九年级上学期月考数学试卷(带答案)
- 格式:doc
- 大小:31.00 KB
- 文档页数:6
重庆市巴蜀中学九年级上学期第一次月考数学试卷一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cos B﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC 的度数为()A.65°B.55°C.60°D.75°6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.38.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm212.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y 轴,x轴的平行线交于C,则S△ABC=.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC 的BC边上的高为.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为秒.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C 在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查名常驻市民,篮球项目所占圆心角的度数是;估计该区1200万常驻市民中有人喜爱足球运动、有人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.25.(10分)如图,直线l1:y1=kx+b与反比例函数y2=相交于A(﹣1,4)和B(﹣4,a),直线l2:y3=﹣x+c与反比例函数y2=相交于B、C两点,交y轴于点D,连接OB、OC、OA.(1)求反比例函数的解析式和c的值.(2)求△BOC的面积(3)直接写出当kx+b≥时x的取值范围.(4)若过原点O的直线交反比列函数于P、Q两点(P在第二象限、Q在第四象限)当以P、A、C、Q为顶点的四边形的面积为30时,求点Q的坐标.26.(12分)如图,在平面直角坐标系中,已知矩形ABCD,E是BC上一点,∠AED=90°,AB=6,SIN∠AEB=,矩形ABCD的点B与O重合,BC在x轴上,现有一张硬纸片△MGN,∠MGN=90°,点M在x轴上,点G在ED上,NG=3,N与E重合.现将△MGN以每秒1个单位的速度沿EB方向在x轴上匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD方向向点D匀速移动,点Q为直线GN与线段AE的交点,连接QP,当点P到达终点D时,△MGN和点P同时停止运动,设运动时间x秒.(1)若反比例函数的图象经过点D,求该反比例函数的解析式.(2)在整个运动过程中,设△MGN与△ABE重叠部分的面积为y,求y与x的函数关系式,并写出x的取值范围.(3)在整个运动过程中,是否存在点P,使△APQ为等腰三角形,若存在,求出x的值,若不存在,说明理由.重庆市巴蜀中学九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.考点:反比例函数图象上点的坐标特征.分析:直接将点(2,a)代入y=即可求出a的值.解答:解:由题意知,a=﹣,解得:a=﹣2.故选B.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值求解.解答:解:∵sina=,∴∠α=60°.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:俯视图为不规则四边形,只有C符合.故选C.点评:本题考查由三视图确定几何体的形状,可运用排除法来解答.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cosB﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质,求出∠A和∠B的度数,然后可判定△ABC的形状.解答:解:由题意得,tanA﹣1=0,cosB﹣=0,则tanA=1,cosB=,∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°,故△ABC为等腰直角三角形.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC 的度数为()A.65°B.55°C.60°D.75°考点:圆心角、弧、弦的关系.分析:由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠CAB=25°,得出∠B的度数,根据同弧所对的圆周角相等继而求得∠ADC的度数.解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=25°,∴∠ABC=90°﹣∠CAB=65°,∴∠ADC=∠ABC=65°.故选A.点评:本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.考点:锐角三角函数的定义.分析:根据题意,由tana=,易得sina==.解答:解:∵tana=,∴sina==,故答案为:.点评:本题主要考查了同角三角函数的基本关系,解题的关键是结合三角函数的定义.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.3考点:反比例函数与一次函数的交点问题.专题:计算题.分析:作AD⊥y轴于D,BE⊥y轴于E,如图,先证明△ACD≌△BCE得到S△ACD=S△BCE,再利用面积代换得到S△AOB=S△AOD+S△BOE,然后根据反比例函数比例系数k的几何意义进行计算.解答:解:作AD⊥y轴于D,BE⊥y轴于E,如图,在△ACD和△BCE中,,∴△ACD≌△BCE,∴S△ACD=S△BCE,∴S△AOB=S△AOC+S△BOC=S△AOD+S△ACD+S△BOC=S△AOD+S△BCE+S△BOC=S△AOD+S△BOE=•|﹣2|+•|4|=3.故选D.点评:本题考查了反比例函数与一次函数的交点问题:一次函数与反比例函数的交点坐标满足两个函数解析式.也考查了反比例函数比例系数k的几何意义.8.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.考点:列表法与树状图法;一次函数图象与系数的关系.分析:先根据题意列出树状图,再找出所有情况,看k<0,b>0的情况占总情况的多少即可求出答案.解答:解:画树状图共有6种情况,因为一次函数y=kx+b经过第一、二、四象限,则k<0,b>0,又因为k<0,b>0的情况有k=﹣1,b=2或k=﹣1,b=3两种情况,所以一次函数y=kx+b经过第一、二、四象限的概率为=;故选:D.点评:此题考查了列表法与树状图,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验;10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm考点:解直角三角形的应用.分析:在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据已知条件,利用勾股定理就可以求出水深h.解答:解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC===42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).故选:B.点评:本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm2考点:解直角三角形;简单几何体的三视图.分析:该直三棱柱的主视图与左视图都是矩形,俯视图是三角形,根据矩形与三角形的面积公式分别计算,再相加即可.解答:解:过B作BD⊥AC于D.在Rt△BCD中,∵∠BDC=90°,∠C=45°,BC=2cm,∴BD=CD=BC=2cm,在Rt△BAD中,∵∠BDA=90°,∠A=30°,∴AB=2BD=4cm,AD=BD=2cm,∴AC=AD+CD=(2+2)cm.主视图的面积是:10(2+2)=20+20(cm2),左视图的面积是:10×2=20(cm2),俯视图的面积是:×(2+2)×2=2+2(cm2),∴该直三棱柱的三种视图的面积之和为:20+20+20+2+2=42+22(cm2).故选A.点评:本题考查了解直角三角形,简单几何体的三视图,得出该直三棱柱的三种视图的形状是解题的关键.12.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据一次函数图象的平移规律,由y1=x向下平移4个单位得到直线BC的解析式为y3=x﹣4,然后把y=0代入确定C点坐标,即可判断①;作AE⊥x轴于E点,BF⊥x 轴于F点,易证得Rt△OAE∽△RtCBF,则===2,若设A点坐标为(a,a),则CF=a,BF=a,得到B点坐标(3+a,a),然后根据反比例函数上点的坐标特征得a•a=(3+a)•a,解得a=2,于是可确定点A点坐标为(2,),再将A点坐标代入y2=,求出k的值,即可判断②;根据S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF,求出S,即可判断③;根据图象得出当2<x<4时,直线y1在双曲线y2的上方,双曲四边形OCBA线y2又在直线y3的上方,即可判断④;先根据三角形面积公式求出S△COD=×3×4=6,再由S四边形ABDO=S四边形OCBA+S△OCD,得出S四边形ABDO=12,即可判断⑤.解答:解:①∵将直线y1=x向下平移4个单位后称该直线为y3,y3与双曲线交于B,与x轴交于C,∴直线BC的解析式为y3=x﹣4,把y=0代入得x﹣4=0,解得x=3,∴C点坐标为(3,0),故本结论正确;②作AE⊥x轴于E点,BF⊥x轴于F点,如图,∵OA∥BC,∴∠AOC=∠BCF,∴Rt△OAE∽Rt△CBF,∴===2,设A点坐标为(a,a),则OE=a,AE=a,∴CF=a,BF=a,∴OF=OC+CF=3+a,∴B点坐标为(3+a,a),∵点A与点B都在y2=(x>0)的图象上,∴a•a=(3+a)•a,解得a=2,∴点A的坐标为(2,),把A(2,)代入y=,得k=2×=,故本结论正确;③∵A(2,),B(4,),CF=a=1,∴S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF=×2×+×(+)×2﹣×1×=+4﹣=6,故本结论错误;④由图象可知,当2<x<4时,有y1>y2>y3,故本结论正确;⑤∵S△COD=×3×4=6,S四边形ABDO=S四边形OCBA+S△OCD=6+6=12,∴S四边形ABDO=2S△COD,故本结论正确.故选A.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了相似三角形的判定与性质,图形的面积以及一次函数图象的平移问题.二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入求解.解答:解:原式=﹣+=.故答案为:.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y 轴,x轴的平行线交于C,则S△ABC=8.考点:反比例函数系数k的几何意义.分析:设点A(x,y),则xy=﹣4,根据交点关于原点对称可得出B(﹣x,﹣y),再根据三角形面积的公式进行计算即可.解答:解:设点A(x,y),则B(﹣x,﹣y),所以xy=﹣4,S△ABC=•(﹣x﹣x)(y+y)=﹣2xy=8,故答案为8.点评:本题考查了反比例函数系数k的几何意义,解题关键是确定点A、B坐标,三角形面积的计算.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是左视图和俯视图.考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.解答:解:根据几何体的摆放位置可知,主视图正确;左视图的高度不对;俯视图缺少两条看不到的虚线.故不符合规定的是左视图和俯视图.故答案为:左视图和俯视图.点评:本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.考点:几何概率.分析:计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可.解答:解:∵由有图可看出圆面图案总面积S总=6S1+6S2,∴黑色区域的面积S黑=2S1+2S2=S总,∴飞镖落在黑色区域的概率为;故答案为:.点评:此题考查了几何概率,一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=2cm.考点:圆周角定理;含30度角的直角三角形.分析:连接OC、OD、BC,利用圆周角、弧、弦间的关系求得∠COB=60°,则由圆周角定理得到∠CAB=30°,∠ACB=90°.易求BC的长度,利用勾股定理来求AC的长度.解答:解:如图,连接OC、OD、BC.∵C、D是半圆的三等分点,∴∠COB=60°,∴∠CAB=30°.又AB是直径,∴∠ACB=90°.又AB=4cm,∴BC=AB=2cm.∴由勾股定理得到:AC==2cm.故答案是:2cm.点评:本题考查了圆周角定理、含30度的直角三角形.根据已知条件“C、D是半圆的三等分点”求得∠COB=60°是解题的关键.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC 的BC边上的高为8或18.考点:垂径定理;勾股定理.专题:分类讨论.分析:分点A在优弧和劣弧上两种情况,当A在优弧上时,过A作AD⊥BC于点D,则可知O在AD上,连接BD,在Rt△BOD中可求得OD=5,可知AD=5+13,当点A在劣弧上时可知AD=OA﹣AD=8.解答:解:如图1,当点A在优弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO+OD=13+5=18;如图2,当点A在劣弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO﹣OD=13﹣5=8;综上可知△ABC的BC边上的高为8或18,故答案为:8或18.点评:本题主要考查垂径定理和等腰三角形的性质、勾股定理等知识的应用,分点A在优弧和劣弧上两种情况求解是解题的关键.注意勾股定理的应用.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为2.5秒.考点:视点、视角和盲区;相似三角形的应用.分析:如图,根据相似的判定可得出△ABC∽△ADE,从而得出DE的长,再根据小强骑车速度10米/秒,即可得出答案.解答:解:如图,∵BC∥DE,∴△ABC∽△ADE,∴BC:DE=5:25,∵BC=5米,∴DE=25米,∵小强骑车速度10米/秒,∴25÷10=2.5(秒),故答案为2.5米.点评:本题考查了视点、视角和盲区,以及相似三角形的应用,根据相似得出DE的长是解题的关键.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为y=﹣.考点:反比例函数综合题.分析:根据正切值,可得OA、AB的关系,根据勾股定理,可得OA的长,根据翻折的性质,可得OA′与OA的关系,根据倍角三角函数的关系,可得∠AOA′的正切,再根据补角正切间的关系,可得∠A′OE的正切,根据勾股定理,可得A′点的坐标,根据待定系数法,可得函数解析式.解答:解:如图:作A′E⊥x轴与E点.,由tan∠AOB==,得AB=4x,OA=3x.由勾股定理,得OA2+AB2=OB2,即(3x)2+(4x)2=102,解得x=2,3x=6.由翻折的性质,得OA′=OA=6,∠AOA′=2∠AOB.tan∠AOA′=tan2∠AOB===﹣.tan∠A′OE=tan(π﹣∠AOA′)=﹣tan∠AOA′=.由正切函数值,可设OE=7x,A′E=24x.由勾股定理,得A′E2+OE2=A′O2,即(7x)2+(24x)2=62.解得x=,OE=﹣,A′E=,即A′点的坐标是(﹣,).反比例函数y=的图象经过A′,得k=xy=﹣×=﹣.反比例函数的解析式为y=﹣,故答案为:y=﹣.点评:本题考查了反比例函数综合题,利用了翻折的性质,三角函数的倍角关系,勾股定理.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.考点:解直角三角形;特殊角的三角函数值.专题:计算题.分析:(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果;(3)过CD垂直于AB,交AB延长线于点D,由题意得到三角形BCD为等腰直角三角形,根据BC的长求出CD=BD=2,在直角三角形ACD中,由tanA的值,根据CD求出AD的长,进而确定出AB的长,利用勾股定理求出AC的长,即可确定出三角形ABC周长.解答:解:(1)原式=﹣1++2=4﹣1;(2)原式=1﹣﹣1++﹣=﹣;(3)作CD⊥AB,交AB延长线于点D,∵∠ABC=135°,BC=2,∴∠CBD=45°,在Rt△BCD中,BD=CD=BC=2,在Rt△ADC中,tanA==,∴AD=4,AB=2,根据勾股定理得:AC==2,则△ABC周长为2+2+2.点评:此题考查了解直角三角形,涉及的知识有:勾股定理,特殊角的三角函数值,二次根式的性质,锐角三角函数定义,以及等腰直角三角形的判定与性质,熟练掌握定理及法则是解本题的关键.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)根据概率公式求解;(2)利用树状图展示所有16种等可能的结果数,再找出两次都没有数字“4”所占的结果数,然后根据概率公式求解;(3)设增加了x张卡片,根据概率公式得到=,然后解方程即可.解答: .解:(1)抽到数字“4”的概率==;(2)画树状图为:共有16种等可能的结果数,其中两次都没有数字“4”占4种结果数,所有两次都没有数字“4”的概率==;(3)设增加了x张卡片,根据题意得=,解得x=4,即增加了4张卡片.点评:本题考查了列表法与树状图法:通过列表法或树状图法所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了概率公式.23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C 在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:本题是将实际问题转化为直角三角形中的数学问题,可通过构造出与实际问题有关的直角三角形,利用题中已知角和边,借助于三角函数来求解.解答:解:连接AC、AD、BC、BD,延长AT,过B作BT⊥AT于T,AC与BT交于点E.过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),在△BEP和△AET中,∠BPE=∠A TE=90°,∠AET=∠BEP,∴∠EBP=∠EAT=30度.∵∠BA T=60°,∴∠BAP=30°,从而BP=×75=37.5(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45度.在等腰Rt△CBP中,BC=BP=(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近.∴此船应转向南偏东75°方向上直接驶向港口C.设由B驶向港口C船的速度为每小时x海里,则据题意应有(60÷5×4﹣8)≤75,解不等式,得:x≥20(海里).答:此船应转向沿南偏东75°的方向向港口C航行,且航行速度至少不低于每小时20海里,才能保证船在抵达港口前不会沉没.点评:根据题意准确画出示意图是解这类题的前提和保障.可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题得以解决.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查50名常驻市民,篮球项目所占圆心角的度数是144°;估计该区1200万常驻市民中有480万人喜爱足球运动、有48万人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.。
