空间点、线、面之间的位置关系
- 格式:docx
- 大小:15.94 KB
- 文档页数:3
空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。
(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。
这时我们就说或。
作用:判断直线在平面内。
2经过不在同一直线的三点,有且只有个平面。
也可以简单地说成:的三点确定一个平面。
过不共线的三点A、B、C的平面,通常记作:。
3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面。
这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。
2经过两条直线,有且只有个平面。
3经过两条直线,有且只有个平面。
(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。
共面的两条直线的位置关系有和两种。
异面直线:既又的直线叫异面直线。
判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。
(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。
直线l在平面α内,记作;直线l不在平面α内,记作。
平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。
基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。
例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。
例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。
空间点、线、面的位置关系1.空间线面关系:例1.已知正方体1111D C B A ABCD -中,E 、F 分别为1C C 、BC 的中点,M 、N 在1A A 、1B B 上,且12A M MA =,13B N NB =,1D M 与DA 交于点P ,1D N 与DB 交于点Q ,MN 与AB 交于点R(1)求证:P 、Q 、R 三点共线;(2)求证:1D E 、DC 、AF 三线共点演变1.已知四边形ABCD 是空间四边形,E 、H 分别是边AB ,AD 的中点,F 、G 分别是边CB ,CD 上的点,且23CF CG CB CD ==,求证: (1)四边形EFGH 是梯形;(2)FE 和GH 的交点在直线AC 上.演变2.在正方体1111ABCD A B C D -中,E F 、分别是11D C 、11C B 的中点,且A C B D P =,11AC EF Q =,求证:(1)D 、B 、F 、E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P 、Q 、R 三点共线。
2.平行的证明:例1.在底面为平行四边形的四棱锥ABCD P -中,E 、F 分别为PD 、BC 的中点(1)求证://PB 平面ACE(2)求证://EF 平面PAB演变1.在正三棱柱111C B A ABC -中,D 为AC 中点,求证://1AB 平面D BC 1演变2.在正方体1111D C B A ABCD -中,O 为正方形1111D C B A 的中心,求证://1C B 平面1ODC演变3.在四棱柱1111D C B A ABCD -中,底面ABCD 为正方形,E 、M 分别为BC 、1AA 的中点,求证://BM 平面ED A 1演变4.在长方体1111D C B A ABCD -中,E 、F 分别为11D C 、B A 1的中点,求证://EF 平面C C BB 11演变 5.如图S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BC 上的点,且AM BN SM NC=,求证://MN 平面SCD例2.已知两条异面直线AB 与CD ,平面MNPQ 与AB 、CD 都平行,且M 、N 、P 、Q 依次在线段AC 、BC 、BD 、AD 上,求证:四边形MNPQ 是平行四边形演变 1.已知,,,E F G H 为空间四边形A B C D 的边,,,A B B C C D D A 上的点,且//EH FG .求证://EH BD .例3.已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且31=AA ,俯视图中1,C C 分别是所在边的中点,设D 为1AA 的中点.(1)作出该几何体的直观图并求其体积;(2)BC 边上是否存在点P ,使1//BDC AP 平面? 若不存在,说明理由;若存在,请证明你的结论.空间点、线、面的位置关系练习题一、选择题:1.下列命题中,正确的是( )A .分别在两个平面内的两条直线一定是异面直线B .经过不同的三点有且只有一个平面C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行2.设a 、b 是两条互不垂直的异面直线,过a 、b 分别作平面α、β,对于下面四种情况:①b ∥α,②b ⊥α,③α∥β,④α⊥β.其中可能的情况有( )A .1种B .2种C .3种D .4种3.α、β是两个不重合的平面,a 、b 是两条不同直线,在下列条件下,可判定α∥β的是( ) A .α、β都平行于直线a 、bB .α内有三个不共线点到β的距离相等C .a 、b 是α内两条直线,且a ∥β,b ∥βD .a 、b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β4.下列命题中,错误的是( )A .三角形的两条边平行于一个平面,则第三边也平行于这个平面B .平面α∥平面β,a ⊂α,过β内的一点B 有唯一的一条直线b ,使b ∥aC .