空间中点线面位置关系
- 格式:doc
- 大小:257.95 KB
- 文档页数:8
第一讲:空间中的点线面一,生活中的问题?生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象.二,概念明确1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。
所以:点与线的关系是_____________________,用符号______________。
线与面的关系是_____________________,用符号______________。
点与面的关系是_____________________,用符号______________。
2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角)3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。
点,线,面都是抽象的几何概念。
不必计较于一个点的大小,直线的长度与粗细。
4,平面的画法与表示描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用画出来,如图b所示记法(1)用一个α,β,γ等来表示,如图a中的平面记为平面α(2)用两个大字的(表示平面的平行四边形的对角线的顶点)来表示,如图a中的平面记为平面AC或平面BD(3)用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a中的平面记为平面ABC或平面等(4)用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD检验检验:下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为()A.1B.2C.3D.4三,点,线,面的位置关系和表示A是点,l,m是直线,α,β是平面.文字语言符号语言图形语言A在l上A在l外A在α内A在α外文字语言符号语言图形语言l在α内l与α平行l ,m 相交于Al ,m 都在平面α内且平行l ,m 异面(不同在任何一个平面内,且没有交点)α,β相交于lα,β平行(没有交点)熟悉熟悉:如图所示,平面ABEF 记作平面α,平面ABCD 记作平面β,根据图形填写: (1)A ∈α,B ________α,E ________α,C ________α,D ________α; (2)α∩β=________;(3)A ∈β,B ________β,C ________β,D ________β,E ________β,F ________β; (4)AB ________α,AB ________β,CD ________α,CD ________β,BF ________α,BF ________β.四,立体几何的公理与定理1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。
(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。
这时我们就说或。
作用:判断直线在平面内。
2经过不在同一直线的三点,有且只有个平面。
也可以简单地说成:的三点确定一个平面。
过不共线的三点A、B、C的平面,通常记作:。
3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面。
这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。
2经过两条直线,有且只有个平面。
3经过两条直线,有且只有个平面。
(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。
共面的两条直线的位置关系有和两种。
异面直线:既又的直线叫异面直线。
判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。
(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。
直线l在平面α内,记作;直线l不在平面α内,记作。
平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。
基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。
例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。
例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。
空间几何与向量运算点线面的位置关系与运算空间几何与向量运算是数学中的重要分支,研究点、线、面在空间中的位置关系以及进行相应的运算操作。
在实际应用中,空间几何与向量运算广泛应用于物理学、工程学等领域。
本文将详细讨论点、线、面在空间中的位置关系和对应的运算方式。
一、点在空间中的位置关系在空间几何中,点是空间的最基本元素,它没有长度、宽度和高度。
点与点之间的位置关系可以通过坐标系来描述。
常用的坐标系有直角坐标系、柱坐标系和球坐标系。
1. 直角坐标系直角坐标系是最常用的坐标系,用三个坐标轴x、y、z相互垂直组成,固定在空间中的三个直线上。
点在直角坐标系中的位置可以用三个坐标(x, y, z)来表示,其中x表示点在x轴上的投影位置,y表示点在y轴上的投影位置,z表示点在z轴上的投影位置。
2. 柱坐标系和球坐标系柱坐标系和球坐标系是常用的极坐标系。
在柱坐标系中,点的位置由径向距离、极角和高度来确定,记作(r, θ, z),其中r表示点到极坐标原点的距离,θ表示点到正极轴的角度,z表示点在z轴上的投影位置。