昆明八中2024-2025学年上学期9月学情监测初三年级 数学试卷考试时间:80分钟 满分:100分第Ⅰ卷(选择题)一、单选题(每题2分,共30分)1. 2023年11月26日,云南省丽江至香格里拉铁路开通运营,迪庆藏族自治州结束了不通铁路的日子.据中国铁路昆明局集团消息,截至2024年4月26日,累计发送旅客超280000人次,数据“280000”用科学记数法表示应为( )A. 428010×B. 42810×C. 52.810×D. 60.2810× 2. 如图的图形中,是中心对称图形的是( )A. B. C. D. 3. 如图,AF 是BAC ∠的平分线,DF AC ∥,若135∠=°,则BAF ∠的度数为( )A. 17.5°B. 35°C. 55°D. 70°4. 下列运算正确的是( )A. 6m m m ⋅=B. ()33mn mn =C. ()326m m =D. 63m m m ÷= 5. 如图,已知12∠=∠,则不一定能使ABD ACD ≌△△的条件是( )A. BD CD =B. AB AC =C. B C ∠=∠D. BAD CAD ∠=∠ 6. 学习整式后,小红写下了这样一串单项式:x ,22x −,33x ,44x −, ,1010x −, ,请你写出第n 个单项式(用含n 的式子表示)为( )A. n nx −B. ()1n n nx −C. ()11n n nx +−D. ()21n n nx +−7. 若方程240x x m ++=没有实数根,则m 的取值范围是( )A. 4m >B. 4m <C. 2m ≥D. 5m ≤8. 高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A .科普,B .文学,C .体育,D .其他)数据后,绘制出两幅不完整的统计图,则下列说法错误..的是( )A. 样本容量为400B. 类型D 所对应的扇形的圆心角为36°C. 类型C 所占百分比为30%D. 类型B 的人数为120人9. 如图,矩形ABCD 的对角线AC BD ,相交于点O ,若60AOB ∠=°,1AB =,则AD 的长为( )A. √3B.C. 2D. 110. 把多项式328x x −因式分解的最后结果是( )A. ()324x x −B. ()224x x − C. 22(2)x x − D. 2(2)(2)x x x +− 11. 关于函数25y x =−−,下列说法不正确的是( )A. 图象是一条直线B. y 的值随着x 值的增大而减小C. 图象不经过第一象限D. 图象与x 轴的交点坐标为()5,0−12. 如图,四边形ABCD 内接于O ,若100D ∠=°,则AOC ∠的度数为( )A. 80°B. 140°C. 150°D. 160°13. 为了美化环境,2022年某市的绿化投资额为20万元,2024年该市计划绿化投资额达到45万元,设这两年该市绿化投资额的年平均增长率为x ,根据题意可列方程( )A. ()245120x −=B. ()220145x −=C. ()245120x +=D. ()220145x +=14. 如图,点A 在x 轴上,90,30,6OAB B OB ∠=°∠=°=,将OAB △绕点O 按顺时针方向旋转120°得到OA B ′′△,则点B ′的坐标是( )A. ()3−B. (C. ()D. (3,− 15. 如图(单位:m ),等腰直角三角形ABC 以2m/s 的速度沿直线l 向矩形移动,直到AB 与EF 重合,设s x 时,ABC 与矩形重叠部分的面积为2m y ,则下列图象中能大致反映y 与x 之间函数关系的是( )A. B.C. D.第Ⅱ卷(非选择题)二、填空题(每题2分,共8分)16. 计算:2422x x x +=++____________. 17.在实数范围内有意义,则实数x 的取值范围是________.18. 有一个正多边形,它的内角和等于外角和,那么这个正多边形的边数是__________.19. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2s (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择__________.三、解答题(62分)20. 计算:()2012π 3.143− .21. 已知:如图,点A 、D 、B 、E 在同一直线上,AC EF AD BE A E ==∠=∠,,.求证:ABC EDF △≌△.22. 甲、乙两名学生到离校2.1km “荣光社区”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的3倍,甲出发14min 后乙同学出发,两名同学同时到达,求甲同学步行的速度为多少千米每小时?23. 如图,菱形ABCD 对角线交于点O ,BE AC ∥,AE BD ,EO 与AAAA 交于点F .(1)求证:四边形AEBO 是矩形;(2)若10OE =,8AE =,求菱形ABCD 的面积.24. 艾草作为一种多年生草本药用植物,其特有的药食保健功能深受广大群众的喜爱,河南某艾草经销商计划购进一批香艾草和苦艾草进行销售,两种艾草的进价和售价如表所示:已知该经销商购进20千克香艾草和5千克苦艾草共需200元,购进15千克香艾草和10千克苦艾草共需225元.(1)求a ,b 的值;(2)若该经销商购进两种艾草共160千克,其中苦艾草进货量不超过香艾草进货量的3倍,设购进香艾草(100)x x ≤千克,则该经销商应该如何进货才能使销售利润y (元)最大?最大利润为多少? 25. 如图,直角三角形ABC 中,90C ∠=°,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)4BD =,2BE =,求AB 的长.的的26. 综合与探究:如图,在平面直角坐标系中,抛物线22y ax x c =−+与x 轴交于点()3,0A −和点C ,与y 轴交于点AA (0,3),点P 是抛物线上点A 与点C 之间动点(不包括点A ,点C ).备用图(1)求抛物线解析式;(2)动点P 在抛物线上,且在直线AB 上方,求ABP 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移2.5个单位,点F 为点P 的对应点,平移后的抛物线与y 轴交于点E ,Q 为平移后的抛物线的对称轴上任意一点,若QFE △是以QE 为腰的等腰三角形,求出所有符合条件的点Q 的坐标. 的的昆明八中2024-2025学年上学期9月学情监测初三年级 数学试卷考试时间:80分钟 满分:100分第Ⅰ卷(选择题)一、单选题(每题2分,共30分)1. 2023年11月26日,云南省丽江至香格里拉铁路开通运营,迪庆藏族自治州结束了不通铁路的日子.据中国铁路昆明局集团消息,截至2024年4月26日,累计发送旅客超280000人次,数据“280000”用科学记数法表示应为( )A. 428010×B. 42810×C. 52.810×D. 60.2810×【答案】C【解析】【分析】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.将一个数表示成10n a ×的形式,其中≤<110a ,n 为整数,这种记数方法叫做科学记数法,据此即可求得答案.【详解】解:5280000 2.810=×,故选:C .2. 如图的图形中,是中心对称图形的是( )A. B. C. D.【答案】D【解析】【分析】本题主要考查了中心对称图形的定义,根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A .不中心对称图形,故此选项不符合题意;B .不中心对称图形,故此选项不符合题意;C .不是中心对称图形,故此选项不符合题意;D .是中心对称图形,故此选项符合题意;故选:D .3. 如图,AF 是BAC ∠的平分线,DF AC ∥,若135∠=°,则BAF ∠的度数为( )A. 17.5°B. 35°C. 55°D. 70°【答案】B【解析】 【分析】根据两直线平行,同位角相等,可得1FAC ∠=∠,再根据角平分线的定义可得BAF FAC ∠=∠,从而可得结果.【详解】解:∵DF AC ∥,∴135FAC ∠=∠=°,∵AF 是BAC ∠的平分线,∴35BAF FAC ∠=∠=°,故B 正确.故选:B .4. 下列运算正确的是( )A. 6m m m ⋅=B. ()33mn mn =C. ()326m m =D. 63m m m ÷=【答案】C【解析】【分析】本题主要考查了同底数幂乘除法计算,积的乘方和幂的乘方计算,熟知相关计算法则是解题的关键.【详解】解:A 、67m m m ⋅=,原式计算错误,不符合题意;B 、()333mn m n =,原式计算错误,不符合题意;C 、()326m m =,原式计算正确,符合题意;D 、633m m m ÷=,原式计算错误,不符合题意;故选:C .5. 如图,已知12∠=∠,则不一定能使ABD ACD ≌△△的条件是( )A. BD CD =B. AB AC =C. B C ∠=∠D. BAD CAD ∠=∠【答案】B【解析】 【分析】本题考查三角形全等的判定,熟记三角形全等的判定方法是关键.根据全等三角形的判定定理SSS 、SAS 、AAS 、ASA 分别进行分析即可.【详解】解:A 、由BD CD =,12∠=∠,AD AD =,可利用SAS 定理判定ABD ACD △≌△,故此选项不合题意;B 、AD AD =,AB AC =,12∠=∠是边边角,则ABD △与ACD 不一定全等,故此选项符合题意; C 、由B C ∠=∠,12∠=∠,AD AD =,可利用AAS 定理判定ABD ACD △≌△,故此选项不合题意;D 、由BAD CAD ∠=∠,AD AD =,12∠=∠,可利用ASA 定理判定ABD ACD △≌△,故此选项不合题意;故选:B .6. 学习整式后,小红写下了这样一串单项式:x ,22x −,33x ,44x −, ,1010x −, ,请你写出第n 个单项式(用含n 的式子表示)为( )A. n nx −B. ()1n n nx −C. ()11n n nx +−D. ()21n n nx +− 【答案】C【解析】【分析】根据单项式的规律即可得到结论.【详解】()111x x +=−, ()2122122x x +=−−, ()3133313x x +=−,…第n 个单项式为:()11n n nx +−,故选:C . 【点睛】本题考查列代数式,解题的关键是理清题意,找到数字间的规律.7. 若方程240x x m ++=没有实数根,则m 的取值范围是( )A. 4m >B. 4m <C. 2m ≥D. 5m ≤ 【答案】A【解析】【分析】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据判别式的意义得到24410m −××<,即可求解.【详解】解:∵关于x 的一元二次方程240x x m ++=没有实数根.∴0∆<,即24410m −××<,解得,4m >,故选:A .8. 高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A .科普,B .文学,C .体育,D .其他)数据后,绘制出两幅不完整的统计图,则下列说法错误..的是( )A. 样本容量为400B. 类型D 所对应的扇形的圆心角为36°C. 类型C 所占百分比为30%D. 类型B 的人数为120人【答案】C【解析】【分析】根据A 类型的条形统计图和扇形统计图信息可判断选项A ;利用360°乘以10%可判断选项B ;利用C 类型的人数除以样本总人数可判断选项C ;利用B 类型所在百分比乘以样本总人数即可判断选项D .【详解】解:10025%400÷=,则样本容量为400,选项A 说法正确; 36010%36°×=°,则选项B 说法正确;140100%35%400×=,则选项C 说法错误; ()125%35%10%400120−−−×=(人),则选项D 说法正确; 故选:C .【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键. 9. 如图,矩形ABCD 的对角线AC BD ,相交于点O ,若60AOB ∠=°,1AB =,则AD 的长为( )A. √3B.C. 2D. 1【答案】A【解析】【分析】先证明AOB 是等边三角形,得出1OB AB ==,再由矩形的性质得出=22BD BO =,最后利用勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,对角线AC BD ,相交于点O , ∴1,2ACBD OA OB BD ===, 又60AOB ∠=°, ∴AOB 是等边三角形,∴1OB AB ==,∴=22BD BO =,AD ∴=故选:A .【点睛】本题考查了等边三角形的性质和判定,矩形的性质的应用及勾股定理,注意:矩形的对角线互相平分且相等.10. 把多项式328x x −因式分解的最后结果是( )A. ()324x x −B. ()224x x − C. 22(2)x x −D. 2(2)(2)x x x +− 【答案】D【解析】【分析】本题考查因式分解,先提公因式,再利用平方差公式法进行因式分解即可.【详解】解:32()()()2824222x x x x x x x −=−=+−; 故选D .11. 关于函数25y x =−−,下列说法不正确的是( )A. 图象是一条直线B. y 的值随着x 值的增大而减小C. 图象不经过第一象限D. 图象与x 轴的交点坐标为()5,0−【答案】D【解析】【分析】根据题目中的函数解析式和一次函数的性质,对各个选项逐一判断即可. 【详解】解: 函数25y x =−−, ∴A 正确,不符合题意;y 的值随着x 值的增大而减小,故选项B 正确,不符合题意;该函数图象经过第二、三、四象限,不经过第一象限,故选项C 正确,不符合题意;图象与x 轴的交点坐标为( 2.5,0)−,故选项D 不正确,符合题意;故选:D .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.12. 如图,四边形ABCD 内接于O ,若100D ∠=°,则AOC ∠的度数为( )A. 80°B. 140°C. 150°D. 160°【答案】D【分析】本题考查的是圆内接四边形的性质、圆周角定理.根据圆内接四边形的性质“圆内接四边形的对角互补”求出B ∠,再根据圆周角定理求出AOC ∠.【详解】解: 四边形ABCD 内接于O ,180D B ∴∠+∠=°,100D ∠=° ,80B ∴∠=°,由圆周角定理得:2160AOC B ∠=∠=°,故选:D .13. 为了美化环境,2022年某市的绿化投资额为20万元,2024年该市计划绿化投资额达到45万元,设这两年该市绿化投资额的年平均增长率为x ,根据题意可列方程( )A. ()245120x −=B. ()220145x −=C. ()245120x +=D. ()220145x +=【答案】D【解析】【分析】本题主要考查了一元二次方程的应用,根据题意列出形如2(1+)m x n =的方程即可.【详解】根据题意,得220(1)45x +=.故选:D .14. 如图,点A 在x 轴上,90,30,6OAB B OB ∠=°∠=°=,将OAB △绕点O 按顺时针方向旋转120°得到OA B ′′△,则点B ′的坐标是( )A. ()3−B. (C. ()D. (3,− 【答案】D【分析】本题考查坐标与旋转,含30度角的直角三角形,过点B ′作B C x ′⊥轴,根据旋转的性质,结合角的和差关系,得到60,6COB OB OB ′′∠=°==,进而求出,OC B C ′的长,即可得出结果。
九年级(上)月考数学试卷(9月份)一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣43.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤34.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.125.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣27.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+19.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.310.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.18.先化简,后求值,其中x为0、1、2、4中的一个数.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为.22.关于x的方程的解是非正数,则m的取值范围是.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=.24.已知=k,则k=.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.九年级上月考数学试卷(9月份)参考答案与试题解析一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣4【分析】根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变)逐个判断即可.【解答】解:A、∵a>b,∴﹣4a<﹣4b,故本选项错误;B、∵a>b,∴a b,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴4﹣a<4﹣b,故本选项错误;D、∵a>b,∴a﹣4>b﹣4,故本选项正确;【点评】本题考查了对不等式的性质的应用,主要考查学生的辨析能力,是一道比较典型的题目,难度适中.3.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.12【分析】根据多边形内角和定理列式计算即可.【解答】解:由题意得,(n﹣2)×180°=1260°,解得,n=9,故选:A.【点评】本题考查的是多边形的内角与外角,掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)是解题的关键.5.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】因为k=2>0,根据反比例函数性质,可知图象在一、三象限.【解答】解:∵k=2>0,∴图象在一、三象限.【点评】对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣2【分析】由于ax2﹣5x+3=0是一元二次方程,故a≠0;再解不等式即可求得a的取值范围;这样即可求得不等式的解集.【解答】解:不等式移项,得3a>﹣6,系数化1,得a>﹣2;又∵ax2﹣5x+3=0是一元二次方程,∴且a≠0;所以,a>﹣2且a≠0;故选:B.