α∥β,γ∥δ,α、β、γ、δ的交线为a 、b 、c 、d ,则a ∥b ∥c ∥dD .一条直线与两个平面成等角是这两个平面平行的充要条件5.在下列条件中,可判断平面α与β平行的是( )A .α、β都垂直于平面γB .α内存在不共线的三点到β的距离相等C .a 、b 是α内两条直线,且a ∥β,b ∥βD .a 、b 是两条异面直线,且a ∥α,b ∥α,a ∥β,b ∥β二、填空题:6.设平面α∥β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于S ,若18AS =,9BS =,34CD =,则CS =_____________.7.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:①a c a b b c ⎫⇒⎬⎭∥∥∥;②a a b b γγ⎫⇒⎬⎭∥∥∥;③c c ααββ⎫⇒⎬⎭∥∥∥; ④c a a c αα⎫⇒⎬⎭∥∥∥;⑤αγαββγ⎫⇒⎬⎭∥∥∥;⑥a a αγαγ⎫⇒⎬⎭∥∥∥ 其中正确的命题是________________.(将正确的序号都填上)8.设D 是线段BC 上的点,BC ∥平面α,从平面α外一定点A (A 与BC 分居平面两侧)作AB 、AD 、AC 分别交平面α于E 、F 、G 三点,BC a =,AD b =,DF c =,则EG =_____________.9.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点. 在上面结论中,正确结论的编号是__________.(写出所有正确结论的编号)10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个命题:①水的部分始终呈棱柱状; ②水面四边形EFGH 的面积不改变; ③棱11A D 始终与水面EFGH 平行; ④当容器倾斜如图乙时,EF BF ⋅是定值. 其中正确命题的序号是_____________.三、解答:11.如下图,两条线段AB 、CD 所在的直线是异面直线,CD ⊂平面α,AB ∥α,M 、N 分别是AC 、BD 的中点,且AC 是AB 、CD 的公垂线段.(1)求证:MN ∥α;(2)若AB CD a ==,AC b =,BD c =,求线段MN 的长.12.如下图,在正方体1111D C B A ABCD -中,M 、N 、E 、F 分别是棱11A B 、11A D 、11B C 、11C D 的中点,AB a =.(1)求证:平面AMN ∥平面EFDB ;(2)求异面直线BE 与MN 之间的距离.答案:C 、C 、D 、D 、D6.答案:68或368;7.答案:①④⑤⑥;8.答案:b ac ab -;9.答案:①②④;10.答案:①③④。
点线面的位置关系总结1. 引言在几何学中,点、线和面是最基本的几何图形。
它们之间的位置关系对于我们理解和描述物体的形状、空间关系以及解决几何问题非常重要。
本文将总结点、线和面之间的常见位置关系,帮助读者在几何学的学习和解题过程中更加清晰地理解这些关系。
2. 点与点之间的位置关系在二维空间中,两个点之间有三种基本的位置关系:•重合(Coincident):两个点的位置完全重合,表示它们的坐标值完全相同。
•相邻(Adjacent):两个点的位置非常接近,但它们的坐标值不完全相同。
•不重合(Non-coincident):两个点的位置完全不同,它们的坐标值没有任何相似之处。
在三维空间中,点与点之间的位置关系也有类似的定义。
3. 点与线之间的位置关系点与线之间的位置关系可以描述为:•在线上(On the line):一个点位于一条直线上。
•在线的延长线上(On the extension of the line):一个点位于一条直线的延长线上,但不在直线上。
•在线的两侧(On one side of the line):一个点与一条直线相交,但不在直线上。
4. 点与面之间的位置关系点与面之间的位置关系可以描述为:•在平面上(On the plane):一个点位于一个平面上。
•在平面的延伸方向上(On the extension of the plane):一个点位于一个平面的延伸方向上,但不在平面上。
•在平面的两侧(On one side of the plane):一个点与一个平面相交,但不在平面上。
5. 线与线之间的位置关系线与线之间的位置关系可以描述为:•相交(Intersecting):两条线在二维空间或三维空间中相交,即它们有一个或多个共同的点。
•平行(Parallel):两条线在二维空间或三维空间中永不相交,即它们没有共同的点。
•重合(Coincident):两条线在二维空间或三维空间中完全重合,表示它们是同一条线。
空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。
它们的位置关系在数学和几何学中扮演着重要的角色。
本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。
一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。
1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。
换句话说,点和线的向量共线。
2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。
3. 点与线相交:在三维空间中,点还可以与一条直线相交。
这时,点与线上的任意两点构成的向量不再共线。
4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。
但是,点与线平行并不意味着点在线的延长线上。
二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。
1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。
