b-4ac>0)的函数叫做”鹊桥”函数,小丽同学画出了“鹊桥”函数y=|x-2x-3|(如图所示).并写出下列五个结论:①图像与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=l;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(★★) 11. 二次函数的最小值是.(★★) 12. 若矩形ABCD的两邻边长分别为一元二次方程的两个实数根,则矩形ABCD的对角线长为.(★★★) 13. 向空中发射一枚炮弹,经 x秒后的高度为 y米,且时间与高度的关系为 y= ax 2+ bx+ c(a≠0).若此炮弹在第5秒与第16秒时的高度相等,当炮弹所在高度最高时是第_____秒.(★★) 14. 已知二次函数 y= ax 2+ bx+ c中,函数 y与自变量 x的部分对应值如下表:x…-10123…y…105212…则当 y<5时, x的取值范围是_______.(★★★) 15. 已知关于x的方程x 2﹣6x+k=0的两根分别是x 1,x 2,且满足,则k的值是________.(★★★) 16. 飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:s)的函数关系式是S=80t﹣2t 2,飞机着陆后滑行的最远距离是________m.(★★) 17. 如图,这是二次函数y=x 2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为_____.(★★) 18. 二次函数y=ax 2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b 2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有 ______ .(只填序号)(★) 19. 如图,抛物线y=﹣x 2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.(★★★) 20. 如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为,则图中CD的长为__________.三、解答题(★★) 21. 解方程:(1)x 2-2x -8=0(2)(3x -l)2-4x 2=0(★★★) 22. 先化简,再求值:,其中a是方程x 2-x=6的根.(★★★) 23. 已知二次函数y=-2x 2+3x-l.(1)利用配方法求顶点出标A:(2)求该函数图象与坐标轴的交点坐标;(3)如果将该函数向左平移,当图象第一次经过原点时,求新图象的解析式.(★★★) 24. 已知二次函数y=ax 2-3x-b的图象经过点(-2,40)和点(6,-8).(1)分别求a、b的值,并指出二次函数的顶点、对称轴;(2)当-2≤x≤6时,试求二次函数y的最大值与最小值.(★★★★) 25. 如图,二次函数 y= x 2+ bx的图象与 x轴正半轴交于点 A,平行于 x轴的直线 l 与该抛物线交于 B、 C两点(点 B位于点 C左侧),与抛物线对称轴交于点 D(2,﹣3).(1)求 b的值;(2)设 P、 Q是 x轴上的点(点 P位于点 Q左侧),四边形 PBCQ为平行四边形.过点 P、 Q分别作 x轴的垂线,与抛物线交于点 P'( x 1, y 1)、 Q'( x 2, y 2).若| y 1﹣ y 2|=2,求 x 1、x 2的值.(★★★) 26. 已知:如图,二次函数y=ax 2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.(★★★★) 27. 某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量 y(个)与销售单价 x(元)之间满足如图所示的一次函数关系.(1)试确定 y与 x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润 Q元,试写出利润 Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价 x的取值范围.(★★★★) 28. 如图,直线y=- x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时点E的坐标.。
2020-2021学年第一学期初三数学质量调研
一.选择题(30分)
1.下列方程中,关于x的一元二次方程是()
A.x+2=3
B.x2−2x−3=0
C.x+y=1
D.x2+1
x
=1
2. 在RtΔABC中,∠C=
90,AC=12,BC=5,则sin A为()
A.5
12B.12
5
C.5
13
D.12
13
3. 若关于x的一元二次方程x2−2x−k=0没有实数根,则k的取值范围是()
A.k>−1
B.k≥−1
C.k≤−1
D.k<−1
4. 顶点为(-5,0),且开口方向、形状与函数y=−1
3
x2的图象相同的抛物线是()
A.y=−1
3(x−5)2B.y=−1
3
x2−5C.y=−1
3
(x+5)2D.y=1
3
(x+5)2
5. 若一个三角形两边的长分别是3和7,且第三边的长是方程x2−8x+12=0的一个实数根,则这个三角形的周长为()
A. 12
B. 15
C. 16
D. 17
6. 若代数式x2+5x+6与−x+1的值相等,则x的值为()
A. x1=−1,x2=−5
B. x1=−6,x2=1
C. x1=−2,x2=−3
D. x1=5,x2=−1
7. 抛物线y=6(x+2)2−3可以由抛物线y=6x2平移得到,则下列平移过程正确的是()
A. 先向左平移2个单位,再向上平移3个单位
B. 先向左平移2个单位,再向下平移3个单位
C. 先向右平移2个单位,再向下平移3个单位
D. 先向右平移2个单位,再向上平移3个单位
8.某商品进货价为每件10元,售价每件90元时平均每天可售出20件,经调查发现,如果每件降价2元,那么平均每天可以多出售4件,若想每天盈利1000元,设每件降价x元,可列出方程为()
A.(40−x)⋅(20+x)=1000
B. (40−x)⋅(20+2x)=1000
C. (40−x)⋅(20−x)=1000
D. (40−x)⋅(20+4x)=1000
9. 用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列了如下表格:
A x1=−4,x2=4B.x1=−1,x2=3C..x1=3,x2=4D.x1=−2,x2=4
10. 如图,正方形的四个顶点坐标依次为(1,1),(3,1)(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()
A.1
9≤a≤3 B.1
9
≤a≤1 C.1
3
≤a≤3 D.1
3
≤a≤1
二.填空题(24分)
, 那么锐角A=__________.