【点评】一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程.同时解不等式时,两边同时乘或除一个负数时,不等号的方向要改变.7.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【分析】求出方程的判别式后,根据判别式与0的大小关系来判断根的情况.【解答】解:∵方程的△=k2+4>0,故方程有两个不相等的实数根.故选:A.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+1【分析】根据把一个多项式转化成几个整式积的形式,可得答案.【解答】解:∵x3﹣2x2+x=x(x﹣1)2,∴C是因式分解,故选:C.【点评】本题考查了因式分解,因式分解的关键是把多项式转化成几个整式积的形式.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【分析】根据一次函数图象的位置进行判断,从函数图象来看,就是确定直线y=kx+b是否在在x 轴上(或下)方.【解答】解:根据图象可知:①当x<3时,一次函数y1=kx+b的图象在x轴上方,故y1>0;②当x<3时,一次函数y2=x+a的图象一部分在x轴上方,一部分在x轴下方,故y2>0或y2=0或y2<0;③当x>3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的下方,故y1<y2,所以正确的有①和③.故选:C.【点评】本题主要考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.10.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.【分析】根据题意列出乙每天加工零件的个数x﹣5,由等量关系式甲加工80个零件和乙加工70个零件所用的天数相同,列出方程即可.【解答】解:据题意列出方程得,,故选:D.【点评】解决此题的关键是:找对等量关系.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是x≤4且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣3≠0且4﹣x≥0,解得x≠3且x≤4.故函数y=的自变量x取值范围是x≤4且x≠3.故答案为:x≤4且x≠3.【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=﹣3.【分析】先多项式x2﹣10x+21分解因式可得n的值.【解答】解:x2﹣10x+21=(x﹣3)(x﹣7),∵x2﹣10x+21可以分解为(x+n)(x﹣7),∴n=﹣3,故答案为:﹣3.【点评】本题考查了因式分解与原多项式的关系,解决此类问题,由于多项式因式分解是恒等变形,根据相同项的系数相等,得到方程并求出其解.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是0<a<2.【分析】根据点所在的象限,列不等式组,求解即可.【解答】解:∵点P(2﹣a,﹣3a)在第四象限,∴,由①得a<2,由②得a>0,∴a的取值范围是0<a<2,故答案为0<a<2.【点评】本题考查了象限内点的符号特点,以及不等式组的解法,是基础知识比较简单.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为48.【分析】由平行四边形的对边相等可得一组对边的和为20,设BC为未知数,利用两种方法得到的平行四边形的面积相等,可得BC长,乘以4即为平行四边形的面积.【解答】解:∵平行四边形ABCD的周长为40,∴BC+CD=20,=BC•AE=CD•AF,设BC为x,∵S平行四边形ABCD∴4x=(20﹣x)×6,解得x=12,∴平行四边形ABCD的面积为12×4=48.故答案为48.【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等,面积等于底×高.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+【分析】(1)先求出其中各不等式的解集,再求出这些解集的公共部分即可;(2)先化简整理多项式,再根据十字相乘法进行因式分解即可;(3)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)解不等式①,可得x≥﹣2,解不等式②,可得x<3.5,∴不等式组的解集为:﹣2≤x<3.5;(2)(x﹣1)(x﹣3)﹣8=x2﹣4x+3﹣8=x2﹣4x﹣5=(x﹣5)(x+1);(3)=+方程两边同乘(x+2)(x﹣2),可得(x﹣2)2=(x+2)2+16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,∴原方程无解.【点评】本题主要考查了解一元一次不等式组,因式分解以及解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.【分析】先根据算术平方根、绝对值和平方的非负性可得a、b、c的值,代入方程解出即可.【解答】解;当+|b+2|+c2=0时,则,∴,∴4x2﹣2x=0,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=【点评】本题考查了算术平方根、绝对值和平方的非负性和利用因式分解解一元二次方程,熟练掌握算术平方根、绝对值和平方的非负性是关键.18.先化简,后求值,其中x为0、1、2、4中的一个数.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣,当x=0时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是(﹣2,1);(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是(﹣5,0);(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是(﹣3,﹣1).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)直接利用关于点对称的性质得出对称中心即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(﹣2,1);故答案为:(﹣2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(﹣5,0);故答案为:(﹣5,0);(3)点C、C2关于某点中心对称,对称中心的坐标是:(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】此题主要考查了旋转变换和平移变换,根据题意得出对应点位置是解题关键.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.【分析】(1)首先这两个三角形是直角三角形,可根据菱形的性质四边相等,对边平行,可得到AB=DC,AE=CF;(2)因为三角形AEB是直角三角形,可根据勾股定理求解;(3)用角平分线上的点到两边的距离相等的性质以及勾股定理可求出DB的长度与菱形ABCD 的边长.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD∥BC,又∵AE⊥CE,CF⊥AF,∴AE=CF,∴在直角三角形AEB和直角三角形CFD中,∴△AEB≌△CFD;(2)①∵△AEB≌△CFD,∴DF=BE=1,∴FC==,②当CD是∠ACF的平分线时∵∠DOC=90°,∠CFD=90°,∴DO=DF=1,∴DB=2,∵CD是∠ACF的平分线,∴∠ECA=∠DCA=∠DCF=30°,∴∠BCD=60°,∴△BCD是等边三角形,∴菱形ABCD的边长为2.【点评】本题考查菱形的性质,勾股定理以及角平分线上的点到两边的距离相等,和直角三角形全等的判定,关键是熟记这些性质定理和判定定理.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为120.【分析】把所求的代数式整理为和所给代数式相关的式子,代入求值即可.【解答】解:a2b+ab2=ab(a+b)=15×8=120.【点评】本题考查因式分解的运用,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.22.关于x的方程的解是非正数,则m的取值范围是m≥.【分析】先解方程求得x,然后根据x≤0,求出m的取值范围即可.【解答】解:去分母得,2(x+m)﹣3(2x﹣1)=6m,去括号得,2x+2m﹣6x+3=6m,移项合并得,﹣4x=4m﹣3,系数化为1得,x=,∵关于x的方程的解是非正数,∴≤0,∴m≥.故答案为:m≥.【点评】本题考查了解一元一次方程以及一元一次不等式,是一道综合题,难度不大.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=2:1.【分析】根据平行线分线段成比例定理求出,,推出AO=AG,OH=OG﹣HG=AG﹣AG,代入求出即可.【解答】解:∵DE∥BC,AD:DB=3:1,∴===,==,∴OH=OG﹣HG=AG﹣AG,∵点O是线段AG的中点,∴OA=OG=AG,∴AO:OH=(AG):(AG﹣AG)=2:1,故答案为:2:1.【点评】本题考查学生对平行线分线段成比例定理的灵活运用,关键是检查学生能否熟练地运用平行线分线段定理进行推理.24.已知=k,则k=2或﹣1..【分析】先根据比例的性质得出bk=a+c,ck=b+a,ak=c+b,再将这三个式子相加,整理得出(a+b+c)k=2(a+b+c).然后分a+b+c≠0与a+b+c=0两种情况,分别求出k的值即可.【解答】解:∵=k,∴bk=a+c,ck=b+a,ak=c+b,∴bk+ck+ak=a+c+b+a+c+b,∴(a+b+c)k=2(a+b+c).①如果a+b+c≠0,那么k=2;②如果a+b+c=0,那么a+c=﹣b,k==﹣1.故答案为2或﹣1.【点评】本题考查了比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.分情况讨论是解题的关键.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故答案为:.【点评】本题考查了等腰直角三角形性质,勾股定理,含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但有一定的难度.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?【分析】(1)如果设每件商品提高x元,用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x﹣8)[200﹣20(x﹣10)];(3)将(2)中关系式化简配方,即可得y=﹣20(x﹣14)2+720,即可求得答案.【解答】解:(1)设每件商品提高x元,则每件利润为(10+x﹣8)=(x+2)元,每天销售量为(200﹣20x)件,依题意,得:(x+2)(200﹣20x)=700.整理得:x2﹣8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;(2)设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200;(3)y=﹣20x2+560x﹣3200,=﹣20(x﹣14)2+720,则当售价定为14元时,获得最大利润;最大利润为720元.【点评】此题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EF=DF=DG,CF=DF=DG,从而得证;(2)根据等边对等角可得∠FDE=∠FED,∠FCD=∠FDC,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFC=2∠BDC,然后根据正方形的对角线平分一组对角求出∠BDC=45°,求出∠EFC=90°,从而得证;(3)延长EF交CD于H,先求出EG∥CD,再根据两直线平行,内错角相等求出∠EGF=∠HDF,然后利用“角边角”证明△EFG和△HFD全等,根据全等三角形对应边相等可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.【解答】(1)证明:∵∠BEG=90°,点F是DG的中点,∴EF=DF=DG,∵正方形ABCD中,∠BCD=90°,点F是DG的中点,∴CF=DF=DG,∴EF=CF;(2)证明:∵EF=DF,CF=DF,∴∠FDE=∠FED,∠FCD=∠FDC,∴∠EFC=∠EFG+∠CFG=∠FDE+∠FED+∠FCD+∠FDC=2∠FDE+2∠FDC=2∠BDC,在正方形ABCD中,∠BDC=45°,∴∠EFC=2×45°=90°,∴EF⊥CF;(3)解:△CEF是等腰直角三角形.理由如下:如图,延长EF交CD于H,∵∠BEG=90°,∠BCD=90°,∴∠BEG=∠BCD,∴EG∥CD,∴∠EGF=∠HDF,∵点F是DG的中点,∴DF=GF,在△EFG和△HFD中,,∴△EFG≌△HFD(ASA),∴EG=DH,EF=FH,∵BE=EG,BC=CD,∴BC﹣EB=CD﹣DH,即CE=CH,∴EF⊥CF(等腰三角形三线合一),CF=EF=EH,∴△CEF是等腰直角三角形.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的判定,熟记各性质是解题的关键,(3)作辅助线构造出等腰直角三角形和全等三角形是解题的关键.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.【分析】(1)根据OA=4,OC=2,BC=OA,因而就可求得BC=2CD,则可以求出∠BCD=60°,则旋转角即可求得;作DM⊥CB于点M,FN⊥CB于点N,根据三角函数即可求得:DM,CM的长,从而求得D的坐标,在Rt△CFN中,根据三角函数即可求得CN,FN的长,即得F的坐标;(2)①HB即为直线EF经过点B时移动的距离.在Rt△C′DH中利用三角函数即可求得DH,从而得到HE,再在△HEB中,利用三角函数求得BH,即可求得时间.②重合的部分可能是四边形,也可能是三角形,应分两种情况进行讨论.【解答】解:(1)如图1.在矩形OABC中,OA=4,OC=2,所以在RT△BCD中,BC=2CD,即所以∠BCD=60°.所以旋转角∠OCD=30°作DM⊥CB于点M,FN⊥CB于点N.在RT△CDM中,CM=CD•cos60°=1,DM=CD•sin60°=.所以点D到x轴的距离为.在RT△CFN中,,所以点F到x轴的距离为4.故D(1,),F((2)①如图2,HB即为直线EF经过点B时移动的距离.在RT△C′DH中,,所以.在RT△BEH中,HE=BHcos30°,则.所以直线EF经过点B时所需的时间秒②过点D作DM⊥BC于点M.在RT△DMC′中,C′M=.在RT△DHC′中,C′D=C′Hcos60°=2.当0<t<1时,重叠部分面积为四边形DGCH,如图2,C′C=t,CG=C′Ctan60°=t..当1≤t<4时,重叠部分的面积为△GCH,如图3,.所以重叠部分的面积S=CG•CH=×(4﹣t)(4﹣t)=t2﹣t+.【点评】本题是三角函数与图形的旋转相结合的题目,注意旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.得到相等关系是解决本题的关键.。
2022-2023辽宁省丹东九年级(上)第一次月考数学试卷一、选择题(每题2分,共20分)1.(2分)已知一个菱形的周长是20,两条对角线的比是4:3,则这个菱形的面积是()A.24 B.96 C.12 D.452.(2分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±43.(2分)下列命题错误的是()A.平行四边形的对边相等B.一个角是直角的平行四边形是矩形C.矩形的对角线相等D.对角线相等的四边形是矩形4.(2分)下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=05.(2分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2 D.46.(2分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.(2分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2 C.2 D.8.(2分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣39.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45 10.(2分)有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则A:B等于()A.1:B.1:2 C.2:3 D.4:9二、填空题(每题2,共20分11.(2分)将方程x2+2x﹣7=0配方为(x+m)2=n的形式为.12.(2分)菱形ABCD,∠BAD=120°,且AB=3,则BD=.13.(2分)若一元二次方程(3m+6)x2+m2﹣4=0的常数项为0,则m=.14.(2分)如图,已知点A是一次函数y=x﹣4在第四象限的图象的一个动点,且矩形ABOC的面积为3,则A点坐标为.15.(2分)已知方程ax2+bx+c=0,满足a﹣b+c=0,则必有一个根为.16.(2分)点P是矩形ABCD的边AD上的一个动点,AB=3,AD=4,那么点P 到矩形的两条对角线AC和BD的距离之和是.17.(2分)某商品原价100元,连续两次涨价x%后售价为121元,则列出的方程是.18.(2分)已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.19.(2分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.20.(2分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三、简答题21.(20分)解方程(1)6x2﹣7x+1=0(2)4x2﹣3x=52(3)(x﹣2)(x﹣3)=12(4)5x2﹣18=9x.22.(6分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.23.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC 于F(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.24.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m ﹣+1)的值.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现每件商品每降价1元,商场平均每天可多售出2件.求:(1)每件商品降价多少元时,商场日盈利可达到2100元?(2)每件商品降价多少元时,商场日盈利最多?26.