2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。
3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
4. 点与平面相交:在三维空间中,点还可以与一个平面相交。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
三、线和面的位置关系线和面的位置关系主要有以下几种情况。
1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。
2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。
这时,直线上的任意两点构成的向量不在同一个平面内。
3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。
但是,直线与平面平行并不意味着直线在平面上。
4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。
空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
点、线、面之间的位置关系在数学几何学中,点、线、面都是我们研究的基本要素,它们之间的位置关系是我们探索空间几何性质的关键所在。
本文将从点、线、面的定义入手,分析它们之间的位置关系。
一、点的定义与位置关系点是最基本的几何要素,是空间中不具有长度、宽度和高度的对象。
我们通常用大写字母表示点,如A、B、C等。
点没有固定的位置,可以在空间中随意移动。
点与点之间的位置关系有以下几种情况。
1. 共点关系当两个或多个点在空间中重合时,它们被称为共点。
共点的点在数轴上只有一个坐标,无法用直线连接。
2. 在一条直线上如果两个点A、B之间可以通过一条直线连接,则称它们共线,即A、B两点在同一条直线上。
在数学中,我们可以通过两点确定一条直线。
3. 不共线关系若三个或三个以上的点不在同一条直线上,则它们被称为不共线。
不共线的点可以构成一个平面或空间。
二、线的定义与位置关系线是由无数个点在空间中按照一定规律排列组成的,是没有宽度和厚度的。
用小写字母表示线,如ab、cd等。
线与线之间的位置关系有以下几种情况。
1.相交关系当两条线在空间中有一个公共点时,称它们相交。
相交的线可以形成一个交点,交点有无数个。
2. 平行关系若两条线在平面内无交点,它们被称为平行线。
平行线的特点是始终保持平行的距离。
3.一条线与一平面的位置关系当一条线与一个平面有一个并且仅有一个交点时,称该线与该平面相交,交点是唯一的。
4.两平行线与一平面的位置关系若两条平行线与一个平面没有交点,它们被称为平面上的平行线。
平面上的平行线具有相同的斜率,但不会相交。
三、面的定义与位置关系面是由无数个点和线按照一定规律组成的,是有长度、宽度和厚度的。
用大写字母表示面,如ABC、DEF等。
面与面之间的位置关系有以下几种情况。
1.共面关系若两个或两个以上的面在空间中可以重合,它们被称为共面。
共面的面在数学中可以用判别式等方式表示。
2. 平行关系若两个面之间没有交点,它们被称为平行面。
空间点、直线、平面之间的位置关系基础梳理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:经过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a ,b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.平行公理:平行于同一条直线的两条直线互相平行.6.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、选择题:1.以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.32.已知a,b 是异面直线,直线c∥直线a,则c 与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图,α∩β=l,A 、B∈α,C∈β,且C ∉l,直线AB∩l=M,过A 、B 、C 三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C 但不过点MD.点C 和点M4.已知直线l,若直线m 同时满足以下三个条件:m 与l 是异面直线;m 与l 的夹角为3(定值);m 与l 的距离为π.那么,这样的直线m 的条数为( )A.0B.2C.4D.无穷5.如图,E 、F 是AD 上互异的两点,G 、H 是BC 上互异的两点,由图可知,①AB 与CD 互为异面直线;②FH 分别与DC 、DB 互为异面直线;③EG 与FH 互为异面直线;④EG 与AB 互为异面直线.其中叙述正确的是( )A.①③B.②④C.①④D.①②6.以下命题中:①点A ,B ,C ∈直线a ,A ,B ∈平面α,则C ∈α;②点A ∈直线a ,a ⊄平面α,则A ∈α;③α,β是不同的平面,a ⊂α,b ⊂β,则a ,b 异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A .0B .1C .2D .37.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1B 1、CC 1的中点,则异面直线AE 与BF 所成角的余弦值为( ) 1342 (5555)A B C D 8.正方体ABCDA 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形9.在正方体ABCD -A 1B 1C 1D 1中,E 是棱A 1B 1的中点,则A 1B 与D 1E 所成角的余弦值为( ) A.510 B.1010 C.55 D.10510.