在球坐标系中,点的位置由球半径、极角和方位角来确定,记作(r, θ, φ),其中r表示点到球心的距离,θ表示点到正半轴的角度,φ表示点到正极面的角度。
二、线在空间中的位置关系与运算线是由无数个点连接而成的集合,线在空间中的位置关系有直线、平行线、相交线等。
对于线的运算操作,主要包括长度、夹角、平移、旋转等。
1. 长度线的长度是线段两个端点之间的距离,可以通过计算两个点的坐标来求得。
对于直线则无法直接求得长度。
2. 夹角两条线之间的夹角是指这两条线在空间中交汇处的夹角。
可以通过计算两条线的方向向量来求得夹角。
3. 平移平移是指将一条线段按照指定的平移向量进行移动,其位置和形状保持不变。
平移操作可以通过向直线的每个点添加平移向量得到。
4. 旋转旋转是指将一条线段按照指定的旋转角度和旋转轴进行旋转,其位置和形状保持不变。
空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。
它们的位置关系在数学和几何学中扮演着重要的角色。
本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。
一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。
1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。
换句话说,点和线的向量共线。
2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。
3. 点与线相交:在三维空间中,点还可以与一条直线相交。
这时,点与线上的任意两点构成的向量不再共线。
4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。
但是,点与线平行并不意味着点在线的延长线上。
二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。
1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。
2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。
3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
4. 点与平面相交:在三维空间中,点还可以与一个平面相交。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
三、线和面的位置关系线和面的位置关系主要有以下几种情况。
1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。
2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。
这时,直线上的任意两点构成的向量不在同一个平面内。
3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。
但是,直线与平面平行并不意味着直线在平面上。
4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。
空间中点线面的位置关系教学反思
在初中数学的教学中,空间中点、线、面的位置关系是一个重要的内容。
在这个内容的教学中,我意识到了一些问题和反思,下面就来分享一下。
首先,我发现学生对于点、线、面的概念理解不够深入。
在教学中,我常常发现学生只是停留在了表面的记忆,而没有真正理解这些概念的本质。
因此,在教学中,我更多地注重了引导学生去思考这些概念的本质,并通过具体的例子来深入地理解这些概念。
其次,我发现学生对于点、线、面的位置关系理解不够清晰。
在教学中,我常常发现学生会混淆点、线、面之间的位置关系,例如把直线看成是平面、把点看成是直线等。
针对这个问题,我更多地使用了图示的方式来进行教学,并通过具体的例子来加深学生对于点、线、面之间的位置关系的理解。
最后,我发现学生对于实际应用不够重视。
在教学中,我常常发现学生在学完这个内容之后,缺乏对于实际应用的概念。
因此,在教学中,我更多地使用了生活中的实际例子来引导学生去思考这些概念在实际应用中的作用,从而更好地加深学生对于这个内容的理解。
总之,在教学中,我更多地注重了引导学生去思考、加深学生对于点、线、面之间的位置关系的理解,并通过实际例子来加深学生对于这些概念的理解和应用。
希望能够帮助学生更好地掌握这个内容。
空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
点线面的关系在几何学中,点、线和面是最基本的几何要素,它们之间有着密切的联系和关系。
点是几何学的基础,线由连接两个点而成,而面则是由多条线所围成的平面区域。
点、线和面的关系无处不在,它们相互作用、相互依存,在几何学以及其他学科中都有着重要的意义。
一、点与线的关系1. 线由点组成线是由两个或更多个点连接而成的。
在几何学中,我们通常用直线和曲线两个概念来描述线的形态。
直线是由无数个点连成的,而曲线则是由多个点相连接而成的线条。
无论是直线还是曲线,都需要点作为基本要素。
2. 点划定线除了构成线的要素外,点还可以划定线的特征。
在平面几何中,两点确定一条直线,通过连接两个点可以得到一条唯一的直线。
同样,在空间几何中,三维坐标系中的两点也可以唯一确定一条直线。
3. 线分割点线可以将空间分割成不同的部分,这些分割点的存在和位置是由线的性质决定的。
在线上的任意一点可以将线划分为两段,这些点被称为分割点。
二、点与面的关系1. 面由点组成面是由许多线相交或平行而形成的平面区域。