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2022-2023辽宁省丹东九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)已知一个菱形的周长是20,两条对角线的比是4:3,则这个菱形的面积是()A.24 B.96 C.12 D.45【解答】解:∵菱形的周长是20,∴菱形的边长为20÷4=5,∵两条对角线的比是4:3,∴设两对角线的一半分别为4k、3k,由勾股定理得,(4k)2+(3k)2=52,解得k=1,∴两对角线的一半分别为4,3,两对角线的长分别为8,6,∴这个菱形的面积=×8×6=24.故选:A.2.(2分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±4【解答】解:把x=4代入方程x2﹣3x=a2可得16﹣12=a2,解得a=±2,故选:C.3.(2分)下列命题错误的是()A.平行四边形的对边相等B.一个角是直角的平行四边形是矩形C.矩形的对角线相等D.对角线相等的四边形是矩形【解答】解:A、正确.平行四边形的对边相等;B、正确.一个角是直角的平行四边形是矩形;C、正确.矩形的对角线相等;D、错误.对角线相等的四边形不一定是矩形,比如等腰梯形对角线相等,不是矩形;故选:D.4.(2分)下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0【解答】解:A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=﹣16<0,方程没有实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.5.(2分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2 D.4【解答】解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选:D.6.(2分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.7.(2分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2 C.2 D.【解答】解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:B.8.(2分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选:A.9.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∵共比赛了45场,∴x(x﹣1)=45,故选:A.10.(2分)有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则A:B等于()A.1:B.1:2 C.2:3 D.4:9【解答】解:∵大四边形是正方形,∴∠ECH=45°,∴HC=HE,同理,CH=HG=GD,即EF=CD,OD=CD,∴=,∵面积为A的三角形与面积为B三角形都是等腰直角三角形,∴这两个三角形相似,∴A:B=()2=,故选:D.二、填空题(每题2,共20分11.(2分)将方程x2+2x﹣7=0配方为(x+m)2=n的形式为(x+1)2=8.【解答】解:把方程x2+2x﹣7=0的常数项移到等号的右边,得到x2+2x=7,方程两边同时加上一次项系数一半的平方,得到x2+2x+1=7+1,配方得(x+1)2=8.故答案为(x+1)2=8.12.(2分)菱形ABCD,∠BAD=120°,且AB=3,则BD=3.【解答】解:如图:∵四边形ABCD是菱形,∴∠BAC=∠BAD,AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAC=60°,∵AB=3,∴BO=3×sin60°=,∴BD=3.故答案为:3.13.(2分)若一元二次方程(3m+6)x2+m2﹣4=0的常数项为0,则m=2.【解答】解:由题意,得m2﹣4=0且3m+6≠0,解得m=2,故答案为:2.14.(2分)如图,已知点A是一次函数y=x﹣4在第四象限的图象的一个动点,且矩形ABOC的面积为3,则A点坐标为(1,﹣3)或(3,﹣1).【解答】解:∵点A是一次函数y=x﹣4在第四象限的图象的一个动点,∴可设A(x,x﹣4),∴OB=x,AB=4﹣x,=OB•OA=x(4﹣x)=3,解得x=1或x=3,∴S矩形ABOC∴A点坐标为(1,﹣3)或(3,﹣1),故答案为:(1,﹣3)或(3,﹣1).15.(2分)已知方程ax2+bx+c=0,满足a﹣b+c=0,则必有一个根为x=﹣1.【解答】解:∵a﹣b+c=0,∴c=﹣a+b,∴ax2+bx﹣a+b=0,∴a(x+1)(x﹣1)+b(x+1)=0,∴(x+1)(ax﹣a+b)=0,∴x+1=0或ax﹣a+b=0,∴方程必有一个根为x=﹣1.故答案为x=﹣1.16.(2分)点 P 是矩形ABCD 的边AD 上的一个动点,AB=3,AD=4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是 2.4 .【解答】解:连接OP ,∵矩形的两条边AB 、AD 的长分别为3和4,∴S 矩形ABCD =AB•BC=12,OA=OC ,OB=OD ,AC=BD=5,∴OA=OD=2.5,∴S △ACD =S 矩形ABCD =6,∴S △AOD =△ACD =3,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×2.5×PE +×2.5×PF=(PE +PF )=3,解得:PE +PF=2.4.故答案为:2.4.17.(2分)某商品原价100元,连续两次涨价x%后售价为121元,则列出的方程是 100(1+x%)2=121 .【解答】解:第一次涨价后的价格为100×(1+x%),第二次涨价后的价格为100×(1+x%)2,则可列方程为100(1+x%)2=121,故答案为100(1+x%)2=121.18.(2分)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 15°或75° .【解答】解:有两种情况:(1)当E 在正方形ABCD 内时,如图1∵正方形ABCD,∴AD=CD,∠ADC=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°﹣60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°﹣∠ADE)=75°;(2)当E在正方形ABCD外时,如图2∵等边三角形CDE,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=(180°﹣∠ADE)=15°.故答案为:15°或75°.19.(2分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.20.(2分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=2﹣3.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△R t△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴∠BHA=∠BHE=60°,∴∠KHF=180°﹣60°﹣60°=60°,∵∠F=90°,∴∠FKH=30°,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.三、简答题21.(20分)解方程(1)6x2﹣7x+1=0(2)4x2﹣3x=52(3)(x﹣2)(x﹣3)=12(4)5x2﹣18=9x.【解答】解:(1)∵6x2﹣7x+1=0,∴(6x﹣1)(x﹣1)=0,∴6x﹣1=0,x﹣1=0,∴x1=,x2=1(2)∵4x2﹣3x=52,∴4x2﹣3x﹣52=0,∴(4x+13)(x﹣4)=0,∴4x+13=0或x﹣4=0,∴x1=﹣,x2=4.(3)∵(x﹣2)(x﹣3)=12,∴x2﹣5x﹣6=0,∴(x,﹣6)(x+1)=0,∴x﹣6=0或x+1=0,x1=﹣1 x2=6.(4)∵5x2﹣18=9x,∴5x2﹣9x﹣18=0,∴(5x+6)(x﹣3)=0,∴5x+6=0或x﹣3=0,∴x1=﹣,x2=322.(6分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.【解答】解:∵最简二次根式与是同类二次根式,且x为整数,∴2x2﹣x=4x﹣2,即2x2﹣5x+2=0,解得:x=(舍去)或x=2,把x=2代入方程得:2m2+2m﹣2=0,即m2+m﹣1=0,解得:m=.23.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC 于F(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DE∥AF,∵EF∥AD,∴四边形DAFE是平行四边形,∵∠2=∠AFD,∵DF是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AFD=∠1.∴AD=AF.∴四边形AFED是菱形.(2)∵∠DAF=60°,∴△AFD为等边三角形.∴DF=5,连接AE与DF相交于O,则FO=.∴OA=.∴AE=5.=AE•DF=∴S菱形AFED24.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m ﹣+1)的值.【解答】解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)===2×(1+1)=2×2=4.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现每件商品每降价1元,商场平均每天可多售出2件.求:(1)每件商品降价多少元时,商场日盈利可达到2100元?(2)每件商品降价多少元时,商场日盈利最多?【解答】解:(1)由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去.∴x=20答:每件商品降价20元,商场日盈利可达2100元;(2)y=(50﹣x)(30+2x)=﹣2x2+70x+1500,当x=﹣=17.5时,y最大.答:每件商品降价17.5元时,商场日盈利的最大.26.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
天津市河西区自立中学2019-2019学年上学期第一次月考九年级数学试卷一、单选题(共12题,共36分)1.方程(1)0x x -=的两根分别为( ).A .11x =,21x =-B .10x =,21x =-C .10x =,21x =D .121x x == 2.抛物线22y x =-与y 轴交点的坐标是( ). A .(2,0)B .(2,0)-C .(0,2)D .(0,2)- 3.抛物线2y ax bx c =++与x 轴的交点是(1,0)-,(3,0),则这条抛物线的对称轴是( ).A .直线1x =-B .直线0x =C .直线1x =D .直线3x =4.某广场有一喷水池,水从地面喷出,如图,以在水平地面内的一条水平线为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( ). A .4米B .3米C .2米D .1米 5.若二次函数22(1)23y m x mx m m =+-+--图象经过原点,则m 的值为( ).A .1-或3B .3C .1-D .3-或16.下列生态环保标志中,是中心对称图形的是( ).A .B .C .D .7.如图所示,ABC △的顶点坐标是(4,6)A ,(5,2)B ,(2,1)C ,如果将ABC △绕点C 按逆时针方向旋转90︒,得到A B C '''△,那么点A 的对应点A '的坐标是( ).A .(3,3)-B .(3,3)-C .(2,4)-D .(1,4)8.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( ).A .xyOB .xy OC .xyOD .xyO9.将抛物线224y x =+绕原点O 旋转180︒,则旋转后的抛物线的解析式为( ).A .224y x =--B .224y x =-+C .224y x =-D .22y x =-10.已知抛物线2(1)y x m =-+(m 是常数),点11(,)A x y ,22(,)B x y 在抛物线上,若121x x <<,122x x +>,则下列大小比较正确的是( ). A .12m y y >> B .21m y y >> C .12y y m >> D .21y y m >> 11.已知二次函数2()1y x m =--,当3x ≤时,y 随x 的增大而减小,则m 的取值范围是( ).A .3m =B .3m >C .3m ≥D .3m ≤12.如图是二次函数2y ax bx c =++的图象的一部分,图象过点(3,0)A -,对称轴为直线1x =-,给出四个结论:①24b ac >;②20a b +=;③0c a -<;④若点1(4,)B y -,2(1,)C y 为函数图象上的两点,则12y y <,其中正确结论是( ).A .②④B .②③C .①③D .①④二、填空题(共6题,共18分)13.二次函数22(1)y x =-图象的顶点坐标为__________.14.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是260 1.5y x x =-,该型号飞机着陆后滑行的最大距离是__________m .15.已知抛物线2y ax bx c =++过(2,3)-,(4,3)两点,那么抛物线的对称轴为直线__________. 16.设m 、n 是方程2370x x +-=的两个根,则24m m n ++=__________.17.边长为1的正方形OABC 的顶点A 在x 正半轴上,点C 在y 正半轴上,将正方形OABC 绕顶点O 顺时针旋转75︒,如图所示,使点B 恰好落在函数2(0)y ax a =<的图象上,则a 的值为__________.18.若关于x 的一元二次方程(3)(5)x x m --=有实数根1x 、2x ,且12x x ≠,有下列结论:①13x =,25x =;②1m >-;③二次函数12()()y x x x x m =--+的图象与x 轴的公共点是(3,0)和(5,0).其中,正确的结论是__________(填序号).三、解答题(共6题,共66分) 19.(10分)解下列方程.20.(10分)二次函数23y x bx =++的图像经过点(3,0). (1)求b 的值.(2)求出该二次函数图像的顶点坐标和对称轴. (3)画出该二次函数的图像.(4)根据图像回答,当x 取何值时,0y <?21.(10分)如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度10m a =).(1)如果所围成的花圃的面积为245m ,试求宽AB 的长.(2)按题目的设计要求,能围成面积比245m 更大的花圃吗?请求出最大面积,并说明围法;如果不能,请说明理由.22.(12分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?23.(12分)在平面直角坐标系中,点(4,0)A ,点(0,3)B ,把ABO △绕点B 逆时针旋转,则A BO ''△,点A 、O 旋转后的对应点为A '、O ',旋转角为α.(1)如图1,若90α=︒,求AA '的长. (2)如图2,若120α=︒,求O '的坐标.(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P ',当PO BP ''+取得最小值时,求点P '的坐标.24.(12分)在平面直角坐标系中,平行四边形ABOC 如图放置,点(0,4)A ,(1,0)C -,将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B OC '''. (1)若抛物线经过点C 、A 、A ',求此抛物线的解析式.(2)在(1)情况下,点M 是第一象限内抛物线上的一动点,问:当点M 在何处时,AMA '△的面积最大?最大面积是多少?并求出此时M的坐标.(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成以BQ作为一边的平行四边形时,求点P的坐标.参考答案1-10、CDCAB BADAA 11-12、CD13、(1,0)14、60015、x=116、417、18、②③19、20、21、22、23、24、。
2022-2023湖北省黄冈市英才学校九年级(上)第一次月考数学试卷一、选择题(每题3分,共30分)1.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或22.若α,β是方程x2+2x﹣=0的两个实数根,则α2+3α+β的值为()A. B. C.﹣D.40103.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠04.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=05.某城市底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300 6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=67.关于x的方程x2+px+q=0的两根同为负数,则()A.p>0且q>0 B.p>0且q<0 C.p<0且q>0 D.p<0且q<08.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+4=0 B.4x2﹣4x+1=0 C.x2+x+3=0 D.x2+2x﹣1=09.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1 B.m<﹣2 C.m≥0 D.m<010.已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3 C.6 D.9二、填空题(每题3分,共24分)11.方程(x﹣1)2=4的解为.12.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.13.关于x的代数式x2+(m+2)x+9中,当m=时,代数式为完全平方式.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.15.已知3x2﹣x=7的二次项系数是,一次项系数是,常数项是.16.方程x2+3x+1=0的两个根为α、β,则+的值为.17.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则+=.18.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为.三、解关于x的方程(每小题16分,共16分):19.解关于x的方程.(1)(5x﹣3)2=(x+1)2(2)(配方法)2x2+3=7x(3)x2﹣5x﹣6=0(4)(x+3)2+3(x+3)﹣4=0.四、解答题(共50分):20.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.21.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?22.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.23.