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE ,SD 所成的角的余弦值为( )A.13B.23C.33D.23二、填空题:1.在空间四边形ABCD 中,各边边长均为1,若BD=1,则AC 的取值范围是________.2.如图,正方体ABCD —A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成角的大小等于________.3.如图所示,正方体ABCD-A 1B 1C 1D 1中,给出下列五个命题:①直线AC 1在平面CC 1B 1B 内;②设正方形ABCD 与A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C 与平面BB 1D 1D 的交线为OO 1;③由点A 、O 、C 可以确定一个平面;④由A 、C 1、B 1确定的平面是ADC 1B 1;⑤若直线l 是平面AC 内的直线,直线m 是平面D 1C 内的直线;若l 与m 相交,则交点一定在直线CD 上.其中真命题的序号是________.4.如图,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).5.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.三、解答题:1、如图,平面ABEF⊥平面ABCD,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥ 12AD,BE ∥ 12FA,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点是否共面?为什么?2. 正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面;(2)CE 、D 1F 、DA 三线共点.3.如图所示,S 是正三角形ABC 所在平面外一点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,M、N 分别是AB 和SC 的中点,求异面直线SM 和BN 所成角的余弦值.4、空间四边形ABCD 中,AB=CD 且AB 与CD 所成的角为30°,E、F 分别是BC 、AD 的中点,求EF 与AB 所成角的大小.。
理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.一、平面的基本性质及应用1.平面的基本性质名称图形文字语言符号语言公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α公理2的推论推论1经过一条直线和直线外的一点,有且只有一个平面若点A∉直线a,则A和a确定一个平面α推论2经过两条相交直线,有且只有一个平面a b P=⇒有且只有一个平面α,使aα⊂,bα⊂推论3经过两条平行直线,有且只有一个平面∥a b ⇒有且只有一个平面α,使a α⊂,b α⊂公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P ∈α,且P ∈β⇒α∩β=l ,P ∈l ,且l 是唯一的公理4———l 1———l 2———l平行于同一条直线的两条直线互相平行l 1∥l ,l 2∥l ⇒l 1∥l 22.等角定理(1)自然语言:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,OA O A OB O B ''''∥∥,则AOB A O B ∠=∠'''或180AOB A O B ∠+∠'''=︒.图(1) 图(2)二、空间两直线的位置关系 1.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线【注意】异面直线:不同在任何一个平面内,没有公共点.2.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是π(0,]2. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .三、空间直线与平面、平面与平面的位置关系 1.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 ①按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 ②按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内③按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.2.直线与平面的位置关系的符号表示和图形表示图形语言符号语言公共点α=1个直线a与平面α相交a A∥0个直线a与平面α平行aα⊂无数个直线a在平面α内aα∥0个平面α与平面β平行αβαβ=无数个平面α与平面β相交l3.常用结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线.考向一平面的基本性质及应用(1)证明点共线问题,就是证明三个或三个以上的点在同一条直线上,主要依据是公理3.常用方法有:①首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上;学#②选择其中两点确定一条直线,然后证明其他点也在这条直线上.(2)证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.(3)证明点或线共面问题,主要有两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.典例1(1)在下列命题中,不是公理的是A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(2)给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是A.0 B.1C.2 D.3【答案】(1)A (2)B1.