每一条线都可以看作是由无数个点连接而成的,因此,面也是由无数个点构成的。
这些点通过线的交叉或平行关系来形成不同的面。
2. 点确定面的特征在平面几何中,三个不共线的点可以确定一个平面。
这意味着,通过连接三个不在同一条直线上的点,可以得到一个唯一的平面。
同样,在空间几何中,通过连接不共线的四个点也可以唯一确定一个平面。
3. 面分割点面可以将三维空间分割成不同的区域。
这些区域的边界由线所组成,线的端点就是面的分割点。
这些分割点将面分割成不同的区域,使得每个区域都具有特定的性质。
三、线与面的关系1. 线与面相交线可以与面相交于一点或多点。
当一条线与平面相交时,它们的交点即是线与面的关系点。
这个交点可以是线在平面上的一个点,也可以是线与平面相交于一条线段。
2. 面与线的包围关系面可以包围线,也可以被线所包围。
当一条线完全位于一个平面内时,该线被称为完全位于平面内。
高考专题:空间点、直线、平面的位置关系及四个公理一.空间点、直线、平面的位置关系 1.空间点、直线、平面之间的位置关系2.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角) 叫做异面直线a 与b 所成的角(或夹角).即,异面直线的平行线的夹角就是两异面直线所成的角。
(2)范围:⎝⎛⎦⎤0,π2. 3.异面直线判定定理:经过平面外一点和平面内一点的直线,与这个平面内不经过该点的直线是异面直线.即,若l B l B A ∉⊂∈∉,,,ααα 则AB 与l 异面。
4.异面直线所成的角的求解方法:方法一,定义法: 异面直线所成的角,根据定义,以“运动”观点,用“平移转化”的方法,使之成为两相交直线所成的角,当异面直线垂直时,应用线面垂直定义或三垂线定理及逆定理判定所成的角为。
90,也是不可忽视的方法。
其求解步骤为:做平移找出或做出有关的角-----证明它符合定义即认定----通过解三角形求角。
简言之,“一做,二证,三算”注意:第二步认定的表述为:Λ∠或其补角就是异面直线----与----所成的角。
方法二,三弦公式法:如图,已知PA 与PB 分别是平面α的垂线和斜线,在平面α内过斜足B 任意引一直线BC ,设θθθ=∠=∠=∠PBC ABC PBA ,,21,有21cos cos cos θθθ⋅=。
【真题再现】1.(2014全国二):正方体1111D C B A -ABCD 中,若E 、F 分别为11B A 和1BB 的中点,则AE 与CF 所成角的余弦值是 .2.(2017理科全国三)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°;其中正确的是 ________ .(填写所有正确结论的编号)推论:最小角定理:平面外的一条斜线和它在平面内的射影所成的锐角(即,线面角)是这条斜线和平面内所有直线所成的一切角中的最小角。
理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.一、平面的基本性质及应用1.平面的基本性质名称图形文字语言符号语言公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α公理2的推论推论1经过一条直线和直线外的一点,有且只有一个平面若点A∉直线a,则A和a确定一个平面α推论2经过两条相交直线,有且只有一个平面a b P=⇒有且只有一个平面α,使aα⊂,bα⊂推论3经过两条平行直线,有且只有一个平面∥a b ⇒有且只有一个平面α,使a α⊂,b α⊂公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P ∈α,且P ∈β⇒α∩β=l ,P ∈l ,且l 是唯一的公理4———l 1———l 2———l平行于同一条直线的两条直线互相平行l 1∥l ,l 2∥l ⇒l 1∥l 22.等角定理(1)自然语言:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,OA O A OB O B ''''∥∥,则AOB A O B ∠=∠'''或180AOB A O B ∠+∠'''=︒.图(1) 图(2)二、空间两直线的位置关系 1.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线【注意】异面直线:不同在任何一个平面内,没有公共点.2.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是π(0,]2. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .三、空间直线与平面、平面与平面的位置关系 1.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 ①按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 ②按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内③按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.2.直线与平面的位置关系的符号表示和图形表示图形语言符号语言公共点α=1个直线a与平面α相交a A∥0个直线a与平面α平行aα⊂无数个直线a在平面α内aα∥0个平面α与平面β平行αβαβ=无数个平面α与平面β相交l3.常用结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线.考向一平面的基本性质及应用(1)证明点共线问题,就是证明三个或三个以上的点在同一条直线上,主要依据是公理3.