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.25.如图.A、B、C、D为矩形的4个顶点:AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止:点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?2022-2023湖北省黄冈市英才学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或2【考点】换元法解一元二次方程.【分析】设t=x+y,则原方程转化为关于t的一元二次方程,通过解该方程求得t即x+y的值即可.【解答】解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.2.若α,β是方程x2+2x﹣=0的两个实数根,则α2+3α+β的值为()A. B. C.﹣D.4010【考点】根与系数的关系;一元二次方程的解.【分析】根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=,x1x2=.而α2+3α+β=α2+2α+(α+β),即可求解.【解答】解:α,β是方程x2+2x﹣=0的两个实数根,则有α+β=﹣2.α是方程x2+2x﹣=0的根,得α2+2α﹣=0,即:α2+2α=.所以α2+3α+β=α2+2α+(α+β)=α2+2α﹣2=﹣2=.故选B.3.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0【考点】根的判别式.【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=0;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:当k=0时,方程为3x﹣1=0,有实数根,当k≠0时,△=b2﹣4ac=32﹣4×k×(﹣1)=9+4k≥0,解得k≥﹣.综上可知,当k≥﹣时,方程有实数根;故选C.4.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0【考点】根与系数的关系.【分析】解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.【解答】解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B.5.某城市底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300 【考点】由实际问题抽象出一元二次方程.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.【解答】解:设绿化面积平均每年的增长率为x,根据题意即可列出方程300(1+x)2=363.故选B.6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.7.关于x的方程x2+px+q=0的两根同为负数,则()A.p>0且q>0 B.p>0且q<0 C.p<0且q>0 D.p<0且q<0【考点】根与系数的关系.【分析】由于只有方程△≥0、两根之积>零、两根之和<零时,方程x2+px+q=0的两根才同为负数,由此得到关于p,q的不等式,然后确定它们的取值范围.【解答】解:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=﹣p,x1x2=q∴﹣p<0,q>0∴p>0,q>0.故选A.8.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+4=0 B.4x2﹣4x+1=0 C.x2+x+3=0 D.x2+2x﹣1=0【考点】根的判别式.【分析】根据一元二次方程根的判别式,分别计算△的值,根据△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根,进行判断.【解答】解:A、△=﹣16<0,方程没有实数根;B、△=0,方程有两个相等的实数根;C、△=1﹣12=﹣11<0,方程没有实数根;D、△=4+4=8>0,方程有两个不相等的实数根.故选D.9.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1 B.m<﹣2 C.m≥0 D.m<0【考点】根的判别式.【分析】因为关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,所以△=4+4m>0,解此不等式即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,∴△=4+4m>0,即m>﹣1.故选A.10.已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3 C.6 D.9【考点】勾股定理;根与系数的关系.【分析】根据根与系数的关系,求出两根之积与两根之和的值,再根据勾股定理列出直角三角形三边之间的关系式,然后将此式化简为两根之积与两根之和的形式,最后代入两根之积与两根之和的值进行计算.【解答】解:设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2﹣2ab=16﹣7=9,∴c=3,故选B.二、填空题(每题3分,共24分)11.方程(x﹣1)2=4的解为3或﹣1.【考点】解一元二次方程-直接开平方法.【分析】观察方程的特点,可选用直接开平方法.【解答】解:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.12.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.【考点】一元二次方程的解;根与系数的关系.【分析】根据根与系数的关系列出关于另一根x的方程,解方程即可.【解答】解:∵关于x的方程2x2﹣3x+c=0的一个根是1,∴x=1满足关于x的方程2x2﹣3x+c=0,1+x=,解得,x=;故答案是:.13.关于x的代数式x2+(m+2)x+9中,当m=4或﹣8时,代数式为完全平方式.【考点】完全平方式.【分析】先根据乘积二倍项确定出这两个数是x和±3,再根据完全平方公式:(a±b)2=a2±2ab+b2,求出答案即可.【解答】解:∵x2+(m+2)x+9为完全平方式,∴这两个数是x、±3,∴m+2=2×1×(±3),即m=4或﹣8.故答案为:4或﹣8.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.【考点】一元二次方程的定义.【分析】由一元二次方程的定义回答即可.【解答】解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1且m﹣≠0.解得m=.故答案为:.15.已知3x2﹣x=7的二次项系数是3,一次项系数是﹣1,常数项是﹣7.【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式,可得答案.【解答】解:化为一般式,得3x2﹣x﹣7=0,二次项系数是3,一次项系数是﹣1,常数项是﹣7,故答案为:3,﹣1,﹣7.16.方程x2+3x+1=0的两个根为α、β,则+的值为3.【考点】根与系数的关系.【分析】根据根与系数的关系可得出α+β=﹣3、α•β=1,将+转化为代入数据即可得出结论.【解答】解:∵方程x2+3x+1=0的两个根为α、β,∴α+β=﹣3,α•β=1,∴+======3.故答案为:3.17.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则+=2或﹣18.【考点】根与系数的关系.【分析】分类讨论:当m=n时,易得原式=2;当m≠n时,则可把m、n看作方程x2﹣4x ﹣1=0的两根,根据根与系数的关系得到m+n=4,mn=﹣1,再把原式变形得到=,然后利用整体代入的方法计算即可.【解答】解:当m=n时,原式=1+1=2;当m≠n时,m、n可看作方程x2﹣4x﹣1=0的两根,则m+n=4,mn=﹣1,所以原式====﹣18.故答案为2或﹣18.18.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为10或6或12.【考点】等腰三角形的性质;一元二次方程的应用;三角形三边关系.【分析】根据方程y2﹣6y+8=0得出两边边长,再根据等腰三角形的性质和三边关系讨论求解.【解答】解:∵y2﹣6y+8=0∴y=2,y=4∴分情况讨论:当三边的边长为2,2,4,不能构成三角形;当三边的边长为2,4,4能构成三角形,三角形的周长为10;当三边都是2时,三角形的周长是6;当三角形的三边都是4时,三角形的周长是12.故此三角形的周长为10或6或12.三、解关于x的方程(每小题16分,共16分):19.解关于x的方程.(1)(5x﹣3)2=(x+1)2(2)(配方法)2x2+3=7x(3)x2﹣5x﹣6=0(4)(x+3)2+3(x+3)﹣4=0.【考点】换元法解一元二次方程;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)先把方程的右边化为0,再把左边因式分解即可;(2)移项、二次项系数化成1,两边加上一次项系数一半的平方,则左边是一次式的平方,右边是常数,即可利用直接开平方法求解;(3)利用因式分解法解方程即可;(4)把x+3看作一个整体,利用因式分解法解方程即可.【解答】解:(1)(5x﹣3)2=(x+1)2,移项,得:(5x﹣3)2﹣(x+1)2=0,因式分解,得:(5x﹣3+x+1)(5x﹣3﹣x﹣1)2=0,6x﹣2=0,或4x﹣4=0,解得x1=,x2=1;(2)(配方法)2x2+3=7x,移项,得:2x2﹣7x=﹣3,二次项系数化成1,得:x2﹣x=﹣,配方,得:x2﹣x+=﹣+,即(x﹣)2=,则x﹣=±,则x1=3,x2=;(3)x2﹣5x﹣6=0,因式分解,得:(x﹣6)(x+1)=0,x﹣6=0,或x+1=0,解得x1=6,x2=﹣1;(4)(x+3)2+3(x+3)﹣4=0,因式分解,得:(x+3﹣1)(x+3+4)=0,x+2=0,或x+7=0,解得x1=﹣2,x2=﹣7.四、解答题(共50分):20.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.21.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(3﹣0.5x)元,由题意得(x+3)(3﹣0.5x)=10求出即可.【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.22.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】(1)根据题意得出AB、AC的长,再由根与系数的关系得出k的值;(2)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值.【解答】解:(1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2﹣2AB•AC,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或﹣5(不合题意舍去);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16.23.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)因为方程有两个实数根,所以△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=﹣3,x1x2=m﹣1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.【解答】解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤;(2)∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.【考点】二次函数的应用;二次函数的最值.【分析】(1)如果设每件商品提高x元,可先用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x ﹣8),然后化简配方,即可求得答案.【解答】解:(1)设每件商品提高x元,则每件利润为(10+x﹣8)=(x+2)元,每天销售量为件,依题意,得:(x+2)=700.整理得:x2﹣8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;答:把售价定为每件13元或15元能使每天利润达到700元.(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,根据题意得:y=(x﹣8),=﹣20x2+560x﹣3200,=﹣20(x2﹣28x)﹣3200,=﹣20(x2﹣28x+142)﹣3200+20×142=﹣20(x﹣14)2+720,∴x=14时,利润最大y=720.答:应将售价定为14元时,才能使所赚利润最大,最大利润为720元.25.如图.A、B、C、D为矩形的4个顶点:AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止:点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?【考点】一元二次方程的应用.【分析】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,表示出PB、BQ,利用勾股定理建立方程求得答案即可.【解答】解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,则PB=16﹣3t,BQ=6﹣2t,∵PB2+BQ2=PQ2,∴(16﹣3t)2+(6﹣2t)2=102,解得t1=,t2=.∵0<t<3,∴t1=(不合题意,舍去).答:P,Q两点从出发经过秒时,点P,Q间的距离是10cm.1月7日。
2022-2023学年辽宁省鞍山市铁东区华育外国语实验学校九年级(上)第一次月考数学试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.164.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1 5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=917.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为.10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是(用“<”连接).12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有.①FA2+FC2=FG2②AM=BG③=④三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.参考答案一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断即可.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形的概念,正确掌握相关定义是解题关键.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c【分析】根据二次函数的定义逐个判断即可.解:A.y是x的一次函数,不是二次函数,故本选项不符合题意;B.y=x2+(3﹣x)x=x2+3x﹣x2=3x,y是x的一次函数,不是二次函数,故本选项不符合题意;C.y是x的二次函数,故本选项符合题意;D.当a=0时,y不是x的二次函数,故本选项不符合题意;故选:C.【点评】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数,叫二次函数.3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.16【分析】通过证明△ADE∽△ABC,可得,即可求解.解:∵AD=2,BD=3,∴AB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=15,故选:B.【点评】本题考查了相似三角形的判定和性质,证明三角形相似是解题的关键.4.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1【分析】将原方程转化为一般形式,进而可得出a,b,c的值.解:将原方程转化为一般形式为3x2﹣x+4=0,∴a=3,b=﹣1,c=4.故选:B.【点评】本题考查了一元二次方程的一般形式,熟练掌握将给定一元二次方程转化为一般形式的方法是解题的关键.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判断即可.解:A.∵AB∥CD∥EF,∴=≠,故本选项不符合题意;B.∵AB∥CD∥EF,∴=,故本选项不符合题意;C.∵AB∥CD∥EF,∴=,故本选项不符合题意;D.∵AB∥CD∥EF,∴=,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=91【分析】根据题意,可以列出相应的方程:主干+支干+小分支=91,进而得出答案.解:由题意可得,1+x+x•x=1+x+x2=91.故选:C.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.7.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)【分析】对应点连线段的垂直平分线的交点即为旋转中心.解:观察图象可知,旋转中心P的坐标为(4,2).故选:C.【点评】本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【分析】根据ab>0,可以得到a>0,b>0或a<0,b<0,然后分类讨论y=ax2与y=ax+b的图象所在的象限,本题得以解决.解:∵ab>0,∴a>0,b>0或a<0,b<0,当a>0,b>0时,函数y=ax2的图象开口向上,顶点在原点,函数y=ax+b的图象经过第一、三、四象限,故选项A、B错误,不符合题意;当a<0,b<0时,函数y=ax2的图象开口向下,顶点在原点,函数y=ax+b的图象经过第二、三、四象限,故选项C错误,不符合题意,选项D正确,符合题意;故选:D.【点评】本题考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和二次函数的性质解答.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.解:在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).故答案为:(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为﹣2.【分析】先根据根与系数的关系得到m+n=4,mn=﹣2,然后利用整体代入的方法计算.解:根据题意得m+n=4,mn=﹣2,所以原式==﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是y1<y3<y2(用“<”连接).