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.考向二 空间线面位置关系的判断两条直线位置关系判断的策略:(1)异面直线的判定常用到的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.(2)点、线、面之间的位置关系可借助正方体为模型,以正方体为主线,直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直. (3)对于异面直线的条数问题,可以根据异面直线的定义逐一排查. 学@典例2 如图,在正方体1111ABCD A BC D 中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为 A .③④ B .①② C .①③D .②④【答案】A故选A .2.若直线l与平面α相交,则A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交典例3如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.3.如图,平面,,,a b b a A c αβαβ=⊂=⊂平面,且c a ∥,求证:b ,c 是异面直线.考向三 异面直线所成的角求异面直线所成的角的常见策略: (1)求异面直线所成的角常用平移法.平移法有三种类型,利用图中已有的平行线平移,利用特殊点(线段的端点或中点)作平行线平移,利用补形平移.(2)求异面直线所成角的步骤①一作:即根据定义作平行线,作出异面直线所成的角; ②二证:即证明作出的角是异面直线所成的角; ③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角. (3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. ②反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.典例4 如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A .90B .75C .60D .45【答案】A则222AG GH AH =+,所以90AEF ∠=,故选A. #网【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几何体的结构特征,把空间中异面直线CD 和PB 所成的角转化为平面角AEF ∠,放置在三角形中,利用解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.4.如图,已知棱长为a的正方体ABCD-A1B1C1D1,设M,N分别是A1B1,BC的中点.(1)求MN与A1C1所成角的正切值;(2)求B1D与A1C1所成角的大小.1.在正方体中,与成异面直线的棱共有A.条B.条C.条D.条2.下面四个条件中,能确定一个平面的条件是A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线3.已知直线平面,直线平面,则A.B.异面C.相交D.无公共点4.若直线a α,给出下列结论:①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a平行的直线其中成立的个数是A.0 B.1C.2 D.35.如图,在四面体中,若直线和相交,则它们的交点一定A .在直线上B .在直线上C .在直线上D .都不对6.在空间中,下列命题正确的是A .若平面内有无数条直线与直线l 平行,则l α∥B .若平面内有无数条直线与平面平行,则αβ∥C .若平面内有无数条直线与直线l 垂直,则l α⊥D .若平面内有无数条直线与平面垂直,则αβ⊥ 7.给出下列四种说法:①两个相交平面有不在同一直线上的三个公共点; ②一条直线和一个点确定一个平面; ③若四点不共面, 则每三点一定不共线; ④三条平行线确定三个平面. 正确说法的个数为 A .1 B .2 C .3D .48.已知,m n 为异面直线,平面平面,直线满足,则A .αβ∥且l α∥B .且C .与相交,且交线垂直于D .与相交,且交线平行于9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是 A .14l l ⊥ B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定 10.在如图所示的正方体1111ABCD A BC D -中分别是棱的中点,则异面直线与所成角的余弦值为A .147 B .57C .105D .25511.已知在正方体1111ABCD A BC D -中(如图),l ⊂平面1111A B C D ,且l 与11B C 不平行,则下列一定不可能的是A .l 与AD 平行B .l 与AB 异面C .l 与CD 所成的角为30°D .l 与BD 垂直12.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点.若AC BD a ==,且AC 与BD所成的角为60,则四边形EFGH 的面积为A .238a B .234a C .232a D .23a13.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”该问题中的羡除是如图所示的五面体,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中尺,尺,尺,间的距离为尺,间的距离为尺,则异面直线与所成角的正弦值为A .B .C .D .14.如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①与平行;②与为异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的个数是A .1B .2C .3D .415.