11.如果sin A=1
2
12.一元二次方程x(x−2)=x的根是__________.
13.抛物线y=x2−4x−3的顶点坐标是__________.
14.二次函数y=(m+2)x2+2x+(m2−4)的图象经过原点,则m=__________.
15.二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,对应x的取值范围是__________.
16.关于x的一元二次方程mx2−2x−1=0有两个不相等的实数根,则m的取值范围是__________.
17.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为__________.
18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;
②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数)其中正确的结论__________.
三.解答题(共76分)
19.计算(每题4分,共8分)
(1)cos2450-4sin300tan450(2)|√2−1|+sin450-√tan2600
20. 解方程(每题4分,共8分)
(1)x2−10x−24=0(2)(2x−1)2−16=0
21.(6分)已知关于x的方程2x2+kx+1−k=0,若方程的一个根是-1,求另一个根及k 的值.
22.(6分)已知y=(k−1)x k2+k−4是二次函数
(1)若其图像开口向下,求k的值
(2)若当x<0时,y随x的增大而减小,求函数关系式
23.(6分)已知关于x的一元二次方程(m−2)x2+2mx+3+m=0有两个不相等的实数根.
(1)求m的取值范围
(2)当m取满足条件的最大整数时,求方程的根
24.(6分)已知二次函数y=x2−kx+k−5
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点
(2)若此二次函数图象的对称轴为x=1,求它的解析式
25.(8分)如图二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点
(1)求抛物线的函数解析式
(2)求ΔMCB的面积
(3)根据图形,直接写出直线CM在抛物线上方时x的取值范围
26.(8分)某经销商销售一种成本为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元
(2)设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润时多少?
27.(8分)如图,已知二次函数y=−3
4x2+9
4
x+3的图象与x轴交于A,B两点(点A在
点B左侧),与y轴交于点C
(1)求线段BC的长;
(2)当0≤y≤3时,请直接写出x的范围;
(3)点P时抛物线上位于第一象限的一个动点,连接CP,当∠BCP=900时,求点P的坐标
28.(12分)抛物线y=ax2+bx+c与x轴交于A(-3,0),B(1,0)两点,与y轴交于C (0,2)
(1)分别求直线AC及抛物线的解析式;
(2)P是线段AC上的一个动点,过P点作x轴的垂线交抛物线于E点,求线段PE长度的最大值;
(3)若点G是抛物线上的动点,点F在x轴上,且以A、C、F、G四个点为顶点的四边形是平行四边形,试直接写出所有满足条件的F点坐标.
参考答案
1.B
2.C
3.D
4.C
5.C
6.A
7.B
8.B
9.D10.A
11.30012.x1=0,x2=313.(2,-7)14.215.−3<x<1 16.m>−1且m≠017.√318.③④⑤
19.(1)−3
2
(2)2
20.(1)x1=12,x2=−2(2)x1=5
2,x2=−3
2
21.x2=1
4,k=3
2
22.(1)k=-3(2)y=x2
23.(1)m<6且m≠2(2)x1=−4
3
,x2=−2
24.(1)Δ=(k−2)2+16>0(2)y=x2−2x−3
25.(1)y=−x2+4x+5(2)15(3)x<0或x>2
26.(1)y=−2x+60(10≤x≤18)
(2)w=−2x2+80x−600=−2(x−20)2+200
X=18时,w max=192
27.(1)BC=3 (2)−1≤x≤0或3≤x≤4(3)P(11
9,125 27
)
28. (1) AC: y=2
3x+2y=−2
3
x2−4
3
x+2
(2)PE m
ax =3
2
(3)F: (-1,0)或(2+√7,0)或2−√7,0)或(-5,0)。