【分析】先分别计算出自变量为﹣3、﹣1和2所对应的函数值,然后比较函数值的大小即可.解:当x=﹣3时,y1=﹣2x2=﹣18;当x=﹣1时,y2=﹣2x2=﹣2;当x=2时,y3=﹣2x2=﹣8,所以y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.【分析】由矩形的性质得出∠ABC=90°,AD∥BC,利用勾股定理求出BC=4,利用相似三角形的性质,即可求出结果.解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵AB=3,AC=5,∴BC==4,∵AD∥BC,∴∠EAF=∠BCF,∠AEF=∠CBF,∴△EAF∽△BCF,∴=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定与性质,掌握矩形的性质,勾股定理,相似三角形的判定与性质是解决问题的关键.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为2或18.【分析】利用一元二次方程的定义及因式分解法解一元二次方程,可求出方程的两根,结合其中一个根为另一个根的3倍,即可求出的值.解:∵关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,∴m≠0,且原方程的解为x1=3,x2=.当3是的3倍时,3=3×,∴=1,∴=2;当是3的3倍时,=3×3,∴=2×3×3=18.∴的值为2或18.故答案为:2或18.【点评】本题考查了因式分解法解一元二次方程以及一元二次方程的定义,利用因式分解法求出原方程的两个根是解题的关键.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是(0,2)或(0,0)或(0,4﹣2).【分析】分三种情况:①当OA=AP时,由已知可得B(0,2);②当AP=OP时,B 与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y 轴于N,证明△PNB≌△PMA(ASA),可得BN=AM=2﹣2,即有OB=NO﹣BN=4﹣2,故B(0,4﹣2).解:①当OA=AP时,如图:∵P的坐标为(2,2),∴此时A(2,0),∵∠APB=90°,∴B(0,2);②当AP=OP时,如图:∵P的坐标为(2,2),∴∠POA=∠PAO=45°,∴∠P=90°,∴此时B与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y轴于N,如图:∵∠APB=90°,∴∠NPB=90°﹣∠BPM=∠MPA,∵NP=MP=2,∠PNB=∠PMA,∴△PNB≌△PMA(ASA),∴BN=AM=2﹣2,∴OB=NO﹣BN=2﹣(2﹣2)=4﹣2,∴B(0,4﹣2),综上所述,点B的坐标是(0,2)或(0,0)或(0,4﹣2).【点评】本题考查平面直角坐标系中的旋转,解题的关键是分类画出图形,讨论得到答案.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有①②④.【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案.解:∵y=﹣x2,∴①抛物线开口向下,顶点是原点,故①正确;②抛物线开口向下,对称轴为x=0,当x>1时,y随x的增大而减小,故②正确;③当﹣1<x<2时,﹣4<y≤0,故③错误;④若(m,p)、(n,p)是该抛物线上两点,可知这两点关于y轴对称,所以m+n=0,故④正确.所以正确的有①②④,故答案为:①②④.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有①③④.①FA2+FC2=FG2②AM=BG③=④【分析】由四边形ABCD是正方形,得AD=CD,∠ADC=∠BCD=90°,则∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,则∠ADG=∠CDF,即可证明△ADG≌△CDF,得AG=CF,∠DAG=∠DCF=45°,则∠FAG=90°,所以FA2+FC2=FA2+AG2=FG2,可判断①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,则BE=CE=BC=m,由勾股定理得DE=m,AC=2m,则OC=OD=OA=m,再证明△CEF∽△ADF,得===,则AG=CF=AC=m,DF=DE=m,FG=DF =m,再求得BG=m,由∠FAG=90°,点M为线段FG的中点,得AM =FM=GM=FG,可知AM≠BG,可判断②错误;因为OF=m﹣m=m,所以=,可判断③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,再证明△OMD≌△OMA,得∠DOM=∠AOM=∠AOD=45°,根据三角形的中位线定理求得HM=AG=m,则OM =HM=m,所以=,可判断④正确,于是得到问题的答案.解:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,∴∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,∴∠ADG=∠CDF=90°﹣∠ADE,∴△ADG≌△CDF(SAS),∴AG=CF,∠DAG=∠DCF=45°,∴∠FAG=90°,∴FA2+AG2=FG2,∴FA2+FC2=FG2,故①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,∵点E为边BC中点,∴BE=CE=BC=m,∴DE==m,AC==2m,∵OC=OA=AC=m,OD=OB=BD,且AC=BD,∴OC=OD=OA=m,∵CE∥AD,∴△CEF∽△ADF,∴====,∴AG=CF=AC=m,DF=DE=m,∴FG===DF=×m=m,∵∠I=90°,∠IAG=90°﹣∠DAG=45°,∴∠IGA=∠IAG=45°,∴AI=GI,∴2AI2=2GI2=AI2+GI2=AG2=(m)2=m2,∴AI=GI=m,∴BG==m,∴FG≠BG,∵∠FAG=90°,点M为线段FG的中点,∴AM=FM=GM=FG,∴AM≠BG,故②错误;∵OF=m﹣m=m,∴==,故③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,∵AD⊥BD,∴∠AOD=90°,∵OD=OA,DM=AM,OM=OM,∴△OMD≌△OMA(SSS),∴∠DOM=∠AOM=∠AOD=45°,∵∠FHM=∠FAG=90°,∴HM∥AG,∴==1,∴FH=AH,∴HM=AG=×m=m,∵∠HMO=∠HOM=45°,∴HO=HM,∴OM===HM=×m=m,∴==,故④正确,故答案为:①③④.【点评】此题重点考查正方形的性质、旋转的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例定理、相似三角形的判定与性质、三角形的中位线定理、勾股定理等知识,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.【分析】(1)利用解一元二次方程﹣配方法,进行计算即可解答;(2)利用解一元二次方程﹣公式法,进行计算即可解答.解:(1)2x2+8x+3=0,x2+4x+=0,x2+4x=﹣,x2+4x+4=﹣+4,(x+2)2=,x+2=±,x+2=或x+2=﹣,x1=﹣2,x2=﹣﹣2;(2)3t2﹣t﹣3=0,∵Δ=(﹣)2﹣4×3×(﹣3)=2+36=38>0,∴t=,∴t1=,t2=.【点评】本题考查了解一元二次方程﹣公式法,配方法,熟练掌握解一元二次方程的方法是解题的关键.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.【分析】(1)根据中心对称的性质作图即可.(2)根据旋转的性质作图即可.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.【点评】本题考查作图﹣旋转变换、中心对称,熟练掌握旋转和中心对称的性质是解答本题的关键.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.【分析】先由∠1=∠2,∠APC=∠BPD,证明△APC∽△BPD,然后列比例式求出BD 的长.解:∵∠1=∠2,∠APC=∠BPD,∴△APC∽△BPD,∴=,BD===,∴BD的长为.【点评】此题考查相似三角形的判定与性质,难度不大,是很好的练习题.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.【分析】(1)根据方程有两个不相等的实数根可得Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,求出k的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k+1=k2+1,结合k的取值范围解方程即可.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得:k>;(2)∵k>,∴x1+x2=﹣(2k+1)<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1,∵|x1|+|x2|=x1•x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>,∴k=2.【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x1+x2=﹣;(5)x1•x2=.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似求AF,即可求EF.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA;(2)解:∵E是BC的中点,BC=6,∴BE=3,∵AB=9,∴AE==3,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴=,=,AF=,∴EF=AE﹣AF=.【点评】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为(30﹣2x)(12﹣2x)=144;.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.【分析】(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,根据矩形的面积公式,即可得出关于x的一元二次方程,此问得解;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,根据矩形的面积公式,即可得出关于y的一元二次方程,解之取其较小值即可.解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴y=2.答:能折出底面积为104cm2的有盖盒子,正方形的边长为2cm.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.【分析】(1)根据相似三角形的判定与性质可得结论;(2)由直角三角形的性质得BD=AC=CD,再由相似三角形的判定与性质可得EC2=GE•EA,结合(1)的结论可得答案.【解答】证明:(1)∵AE⊥BD,∴∠BGE=90°,∵∠ABC=90°,∴∠BGE=∠ABE,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,即EB2=EG•EA;(2)在Rt△ABC中,点D是斜边AC的中点,∴BD=AC=CD,∴∠DBC=∠DCB,∵∠CGE=∠GEC,∴∠CGE=∠DCB,∵∠GEC=∠GEC,∴△GEC∽△CEA,∴=,∴EC2=GE•EA,由(1)知EB2=EG•EA,∴EC2=EB2,∴BE=CE.【点评】此题考查的是相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质,掌握相似三角形的判定与性质是解决此题关键.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?【分析】(1)设该基地这两年“南国梨”种植面积的平均增长率为x,利用该南国梨种植基地2022年种植面积=该南国梨种植基地2020年种植面积×(1+该基地这两年“南国梨”种植面积的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出(560﹣20y)千克,利用总利润=每千克的销售利润×每周的销售量,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.解:(1)设该基地这两年“南国梨”种植面积的平均增长率为x,依题意得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不符合题意,舍去).答:该基地这两年“南国梨”种植面积的平均增长率为25%.(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出400﹣10×=(560﹣20y)千克,依题意得:(y﹣6)(560﹣20y)=2400,整理得:y2﹣34y+288=0,解得:y1=16,y2=18(不符合题意,舍去).答:售价应为16元/千克.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为60度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离2.【分析】(1)证明AC⊥EF,利用直角三角形30度角的性质证明即可;(2)结论成立.如图2中,连接AM,AN.证明△BAE∽△MAN,推出∠B=∠AMN=30°,==2,可得结论;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.证明△BAE∽△MAN,推出==,∠AMN=∠ABE=60°,利用平行线分线段成比例定理求出PC,可得结论.解:(1)如图1中,∵AB=AC,BM=CM,∴AM⊥CB,∠BAM=∠CAM=∠BAC=60°,∵∠EAF=∠BAC=120°,∴∠CAE=∠CAF=60°,∵AE=AF,∴AC⊥EF,EN=FN,∵∠C=∠B=30°,∴EC=2MN,∠FEC=60°∴BE=2MN,直线BE与MN相交所成的锐角的度数为60°.故答案为:,60;(2)结论成立.理由:如图2中,连接AM,AN.∵AB=AC,BM=CM,∴AM⊥CM,∵∠BAC=120°,∴∠B=∠C=30°,∴∠BAM=60°,∴AB=2AM,同法可证AE=2AN,∠EAN=60°,∴∠BAM=∠EAN=60°,∴∠BAE=∠MAN,∵==2,∴△BAE∽△MAN,∴∠B=∠AMN=30°,==2,∴=,∠NMC=60°,∴直线BE与MN相交所成的锐角的度数为60°;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.∵△ABC,△AEF都是等边三角形,BM=CM,EN=FN,∴AM⊥BC,AN⊥EF,∴==,∵∠BAM=∠EAN=30°,∴∠BAE=∠MAN,∴△BAE∽△MAN,∴==,∠AMN=∠ABE=60°,∵∠AMC=90°,∴∠NMC=30°,∵AB=6,BE:EC=1:2,∴BE=2,EC=4,∵BM=CM=3,∴EM=1,∴MN=,∵MN∥CP,∴=,∠PCH=∠NMC=30°,∴=,∴CP=4,∴PH=PC=2,∴点P到BC的距离为2.故答案为:2.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,等边三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于思考常考题型.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.【分析】(1)根据题意可得B(0,3),A(4,0),根据抛物线y=ax2经过AB的中点D,可得D(2,),进而可得抛物线解析式;(2)过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),所以MN=m2+m﹣3,根据S△ABM=S△BMN+S△AMN=MN•OA=,列出方程求解即可解决问题;(3)根据点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,设P(x,﹣x+3),则EP=x,OE=﹣x+3,可得BE=x,根据勾股定理可得PB=x,然后根据翻折可得CB′=CB=,PB=PB′=x,根据勾股定理求出x的值,进而可以解决问题.解:(1)∵直线y=﹣x+3与x轴,y轴分别相交于A、B两点,令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0),∵抛物线y=ax2经过AB的中点D,∴D(2,),将D(2,)代入抛物线y=ax2,得a=,∴抛物线解析式为y=x2;(2)如图1,在直线AB上方,y轴右侧的抛物线上存在一点M,使S△ABM=,理由如下:过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),∴MN=m2﹣(﹣m+3)=m2+m﹣3,∵S△ABM=,∴S△ABM=S△BMN+S△AMN=MN•OA=,∴(m2+m﹣3)×4=,整理得m2+2m﹣15=0,解得m1=3,m2=﹣5(舍去),∴M点坐标为(3,);(3)如图,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,∵B(0,3),∴OB=3,设P(x,﹣x+3),则EP=x,OE=﹣x+3,∴BE=OB﹣OE=3﹣(﹣x+3)=x,∵点C是OB中点,∴OC=BC=,∴PB2=BE2+PE2=(x)2+x2=x2,∴PB=x(负值舍去),根据翻折可知:CB′=CB=,PB=PB′=x,在Rt△CB′E中,CE=OC﹣OE=﹣(﹣x+3)=x﹣,B′E=PB′﹣PE=x﹣x=x,根据勾股定理得:CE2+B′E2=CB′2,∴(x﹣)2+(x)2=()2,整理得x2﹣x=0,解得x1=,x2=0(舍去),∴PB=x=×=,答:BP的长为.【点评】本题属于二次函数综合题,主要考查了待定系数法求函数解析式,坐标系中图形的面积计算方法,轴对称的性质,勾股定理,一元二次方程,解本题的关键是判断出CD平行于x轴.。
2022-2023学年九年级上学期第一次调研数学试卷 注意事项1.你拿到的试卷满分为150分,考试时间为120分钟。
2.试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页。
“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