若直线和平面平行,且直线,则两直线和的位置关系为 _____ .16.如图所示,1111ABCD A BC D 是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,给出下列结论:①A 、M 、O 三点共线;②A 、M 、O 、A 1不共面;③A 、M 、C 、O 共面;④B 、B 1、O 、M 共面. 其中正确结论的序号为____________.17.已知m ,n 是两条不同的直线,,β是两个不同的平面,给出下列命题:①若⊥β,∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ②若α∩β=m ,n //α,n //β,则n //m ;③若m 不垂直于平面α,则m 不可能垂直于α内的无数条直线; ④若m ⊥α,n ⊥β, α//β,则m //n .其中正确的是__________.(填上所有正确的序号) 18.在四面体中,分别是的中点,若所成的角为,且,则的长度为__________. 19.如图,已知四棱锥中,底面为菱形,分别是的中点,在上,且13PG PD.证明:点四点共面.20.已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.(1)求证:BC与AD是异面直线;(2)求证:EG与FH相交.21.如图,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,13AA 1AD 与1DB 所成角的余弦值为A .15B 5C 5D 2 2.(2017新课标全国Ⅱ理科)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .32B .155C .105D .333.(2015安徽理科)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 4.(2016新课标全国Ⅰ理科)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A 3B .22C 3D .135.(2017新课标全国Ⅲ理科) a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)6.(2015浙江理科)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .7.(2016上海理科)将边长为1的正方形11AAOO (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为2π3,11A B 长为π3,其中1B 与C 在平面11AAOO 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.1.【解析】(1)如图,连接EF ,CD 1,BA 1.因为E ,F 分别是AB ,AA 1的中点,所以EF ∥BA 1. 又BA 1∥CD 1,所以EF ∥CD 1. 所以E ,C ,D 1,F 四点共面.(2)因为EF ∥CD 1,EF <CD 1,所以CE 与D 1F 必相交,设交点为P ,如图所示.2.【答案】A【解析】当直线l 与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A 正确;该平面内不存在与直线l 平行的直线,故B 错误;该平面内有无数条直线与直线l 垂直,所以C 错误;平面α内的直线与l 可能异面,故D 错误,故选A . 学@ 3.【解析】反证法:若b 与c 不是异面直线,则或b 与c 相交.①若,∵,∴,这与矛盾. ②若b ,c 相交于点B ,则.∵,∴,∴AB β⊂,即b β⊂,这与矛盾.∴b ,c 是异面直线.变式拓展4.【解析】(1)如图,取B1C1的中点Q,连接MQ,∵M是A1B1的中点,∴MQ//A1C1,∴MQ与MN所成的角为MN与A1C1所成的角,即∠NMQ.连接QN,则QN⊥平面A1B1C1D1,而MQ⊂平面A1B1C1D1,∴QN⊥MQ.在Rt△MQN中,QN=a,MQ =a,∴tan∠NMQ =.即MN与A1C1所成角的正切值为.(2)如图,连接BD,B1D1.∵DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴DD1⊥A1C1.又A1C1⊥B1D1,DD1∩B1D1=D1,∴A1C1⊥平面BDD1B1.∵B1D⊂平面BDD1B1,∴A1C1⊥B1D,∴B1D与A1C1所成角的大小为90°.考点冲关1.【答案】A【解析】如图,与成异面直线的棱有、、、,共4条.故选A.2.【答案】D3.【答案】D【解析】若直线平面,直线平面,则或异面,即无公共点.故选D.4.【答案】A【解析】∵直线a α,∴a∥α或a∩α=A.如图,显然①②③④都有反例,所以应选A.【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.5.【答案】A【解析】根据条件可知,和的交点都在平面ABD与平面BCD中,故和相交于两平面的交线BD上.故选A.6.【答案】D【解析】由题可得,要使直线与平面平行,则直线应平行于平面内的一条直线,且该直线在平面外,由此可得,选项A错误;要使平面与平面平行,则只需平面内两条相交直线与平面平行即可,选项B中,没说明直线是否相交,所以结论不一定成立,所以选项B错误;要使直线垂直平面,则直线垂直于平面内的任意一条直线,而无数条直线不能代表任意条,所以选项C错误,所以正确的选项是D.7.【答案】A8.【答案】D【解析】若,则由平面,知平面,而平面,所以,与为异面直线矛盾,所以平面与平面相交.由平面,且,可知,,同理可知,所以与两平面的交线平行.故选D . 9.【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l .