常用方法有:①首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上;学#②选择其中两点确定一条直线,然后证明其他点也在这条直线上.(2)证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.(3)证明点或线共面问题,主要有两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.典例1(1)在下列命题中,不是公理的是A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(2)给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是A.0 B.1C.2 D.3【答案】(1)A (2)B1.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.考向二 空间线面位置关系的判断两条直线位置关系判断的策略:(1)异面直线的判定常用到的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.(2)点、线、面之间的位置关系可借助正方体为模型,以正方体为主线,直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直. (3)对于异面直线的条数问题,可以根据异面直线的定义逐一排查. 学@典例2 如图,在正方体1111ABCD A BC D 中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为 A .③④ B .①② C .①③D .②④【答案】A故选A .2.若直线l与平面α相交,则A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交典例3如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.3.如图,平面,,,a b b a A c αβαβ=⊂=⊂平面,且c a ∥,求证:b ,c 是异面直线.考向三 异面直线所成的角求异面直线所成的角的常见策略: (1)求异面直线所成的角常用平移法.平移法有三种类型,利用图中已有的平行线平移,利用特殊点(线段的端点或中点)作平行线平移,利用补形平移.(2)求异面直线所成角的步骤①一作:即根据定义作平行线,作出异面直线所成的角; ②二证:即证明作出的角是异面直线所成的角; ③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角. (3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. ②反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.典例4 如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A .90B .75C .60D .45【答案】A则222AG GH AH =+,所以90AEF ∠=,故选A. #网【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几何体的结构特征,把空间中异面直线CD 和PB 所成的角转化为平面角AEF ∠,放置在三角形中,利用解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.4.如图,已知棱长为a的正方体ABCD-A1B1C1D1,设M,N分别是A1B1,BC的中点.(1)求MN与A1C1所成角的正切值;(2)求B1D与A1C1所成角的大小.1.在正方体中,与成异面直线的棱共有A.条B.条C.条D.条2.下面四个条件中,能确定一个平面的条件是A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线3.已知直线平面,直线平面,则A.B.异面C.相交D.无公共点4.若直线a α,给出下列结论:①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a平行的直线其中成立的个数是A.0 B.1C.2 D.35.如图,在四面体中,若直线和相交,则它们的交点一定A .在直线上B .在直线上C .在直线上D .都不对6.在空间中,下列命题正确的是A .若平面内有无数条直线与直线l 平行,则l α∥B .若平面内有无数条直线与平面平行,则αβ∥C .若平面内有无数条直线与直线l 垂直,则l α⊥D .若平面内有无数条直线与平面垂直,则αβ⊥ 7.给出下列四种说法:①两个相交平面有不在同一直线上的三个公共点; ②一条直线和一个点确定一个平面; ③若四点不共面, 则每三点一定不共线; ④三条平行线确定三个平面. 正确说法的个数为 A .1 B .2 C .3D .48.已知,m n 为异面直线,平面平面,直线满足,则A .αβ∥且l α∥B .且C .与相交,且交线垂直于D .与相交,且交线平行于9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是 A .14l l ⊥ B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定 10.在如图所示的正方体1111ABCD A BC D -中分别是棱的中点,则异面直线与所成角的余弦值为A .147 B .57C .105D .25511.已知在正方体1111ABCD A BC D -中(如图),l ⊂平面1111A B C D ,且l 与11B C 不平行,则下列一定不可能的是A .l 与AD 平行B .l 与AB 异面C .l 与CD 所成的角为30°D .l 与BD 垂直12.