一、选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,是二次函数的是 A.y=x 21+x+1 B.y=x ²-(x+1)2 C.y=-21x 2+3x+1 D.y=3x+1 2.将抛物线y=2x ²先向右平移2个单位,再向上平移3个单位后,得到的抛物线的表达式是A.y=2(x -2)2-3B.y=2(x -2)2+3C.y=2(x+2)2-3D.y=2(x+2)2+33.已知撤物线的顶点坐标是(2,-1),且与y 轴交于点(0,3),这个抛物线的表达式是 ( )A.y=x ²-4x+3B.y=x ²+4x +3C.y=x ²+4x -1D.y=x ²-4x -14.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中不正确的是()A.abc<0B.b=-4aC.4a+2b ≥m(am +b)D.a -b+c>05.若二次函数y=(x -m )²+h ,当x<1时,y 随x 的增大而减小,则m 的取值范围是()A.m=1B.m>1C.m ≥1D.m<16.已知二次函数y=kx ²-3x +2的图象和x 轴有交点,则k 的取值范围是() A.k<89且k ≠0 B.k<89 C.k ≤89且k ≠o D.k ≤89 7.如图,某同学以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线y=94x 2+5的一部分,则杯口的口径AC 为() A.9 B.8 C.7 D.108.点C 为线段AB 上的一个动点,AB=1,分别以AC 和CB 为一边作等边三角形,用S 表示这 两个等边三角形的面积之和,下列判断正确的是()A. 当C 为AB 的三等分点时,S 最小B.当C 是AB 的中点时,S 最大C.当C 为AB 的三等分点时,S 最大D.当C 是AB 的中点时,S 最小9.若二次函数y=ax 2+bx +c 的图象经过A (x 1,y 1),B (x 1,y 2),C (4-m ,m ),D (m ,n )(y 1≠n ),则下列命题正确的是A.若a>0且|x 1-2|>|x 2-2|,则y 1<y 2B.若a<0且y 1<y 2,则|2-x 1|<|2-x 2|C.若|x 1-2|>|x 2-2|且y 1>y 2,则a<0D.若x 1+x 2=4(x 1≠x 2),则AB//CD10.如图,在正方形ABCD 中,AB=4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动. 设△AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x 的函数y=(1-a )x 2-x 是二次函数,则a 的取值范围是12.已知抛物线y=x ²-x -1与x 轴的一个交点为(t ;0),则代数式-t ²+t +2022的值为13.若点P (m ,m )在二次函数y=x ²+2x +2的图象上,且点P 到x 轴的距离小于2,则m 的取值范围是14.若抛物线y=-a 2+bx +c 交x 轴于C (1,0),D (-3,0)两点,交y 轴于点E ,点A (-3,5),B(0,5).(1)此抛物线的表达式为(2)连接AB ,若将此抛物线向上平移m (m>0)个单位时,与线段AB 有一个公共点,则m 的取值范围为三、(本大题共2小题,每小题8分,满分16分)15.已知二次函数y=x 2-4x -1,求其对称轴和顶点坐标.16.二次函数y=ax 2的图象经过点(2,-2),(1)求这个函数的表达式;(2)当x 为何值时,函数y 随x 的增大而增大?四、(本大题共2小题,每小题8分,满分16分)17.已知二次函数y=21x 2-3x+25 (1)请把二次函数的表达式化成y=a (x -h )2+k 的形式(直接写出结果)(2)请在如图所示的平面直角坐标系内画出函数的图象(不必列表).18.在平面直角坐标系xOy中,关于x的二次函数y=x²+px+q的图象经过点(-1,0),(2,0),(1)求这个二次函数的表达式(2)求当-2≤x≤1时,y的最大值与最小值的差;(3)直接写出使y<0的x的取值范围.五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=x2+2mx-2m-1(m为常数).(1)当m=-1时,此函数的图象与x轴有几个交点?(2)求证∶不论m为何值,该二次函数的图象与x轴总有公共点.20.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m²,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?六、(本题满分12分)21.鲜埠,古乃采珠之地,素有“珍珠城”之美誉,已知一批珍珠每颗的进价为30元,售价定为50元/颗时,每天可销售60颗,为扩大市场占有率,商家决定采取适当的降价措施,经调查发现,售价每降低2元,每天销量可增加20颗(销售单价不低于进价).(1)写出商家每天的利润W(元)与降价x(元)之间的函数关系;(2)当降价多少元时,商家每天的利润最大,最大利润是多少?(3)若商家每天的利润至少要达到1440元,则定价应在什么范围内?七、(本题满分12分)22.如图,已知抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与z轴交于A,B两点,点A 在点B左侧.点B的坐标为(1,0),0C=3OB.(1)求抛物线的表达式(2)若点D是线段AC下方抛物线上的动点,求△ACD面积的最大值.八、(本题满分14分)23.在平面直角坐标系中,抛物线y=ax2-2ax-3a(a≠0)的顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定;抛物线与x轴围成的封闭区域称为“G区城"(不包含边界),横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax²-2ax-3a的顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2-2ax-3a经过(1,3).①求a的值②在①的条件下,直接写出“G区域”内整点的坐标;(3)如果抛物线y=ax2-2ax-3a在"G区域"内有4个整点,求a的取值范围,。
2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.抛物线y=−x2+3x−2与y轴的交点坐标是( )A. (−2,0)B. (0,2)C. (1,2)D. (0,−2)2.抛物线y=2(x+2)2−14的顶点坐标为( )A. (2,14)B. (−2,14)C. (2,−14)D. (−2,−14)3.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x−2)2+1B. y=5(x+2)2+1C. y=5(x−2)2−1D. y=5(x+2)2−14.已知抛物线y=x2+x−1经过点P(m,5),则代数式m2+m+2023的值为( )A. 2026B. 2027C. 2028D. 20295.已知二次函数y=−(x+ℎ)2,当x<−1时,y随着x的增大而增大,当x>−1时,y随x的增大而减小,当x=3时,y的值为( )A. −16B. −1C. −9D. 06.对于二次函数y=−2(x+3)2的图象,下列说法正确的是( )A. 开口向上B. 对称轴是直线x=−3C. 当x>−4时,y随x的增大而减小D. 顶点坐标为(−2,−3)7.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M距离墙1m,距离地面40m,则水流落地点B离墙的距离OB是( )3A. 2mB. 3mC. 4mD. 5m8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )A. 1B. 2C. 3D. 49.已知实数a、b满足a−b2=2,则代数式a2−3b2+a−9的最小值是( )A. −2B. −3C. −4D. −910.如图,在平面直角坐标系中,抛物线y=3x2−23x的顶点为A点,且与x轴的正2半轴交于点B,P点是该抛物线对称轴上的一点,则OP+1AP的最小值为( )2A. 3B. 23C. 3+232D. 3+234二、填空题:本题共8小题,共30分。
2023-2024学年安徽省合肥市部分学校九年级(上)第一次月考数学试卷第I卷(选择题)一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列函数一定是二次函数的是( )A. B.C. D.2.抛物线的顶点坐标是( )A. B. C. D.3.抛物线的对称轴是( )A. 直线B. 直线C. 直线D. 直线4.下列函数中,随的增大而增大的是( )A. B. C. D.5.某种药品售价为每盒元,经过医保局连续两次“灵魂砍价”,药品企业同意降价若干进入国家医保用药目录如果每次降价的百分率都是,则两次降价后的价格元与每次降价的百分率之间的函数关系式是( )A. B. C. D.6.将抛物线向右平移个单位长度,再向上平移个单位长度后,得到的新抛物线的函数表达式为( )A. B.C. D.7.将二次函数化成的形式,正确的是( )A. B.C. D.8.在平面直角坐标系中,二次函数和一次函数的大致图象可能是( )A. B.C. D.9.已知函数,当时,的最大值与最小值的和为( )A. B. C. D.10.已知二次函数的部分图象如图所示,抛物线的对称轴为直线,且经过点,下列结论错误的是( )A.B. 若点是抛物线上的两点,则C.D. 若,则第II卷(非选择题)二、填空题(本大题共4小题,共20.0分)11.已知抛物线开口向下,则的取值范围是______.12.已知函数为二次函数,则的值为______ .13.已知二次函数的图象与轴交于,两点若,则______ .14.如图,二次函数的图象与轴交于,两点点在点的左侧,与轴交于点.的度数是______ ;若点是二次函数在第四象限内图象上的一点,作轴交于点,则的长的最大值是______ .三、解答题(本大题共9小题,共90.0分。
解答应写出文字说明,证明过程或演算步骤)15.本小题分已知某抛物线的顶点坐标为,且经过点,求该抛物线的表达式.16.本小题分已知抛物线.求该抛物线的顶点坐标;在所给的平面直角坐标系中,画出该抛物线的图象.17.本小题分学校准备将一块长,宽的矩形绿地扩建,如果长和宽都增加,设增加的面积是.求与之间的函数关系式.若要使绿地面积增加,长与宽都要增加多少米?18.本小题分二次函数的图象经过点,,点与点关于该二次函数图象的对称轴对称,已知一次函数的图象经过,两点.求二次函数与一次函数的解析式;根据图象,写出满足不等式的的取值范围.19.本小题分如图,在平面直角坐标系中,一次函数的图象与二次函数为常数的图象相交于,两点,点的坐标为.求的值以及二次函数的表达式;若点为抛物线的顶点,过点作轴,交于点,求线段的长.20.本小题分规定:在平面直角坐标系中,横、纵坐标互为相反数的点为“完美点”,顶点是“完美点”的二次函数为“完美函数”.若点是“完美点”,则______ ;已知某“完美函数”的顶点在直线上,且与轴的交点到原点的距离为,求该“完美函数”的表达式.21.本小题分已知二次函数的图象与轴交于,两点,且点在点的左侧.当时,求点,的坐标;若直线经过点,且与抛物线交于另一点,连接,,试判断的面积是否发生变化?若不变,请求出的面积;若发生变化,请说明理由.22.本小题分如图为某新建住宅小区修建的一个横断面为抛物线的拱形大门,点为顶点,其高为米,宽为米以点为原点,所在直线为轴建立直角坐标系.求出该抛物线的函数表达式,并写出自变量的取值范围;拱形大门下的道路设双向行车道供车辆出入正中间是宽米的值班室,其中的一条行车道能否行驶宽米、高米的消防车辆?请通过计算说明;如图,小区物业计划在拱形大门处安装一个矩形“光带”,使点,在抛物线上,点,在上,求出所需的三根“光带”,,的长度之和的最大值.23.本小题分如图,抛物线与轴相交于点,与轴相交于点.求直线的解析式;若点为第三象限内抛物线上的一点,设的面积为,求的最大值;设抛物线的顶点为,轴于点,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.答案和解析1.【答案】解析:解:时,不是二次函数,选项A不符合题意;是一次函数,选项B不符合题意;可化简为,选项C符合题意;不是二次函数,选项D不符合题意,故选:.根据二次函数的定义进行逐一辨别.此题考查了二次函数概念的应用能力,关键是能准确理解该知识,并能对所给出的函数解析式进行辨别.2.【答案】解析:解:抛物线的顶点坐标为,故选:.根据二次函数的性质的顶点坐标是即可求解.本题考查了二次函数的性质,正确记忆的顶点坐标是是关键.3.【答案】解析:解:,抛物线的对称轴是直线,故选:.根据二次函数的对称轴公式进行计算即可.本题考查了二次函数的性质,对于二次函数的对称轴为直线,熟练掌握此知识点是解题的关键.4.【答案】解析:解:、函数中,,在随增大而减小,故本选项不符合题意;B、函数中,,随增大而增大,故本选项符合题意;C、函数中,,对称轴是轴,当时,随增大而增大,故本选项不符合题意;D、函数中,,对称轴是轴,当时,随增大而增大,故本选项不符合题意;故选:.根据一次函数、二次函数的性质对各选项进行逐一分析即可.本题考查一次函数、二次函数的性质,解题关键是掌握函数与方程的关系,函数图象与系数的关系.5.【答案】解析:解:根据题意得:.故选:.利用经过两次降价后的价格原价每次降价的百分率,即可找出与之间的函数关系式.本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出与之间的函数关系式是解题的关键.6.【答案】解析:解:将抛物线向右平移个单位长度,再向上平移个单位长度后,得到的新抛物线的函数表达式为.故选:.根据二次函数图象平移的规律:左加右减,上加下减,进行解答即可.本题考查了二次函数图象的平移,熟练掌握平移规律是解题的关键.7.【答案】解析:解:,将二次函数化成的形式为.故选:.利用配方法化成顶点式即可得到答案.本题考查了把化成顶点式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.8.【答案】解析:解:对于二次函数,当时,符合条件的为、,选项A:从二次函数看,、同号,即,则,而从一次函数看,,故A错误,不符合题意;选项B:从二次函数看,、异号,即,则,从一次函数看,,,故B正确,符合题意;对于二次函数,当时,符合条件的为、,在选项C中,对于抛物线而言、异号,则,对于一次函数而言,,,故选项C错误,不符合题意;对于选项D,从抛物线看,同号,则,从一次函数看,,,故D错误,不符合题意;故选:.逐次分析两个函数的、值,即可求解.本题考查了二次函数的图象以及一次函数的图象,掌握图象和性质是解题的关键.9.【答案】解析:解:函数中,,函数图象开口向上,顶点坐标为,,,当时,,的最大值与最小值的和.故选:.先根据二次函数的解析式得出函数图象的开口方向及顶点坐标,进而可得出其最小值,再找出其最大值求和即可.本题考查的是二次函数的性质及二次函数的最值,根据题意得出函数的最大值与最小值是解题的关键.10.【答案】解析:解:,,,故A错误;抛物线开口向上,在对称轴右侧随增大而增大,关于对称轴的对称点为,,,故B正确;图象过,,,,故C正确;关于对称轴的对称点为,时,,故D正确.故选:.根据对称轴判断,根据二次函数性质判断,根据抛物线与轴交点可判断,根据抛物线与轴交点及对称轴判断.本题主要考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征,熟练掌握相关知识点是解决本题的关键.11.【答案】解析:解:由题意可知:,;故答案为:.根据二次函数的图象与性质即可求出答案.本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.【答案】解析:解:函数为二次函数,,解得:,故答案为:由函数为二次函数,可得,再解不等式组可得答案.本题考查的是二次函数的定义,形如:的函数是二次函数,熟记二次函数的定义是解本题的关键.13.【答案】解析:解:当,则,设方程的两根分别为,,,,,,,,,经检验符合题意;故答案为:.设方程的两根分别为,,可得,,利用,再解方程即可.本题考查的是二次函数与一元二次方程的关系,一元二次方程根与系数的关系,熟练的利用建立方程求解是解本题的关键.14.【答案】解析:解:在中,令得,,令得或,,,,,,,,故答案为:;由,得直线解析式为,设,则,,,当时,取最大值,故答案为:.由求出,,,可得,,,故;由,得直线解析式为,设,可得,根据二次函数性质可得答案.本题考查二次函数的综合应用,涉及勾股定理逆定理的应用,二次函数最值问题等,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.15.【答案】解:抛物线的顶点坐标为,设抛物线为:,把代入可得:,解得:,抛物线为:.解析:根据抛物线的顶点坐标为,设抛物线为:,再把代入,从而可得答案.本题考查的是利用待定系数法求解二次函数的解析式,根据给定的条件设出合适的表达式是解本题的关键.16.【答案】解:,抛物线的顶点坐标为;如图所示:解析:把化成顶点式即可得到结论;根据题意画出抛物线的图象即可.本题考查了二次函数的性质,二次函数的图象,正确地画出图象是解题的关键.17.【答案】解:由题意可得,化简,得,即与之间的函数关系式是:;将代入,得,解得,舍去,,即若要使绿地面积增加,长与宽都要增加米.解析:根据题意可以得到与之间的函数关系式;将代入中的函数关系式,即可解答本题.本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.18.【答案】解:二次函数的图象经过点,,,得,,二次函数的对称轴为直线,,点与点关于该二次函数图象的对称轴对称,点,设一次函数的图象经过,两点,,得,一次函数,即二次函数的解析式为,一次函数的解析式为;由图象可知,不等式的的取值范围:或.解析:根据二次函数的图象经过点,,可以求得二次函数的解析式,再根据点与点关于该二次函数图象的对称轴对称,一次函数的图象经过,两点,从而可以求得一次函数的解析式;根据函数图象可以直接写出满足不等式的的取值范围.本题考查二次函数与不等式组、待定系数法求一次函数解析式和二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【答案】解:把点坐标为代入一次函数中可得:,,把点坐标为代入二次函数中可得:,解得:,,答:的值为,二次函数的表达式为:;,顶点,轴,把代入中得:,,.解析:把点的坐标为代入可求出的值,然后再把点坐标代入二次函数表达式即可解答;求出,坐标,可得结论.本题考查了待定系数法求二次函数解析式,二次函数的性质,正比例函数的图象,解题的关键是求出点,,的坐标.20.【答案】解析:解:点是“完美点”,,即,解得:,故答案为:;某“完美函数”的顶点在直线上,设函数的顶点为,该函数为“完美函数”,,解得:,,该函数的顶点为,设二次函数的解析式为,令,则,该函数与轴的交点到原点的距离为,,解得:或,或该“完美函数”的表达式为:或.由定义可得,求出的值即可;根据该“完美函数”的顶点在直线上可求出顶点为,然后可设二次函数的解析式为,令,则,再根据该函数与轴的交点到原点的距离为求出的值即可得到答案.本题主要考查了坐标与图形、二次函数的图象与性质、相反数的定义,理解新定义,熟练掌握二次函数的图象与性质是解此题的关键.21.【答案】解:当时,,当时,则,解得:,,点在点的左侧,点的坐标为,点的坐标为;的面积不发生变化,理由如下:对于抛物线,当时,则,解得:,,点在点的左侧,点的坐标为,点的坐标为,,直线经过点,,,直线的解析式为:,联立得:,解得:,,点在上,当时,,,.解析:将代入可得,令,解方程即可求解;令,有,解方程得出点、的坐标,则,由直线经过点,可得直线为,联立求解方程组得到点的坐标,即可求解.本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.22.【答案】解:,.设这条抛物线的函数解析式为,抛物线过,,解得,这条抛物线的函数解析式为,即.当或时.故能行驶宽米、高米的消防车辆.设点的坐标为则,根据抛物线的轴对称,可得:,故BC,即令故当,即米时,三根木杆长度之和的最大值为米.解析:根据所建坐标系知顶点和与轴交点的坐标,可设解析式为顶点式形式求解,的取值范围是;根据对称性当车宽米时,或,求此时对应的纵坐标的值,与车高米进行比较得出结论;求三段和的最大值须先列式表示三段的和,再运用性质求最大值,可设点或点的坐标表示三段的长度从而得出表达式.本题考查通过建模把实际问题转化为数学模型,这充分体现了数学的实用性.23.【答案】解:抛物线与轴相交于点,,抛物线与轴相交于点,设直线的解析式为,,解得,直线的解析式为;如图,过点作轴的垂线,交于点.直线的解析式为:.设点坐标为,则点的坐标为,.,,当时,有最大值;在轴上是存在点,能够使得是直角三角形.理由如下:,顶点的坐标为,,.设点的坐标为,分三种情况进行讨论:当为直角顶点时,如图,由勾股定理,得,即,解得,所以点的坐标为;当为直角顶点时,如图,由勾股定理,得,即,解得,所以点的坐标为;当为直角顶点时,如图,由勾股定理,得,即,解得或,所以点的坐标为或;综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.解析:已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;分三种情况进行讨论:以为直角顶点;以为直角顶点;以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。