若取AD 为1l ,BC 为4l ,则14l l ∥;若取AD 为1l ,AB 为4l ,则14l l ⊥;若取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA10.【答案】D【解析】取DD 1的中点G ,连接BG,FG ,易知四边形BED 1G 是平行四边形,则BG //ED 1,则∠FBG 是异面直线与所成的角或其补角,令正方体的棱长为2,则BF =FG =BG =3,cos ∠FBG 255235=⨯⨯. 11.【答案】A【解析】假设l AD ∥,则由11AD BC B C ∥∥,可得11l B C ∥,这与“l 与11B C 不平行”矛盾,所以l 与AD 不平行. 12.【答案】A13.【答案】B【解析】过点作,如图:根据题意知,所以是异面直线与所成的角,又因为尺,尺,且侧面为等腰梯形,则尺,间的距离为尺,故尺,由勾股定理得尺,所以,故选B.14.【答案】C【解析】将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:15.【答案】平行或异面【解析】由条件可知直线和没有公共点,故直线和的位置关系为平行或异面. 学……16.【答案】①③【解析】连接A1C1、AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O、A在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线,故①正确.由①易知②错误,③正确.易知OM与BB1为异面直线,故④错误.17.【答案】②④【解析】若,则与的位置关系不确定,即①错误;由线面平行的性质和平行公理可得②正确;若不垂直于平面,则可垂直于内的无数条直线,即③错误;若,则,又,所以,即④正确.故填②④.18.【答案】19.【解析】在平面内,连接并延长,交的延长线于点,则有, 在平面内,连接并延长,交于点.取中点,连接,AF,20.【解析】(1)假设BC与AD共面,不妨设它们所共平面为,则.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾. @网所以BC与AD是异面直线.(2),因此;同理,则EFGH为平行四边形.又EG,FH是平行四边形的对角线,所以EG与HF相交.21.【解析】取AC的中点F,连接BF、EF,1.【答案】C【解析】用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115455cos 2545DB B P DP DB P DB PB +-+-∠===⋅.故选C.2.【答案】C直通高考【解析】如图所示,补成直四棱柱1111ABCD A BC D -, 则所求角为21111,2,21221cos 603,5BC D BC BDC D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C .【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; 学@④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 3.【答案】D4.【答案】A【解析】如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角. 过1D 作11D E B C ∥,交AD 的延长线于点E ,连接CE ,则CE 为'm . 连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11BF 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60 , 故,m n 所成角的正弦值为32,选A.【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补. 5.【答案】②③【名师点睛】(1)平移直线法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π0,2⎛⎤⎥⎝⎦,可知当求出的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的范围.6.【答案】87【解析】如下图,连接DN,取DN中点E,连接EM,EC,则可知EMC∠即为异面直线AN,CM 所成角(或其补角),易得122EM AN==22213EC EN CN+=+2222=-=AMACCM,∴7 cos82222EMC∠==⨯⨯,31 即异面直线AN ,CM 所成角的余弦值为87. 7.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 长为π3,可知111π3ΑΟΒ∠=. 111111111113sin 24ΟΑΒS ΟΑΟΒA ΟΒ=⋅⋅∠=△, 11111113312C O A B ΟΑΒV S h -=⋅=△.【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.。
点、线、面是空间几何学中的基本概念,它们存在着一定的位置关系。
向量法是解决几何问题的重要方法之一,可以有效地描述点、线、面的位置关系。
本文将探讨向量法在点、线、面位置关系中的应用,并给出相关参考内容。
一、点、线、面的向量表示向量是对空间中的点、线、面进行表示的一种数学工具。
在向量法中,我们通常使用坐标表示点的位置、用箭头表示线的方向、用平面方程表示面的位置。
具体表示如下:1.点的向量表示设点A在空间中的坐标为(Ax, Ay, Az),则A点的位置向量表示为OA = (Ax, Ay, Az)。
2.线的向量表示设直线L上一点A的位置向量为OA,且直线上一点B的位置向量为OB,则直线L的向量表示为(OA, OB)。
3.面的向量表示设平面α通过点A,并以直线L为法线,则平面α的向量表示为α: AX + BY + CZ + D = 0,其中(x, y, z)为空间中的任意一点坐标。