2023~2024学年度第一学期12月质量检测数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1. 已知的半径是4,,则点P 与的位置关系是( )A. 点P 在外B. 点P 在上C. 点P 在内D. 不能确定2. 如图,在中,,,则的大小是( )(第2题)A. B. C. D. 3. 如图,四边形ABCD 内接于,,则的大小是()(第3题)A. B. C. D. 4. 如图,已知的半径为4,则该圆内接正六边形ABCDEF 的边心距OG 的值是()(第4题)A. B.C.D. 35. 若圆锥的底面半径为4cm ,母线长为12cm ,则它的侧面展开图的圆心角的大小是( )A. B. C. D.BO 3OP =O O O O OAB AC =70B ∠=︒C ∠20︒40︒70︒110︒O 108B ∠=︒D ∠54︒62︒72︒82︒O 32240︒120︒180︒90︒6. 如图,在中,,过点A 作于点M ,交DE 于点N .若,则的值是()(第6题)A. B. C. D. 7. 如图,这是一个供滑板爱好者使用的U 形池,该U 形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m 的半圆,其边缘(边缘的宽度忽略不计),点E 在CD 上,.一滑板爱好者从A 点滑到E 点,则他滑行的最短距离是()(第7题)A. 28mB. 24mC. 20mD. 18m8. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,.“会圆术”给出AB 的弧长l 的近似值计算公式:.当,时,则l 的值是( )(第8题)A. B. C. D. 9. 如图,在四边形ABCD 中,,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若,则的值是( )BABC △DE BC ∥AM BC ⊥4:9ADE ABC S S =:△△:AN AM 4:93:23:42:320m AB CD ==4m CE =MN AB ⊥2MN l AB OA=+4OA =60AOB ∠=︒11-8-811-AB CD ∥AD AB ⊥13AB CD =ADCD(第9题)A.B.C.D.10. 已知抛物线和直线,若对于任意的x 的值,恒成立,则常数m 的值是( )A. 0B. 2C. -2D. -4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在答题卡指定位置.11. 如图,在中,圆周角,则的大小是______.(第11题),,,则CD 的长度是______.13. 如图,的内切圆与AB ,BC 分别相切于D ,E 两点,连接DE ,AO 的延长线交DE 于点F ,若,则的大小是______.(第13题)14. 如图,半圆O 的直径.,C ,D 是半圆上的三等分点,E 是OA 的中点,则阴影部分CED 面积是______.A2334()2122y x m x m =-++224y x =-12y y ≥O 30ACB ∠=︒AOB ∠:2:3AC EC =4BC =ABC △O 70ACB ∠=︒AFD ∠10AB =(第14题)15. 二次函数的图象如图所示,下列四个结论:①;②;③;④若方程有四个实数根,则这四个实数根的和为4.其中正确结论是______.(填写序号)(第15题)16. 如图,在中,,,,线段BC 绕点B 旋转,得到BD ,连接AD ,E 为AD 的中点,连接CE ,则CE 的最大值是______.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题8分)如图,在中,,求证:.18.(本小题8分)如图,已知,求证:.A ()20y ax bx c a =++≠0abc >23c b =()()1a b m am b m +>+≠21ax bx c ++=Rt ABC △90ACB ∠=︒30BAC ∠=︒4BC =O AD BC =DC AB =ABC ADE △∽△ABD ACE △∽△19.(本小题8分)如图,在中,,CD 是斜边AB 上的高.(1)求证:;(2)若,,求BD 的长.20.(本小题8分)如图,是的外接圆,AC 为直径,,交DC 的延长线于点E .(1)求证:BE 是的切线;(2)若,,求AD 的长.21.(本小题8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.经过A ,B 两个格点,C 是与格线的交点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)先画直径BG ,再画圆心O ;(2)在上画点M ,使,在上画点F ,连接AF ,使.22.(本小题10分)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离ARt ABC △90ACB ∠=︒ABC CBD △∽△4AC =3BC =O ABC △ BDAB =BE DC ⊥O 1EC =8CD =1010⨯O O BCBM MC = AC CAF CAB ∠=∠称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能进行测试,刹车距离S (单位:m )与车速v (单位:km/h )之间存在二次函数关系,测得部分数据如表:车速v (km/h )0306090120刹车距离S (m )7.819.234.252.8(1)直接写出刹车距离S 与车速v 之间的函数关系;(2)某路段实际行车的最高限速为80km/h ,若要求该型汽车的安全车距要大于最高限速时刹车距离的2倍,求安全车距应超过多少米?(3)在某路段上,若要求该型汽车的刹车距离不超过40m ,请问车速应该控制在什么范围内?23.(本小题10分)在矩形ABCD中,,E 是对角线BD (端点除外)上的点,F ,G 在直线BC 上,满足,.(图1) (图2)(1)如图1,若,求证:;(2)如图2,连接AF ,求的值(用含m 的式子表示);(3)连接CE ,当,时,若,直接写出FG 的长.24.(本小题12分)将抛物线:平移,使其顶点为,得到抛物线,抛物线交x 轴的正半轴于A 点,交y 轴于C 点.(图1) (图2)(1)直接写出抛物线的表达式;(2)如图1,抛物线的对称轴与直线AC 相交于点B ,G 为直线AC 上的点,过点G 作交抛物线于点F ,当以B ,D ,G ,F 为顶点的四边形为平行四边形时,求点G 的横坐标;ABm BC=EF AE ⊥EG BE ⊥1m =ABE FGE △≌△EFAF12m =CE CD =4ED =1C 2y x =()1,4D -2C 2C 2C 2C GF BD ∥2C(3)如图2,的顶点M ,N 在抛物线上,点M 在点N 右边,两条直线ME ,NE 与抛物线均有唯一公共点,ME ,NE 均与y 轴不平行.若的面积为16,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.2023-2024学年度12月质量检测九年级数学参考答案12345678910C C CABDC DBA11.12. 613. 14.15. ②③④16. 617. 证明:∵,∴,……2分∴,……4分∴,……6分∴.……8分(也可用全等三角形解决)18. 证明:∵,∴,,……2分∴,,……4分∴,……6分∴.……8分19. 证明:(1)∵,∴,……1分∵,∴,……2分又∵,∴.……4分解:(2)∵,,,∴,……5分∵,∴,……7分∴.……8分20.(1)证明:连接OB .由圆内接四边形的性质可知,……1分又∵,∴,……2分∵,∴,∴,∴,……3分∵,∴,∴BE 是的切线.……4分(2)解:过点B 作于点F ,∵,∴,MNE △1C 1C MNE △60︒35︒256πAD BC =AD BC = AD AC BC AC +=+ AB CD=DC AB =ABC ADE △∽△AB ACAD AE =BAC DAE ∠=∠AB AD AC AE=BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD ACE △∽△CD AB ⊥90BDC ∠=︒90ACB ∠=︒ACB BDC ∠=∠B B ∠=∠ABC CBD △∽△90ACB ∠=︒4AC =3BC =5AB =ABC CBD △∽△AB BCBC CD=95BC BC BD AB ⋅==ECB BAD ∠=∠1BAD ∠=∠1ECB ∠=∠OC OB =1CBO ∠=∠CBO ECB ∠=∠EC OB ∥BE EC ⊥BE OB ⊥O BF AC ⊥ BDBA =BD BA =在与中,,∴.……5分∴.由(1)知,在和中,,∴,……6分∴,∴.……7分∵AC 为的直径,∴.在中,由勾股定理,得.……8分(还可以过O 作CD 垂线解决)21.(1)G 点正确,O 点正确(有多种画法)......各2分(2)M 点正确,F 点正确 (2)22. 解:(1);……3分(2)当车速为80km/h 时,刹车距离,∴,答:安全车距应超过57.6m ;……6分(3)当时,,解得,(舍去),……8分∴当时,,∴车速应该控制不超过100km/h 范围内.……10分23.(1)证明:∵在正方形ABCD 中,点E 是对角线BD 上一点,,,∴,,……1分,∴, (2)分ABF △DBE △BAF BDE AFB DEB AB DB ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABF DBE AAS △≌△189AF DE EC CD ==+=+=1ECB ∠=∠Rt BCE △Rt BCF △1BEC BFC ECB BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()BCE BCF AAS △≌△1FC EC ==9110AC AF FC =+=+=O 90ADC ∠=︒Rt ADC△6AD ===20.0020.2s v v =+0.00264000.28028.8S =⨯+⨯=()28.8257.6m ⨯=40s =20.0020.240v v +=1100v =2200v =-40s ≤100v ≤GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90AEB BEF GEF ∠=︒-∠=∠45ABE EBG G ∠=∠=∠=︒BE EG =在和中,,∴;……3分(2)解:∵在矩形ABCD 中,E 是对角线BD 上点,,,∴,,∴,……4分∴,……5分∴.……6分可设,,∴.……7分(3)FG……10分(提示:由(2),可得,过C 作,求出)24. 解:(1);……3分(2)∵,∴,,∴AC :,∵,∴.……4分设,①当点G 在线段AC 上时,点F 在点G 下方,则,∵,∴,解得,或(舍去),则点G 的横坐标为2.……5分②当点G 在线段AC (或CA )延长线上时,点F 在点G 上方,则,∵,∴,解得或E综上可得满足条件的点E 的横坐标为2.……7分(3)设经过的直线解析式为,ABE △FGE △ABE G BE EG AEB FEG ∠=∠⎧⎪=⎨⎪∠=∠⎩ABE FGE △≌△GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90ABE EBG BGE ∠=︒-∠=∠90AEB BEF FEG ∠=︒-∠=∠ABE FGE △∽△EF EG DC ABm AE BE BC BC====EF m =1AE =AF =EF AF =ABE FGE △∽△12FG EF m AB AE ===CH BD ⊥CD =()214y x =--()214y x =--()3,0A ()0,3C -3y x =-()1,4D -()1,2B -(),3G x x -()2,23F x x x --GF DB =()2323242x x x --++=-+=2x =1x =()2,23F x x x --GF DB =()223(3)2x x x ----=x =x =()2,M m m 2()y k x m m =-+,则有,……8分∵直线ME 与有唯一公共点,∴,∴,直线ME 的解析式为,……9分同理可求直线NE 的解析式为,,∴,……10分如图3,过E 作直线轴,分别过M ,N 作l 的垂线,垂足为C ,D ,,∴,……11分∴,∴.……12分图322()y x y k x m m⎧=⎨=-+⎩220x kx km m -+-=2C 22244(2)0k km m k m ∆=-+=-=2k m =22y mx m =-22y nx n =-2222y mx m y nx n⎧=-⎨=-⎩,2m n E mn +⎛⎫⎪⎝⎭l x ∥16NDE MEC MNE MNDC S S S S --==△△△梯形()()()()2222111()22222m n m n n mn m mn m n n mn n m mn m ++⎛⎫⎛⎫⎡⎤-+-⨯---⨯---⨯- ⎪ ⎪⎣⎦⎝⎭⎝⎭16=()364m n -=4m n -=。
2019届九年级上学期月考数学试卷(带答
案)
光影似箭,岁月如梭。
月考离我们越来越近了。
同学们一定想在月考中获得好成绩吧!查字典数学网初中频道为大家准备了2019届九年级上学期月考数学试卷,希望大家多练习。
2019届九年级上学期月考数学试卷(带答案)
一、选择题(本题共10小题,每题3分,共30分)
1.抛物线y=2(x+1)2﹣3的顶点坐标是( )
A.(1,3)
B.(﹣1,3)
C.(1,﹣3)
D.(﹣1,﹣3)
2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )
A.x1
B.x1
C.x﹣2
D.﹣2
3.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2﹣2
4.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )
A.y1y3
B.y2y3
C.y3y1
D.y3y2
5.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )
A.0个
B.1个
C.2个
D.以上都不对
6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )
A.
B.
C.
D.
7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y1成立的x的取值范围是( )
B.﹣31
C.x﹣3
D.x﹣1或x3
8.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )
A.无实数根
B.有两个相等实数根
C.有两个异号实数根
D.有两个同号不等实数根
9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m 后,水面宽为( )
A.5m
B.6m
C.m
D.2m
10.二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(﹣1,
0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c③8a+7b+2c④当x﹣1时,y的值随x值的增大而增大.
其中正确的结论有( )
B.2个
C.3个
D.4个
二、填空题(本题共10小题,每题4分,共4 0分)
11.二次函数y=ax2+bx+c的部分对应值如下表:
二次函数y=ax2+bx+c图象的对称轴为x=__________,x=﹣1对应的函数值y=__________.
12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则__________.
13.抛物线y=a(x+1)(x﹣3)(a0)的对称轴是直线__________.
14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=__________.
15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为__________.
16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为__________.
17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则
a=__________.
18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为__________.
19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是
80m,在线段AB上距离中心M20m的D处,桥的高度是__________m.
20.二次函数y=x2+b x的图象如图,对称轴为x=﹣2.若关于x 的一元二次方程x2+bx﹣t=0(t为实数)在﹣5
三、解答题(本题共7小题,共80分)
21.已知二次函数y=﹣x2+4x+5.
(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a0)的形式,并指出函数图象的对称轴和顶点坐标; (2)求这个函数图象与x轴、y轴的交点坐标.
22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,
0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+cx+m的解集.(直接写出答案)
23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x 轴交于点A(﹣4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P 的坐标.
24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.
(1)建立如图的平面直角坐标系,问此球能否准确投中;
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。