二、点、线、面的位置关系1.点和线的位置关系给定直线L的向量表示为(OA, OB),设点P的位置向量为OP。
点P在直线L上的充分必要条件是OP = λ1·OA + λ2·OB,其中λ1和λ2为实数。
当λ1和λ2满足该条件时,点P在线段AB上;当λ1和λ2为0或非零时,点P在线段AB的延长线上。
2.点和面的位置关系给定面α的向量表示为α: AX + BY + CZ + D = 0,设点P的位置向量为OP。
点P在平面α上的充分必要条件是OP·n = 0,其中n为α的法向量。
当OP·n = 0时,点P在平面α上;当OP·n ≠ 0时,点P在平面α的一侧。
3.线和面的位置关系给定直线L的向量表示为(OA, OB),平面α的向量表示为α: AX + BY + CZ + D = 0。
直线L与平面α的位置关系可以通过求交点进行判断。
设直线L与平面α的交点为点P,则有OP·n = 0和OP = λ1·OA + λ2·OB。
空间几何中的点线面的位置关系在空间几何学中,点、线和面是最基本的几何元素。
它们在空间中的位置关系对于理解和解决几何问题至关重要。
本文将讨论点线面在空间中的常见位置关系以及它们之间的相互作用。
一、点与线的位置关系1.1 点在直线上当一个点位于一条直线上时,称该点在直线上。
点在直线上的特点是它与直线上的任意两个点都在同一直线上。
1.2 点在直线上的延长线上当一个点位于直线的延长线上时,称该点在直线上的延长线上。
点在直线延长线上的特点是它与直线上的任意两个点都在同一直线上,包括线的两个端点。
1.3 点在线段上当一个点位于一条线段上时,称该点在线段上。
点在线段上的特点是它位于线段的两个端点之间。
1.4 点在线段的延长线上当一个点位于线段的延长线上时,称该点在线段的延长线上。
点在线段延长线上的特点是它位于线段的两个端点之外。
二、点与面的位置关系2.1 点在平面上当一个点位于一个平面上时,称该点在平面上。
点在平面上的特点是它与平面上的任意两个点都在同一平面上。
2.2 点在平面上的延长线上当一个点位于平面的延长线上时,称该点在平面上的延长线上。
点在平面延长线上的特点是它与平面上的任意两个点都在同一平面上,包括平面的边界和内部点。
2.3 点在平面外当一个点不在平面上时,称该点在平面外。
点在平面外的特点是它无法与平面上的任意两个点构成一条直线。
三、线与面的位置关系3.1 线在平面上当一条线位于平面内时,称该线在平面上。
线在平面上的特点是它与平面上的任意两个点都在同一平面上。
3.2 线平行于平面当一条线与平面上的所有点都不相交时,称该线平行于平面。
平行于平面的特点是线上的所有点与平面上的任意两个点的连线都平行。
3.3 线与平面相交于一点当一条线与平面上的某个点相交时,称该线与平面相交于一点。
线与平面相交于一点的特点是线上的所有点与平面上的任意两个点的连线都相交于同一点。
四、面与面的位置关系4.1 平行面当两个面的法向量平行时,称这两个面为平行面。
空间点、线、面之间的位置关系
1.线与线的位置关系:
平行、相交、异面(特别注意一下:垂直只是相交与异面当中的特殊情况,我们说相交有相交垂直,异面有异面垂直)
2.线与面的位置关系:线在面内(选择题时一定要考虑)、线面平行、线面相交
3.如何确定一个平面?
方法(1)三个不共线的点可以确定一个平面
方法(2)两条相交线可以确定一个平面
方法(3)两条平行线可以确定一个平面
4.如何证明三点共线?
具体的做法:就是把其中两点确定的直线作为两个面的交线,证明剩下这一点是这两个面的交点,那么交点必在交线上,则三点共线。
5.如何证明线线平行?
方法(1)利用三角形或梯形的中位线
方法(2)利用平行四边形
方法(3)利用线段对应成比例(通常题目中会出现三等份点或四等份点)
方法(4)垂直于同一个面的两条直线互相平行
方法(5)借助一个性质:两个面相交,其中一个面内的一条直线平行于另一个面,则这条线平行于两个面的交线
(利用这个性质来证明在以往的高考中出现过若干次,同学们需要注意一下)
6.如何证明线面平行?
方法(1)只需证明这条直线与平面内的一条直线平行即可,简称线线平行推出线面平行。
方法(2)只需把这条直线放入一个合适的平面内,然后证明这个平面与已知平面平行即可,简称面面平行推出线面平行。
特别注意:直线平行于平面,可以得出直线与平面内无数条直线
平行,但得不出与平面内任意一条直线平行。
7.如何证明面面平行?
只需证明其中一个面内的两条相交线分别平行于另一个面即可。
8.如何证明线面垂直?
只需证明这条直线分别与平面内的两条相交线互相垂直即可。
特别注意:直线垂直于平面,可以得出直线与平面内任意一条直线都垂直。
9.如何证明面面垂直?
只需证明其中一个面内的一条直线垂直与另一个面即可。
特别注意:面面垂直,既得不出两个面内的任意两条直线互相垂直,也得不出其中一个面内的任意一条直线都垂直于另一个面。
10.异面直线的夹角范围是多少?如何求出异面直线的夹角?
夹角范围是:0°~ 90°
在求异面直线的夹角时,要把两条异面直线平移使它们出现交点,有时只需平移一条,有时两条都需要平移,这个过程中用得比较多的是中位线,当平移后两条直线出现交点时,复杂些的在三角形中利用余弦定理来求。
11.线面夹角范围是多少?如何作出线面夹角?如何来求出线面夹角?
夹角范围是:0°~ 90°
如何作出线面夹角呢?设线段为AB,首先找到线段AB与面的交点假设是A点,从线段在面外的那个端点B作面的垂线,垂足设为O,连接AO,则在直角△AOB中∠AOB就是线面夹角。
如何来求出线面夹角?一般题目中都会给出线段AB的长度,最主要的是AO,AO也就是A点到面的距离,通常我们选择等体积法来求这条高AO ,在直角△AOB中知道了AB,AO的长,线面夹角∠AOB 也就可以求出来了。
12. 二面角的范围是多少?如何作出二面角?如何求出二面角?
二面角的范围:0°~ 180°
如何作出二面角?分别从两个面中做交线的垂线,要保证垂足重
合,此时,两条直线的夹角就是二面角。
一般求二面角都是借助法向量。