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点.若AC BD a ==,且AC 与BD所成的角为60,则四边形EFGH 的面积为A .238a B .234a C .232a D .23a13.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”该问题中的羡除是如图所示的五面体,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中尺,尺,尺,间的距离为尺,间的距离为尺,则异面直线与所成角的正弦值为A .B .C .D .14.如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①与平行;②与为异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的个数是A .1B .2C .3D .415.若直线和平面平行,且直线,则两直线和的位置关系为 _____ .16.如图所示,1111ABCD A BC D 是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,给出下列结论:①A 、M 、O 三点共线;②A 、M 、O 、A 1不共面;③A 、M 、C 、O 共面;④B 、B 1、O 、M 共面. 其中正确结论的序号为____________.17.已知m ,n 是两条不同的直线,,β是两个不同的平面,给出下列命题:①若⊥β,∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ②若α∩β=m ,n //α,n //β,则n //m ;③若m 不垂直于平面α,则m 不可能垂直于α内的无数条直线; ④若m ⊥α,n ⊥β, α//β,则m //n .其中正确的是__________.(填上所有正确的序号) 18.在四面体中,分别是的中点,若所成的角为,且,则的长度为__________. 19.如图,已知四棱锥中,底面为菱形,分别是的中点,在上,且13PG PD.证明:点四点共面.20.已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.(1)求证:BC与AD是异面直线;(2)求证:EG与FH相交.21.如图,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,13AA 1AD 与1DB 所成角的余弦值为A .15B 5C 5D 2 2.(2017新课标全国Ⅱ理科)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .32B .155C .105D .333.(2015安徽理科)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 4.(2016新课标全国Ⅰ理科)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A 3B .22C 3D .135.(2017新课标全国Ⅲ理科) a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)6.(2015浙江理科)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .7.(2016上海理科)将边长为1的正方形11AAOO (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为2π3,11A B 长为π3,其中1B 与C 在平面11AAOO 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.1.【解析】(1)如图,连接EF ,CD 1,BA 1.因为E ,F 分别是AB ,AA 1的中点,所以EF ∥BA 1. 又BA 1∥CD 1,所以EF ∥CD 1. 所以E ,C ,D 1,F 四点共面.(2)因为EF ∥CD 1,EF <CD 1,所以CE 与D 1F 必相交,设交点为P ,如图所示.2.【答案】A【解析】当直线l 与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A 正确;该平面内不存在与直线l 平行的直线,故B 错误;该平面内有无数条直线与直线l 垂直,所以C 错误;平面α内的直线与l 可能异面,故D 错误,故选A . 学@ 3.【解析】反证法:若b 与c 不是异面直线,则或b 与c 相交.①若,∵,∴,这与矛盾. ②若b ,c 相交于点B ,则.∵,∴,∴AB β⊂,即b β⊂,这与矛盾.∴b ,c 是异面直线.变式拓展4.【解析】(1)如图,取B1C1的中点Q,连接MQ,∵M是A1B1的中点,∴MQ//A1C1,∴MQ与MN所成的角为MN与A1C1所成的角,即∠NMQ.连接QN,则QN⊥平面A1B1C1D1,而MQ⊂平面A1B1C1D1,∴QN⊥MQ.在Rt△MQN中,QN=a,MQ =a,∴tan∠NMQ =.即MN与A1C1所成角的正切值为.(2)如图,连接BD,B1D1.∵DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴DD1⊥A1C1.又A1C1⊥B1D1,DD1∩B1D1=D1,∴A1C1⊥平面BDD1B1.∵B1D⊂平面BDD1B1,∴A1C1⊥B1D,∴B1D与A1C1所成角的大小为90°.考点冲关1.【答案】A【解析】如图,与成异面直线的棱有、、、,共4条.故选A.2.【答案】D3.【答案】D【解析】若直线平面,直线平面,则或异面,即无公共点.故选D.4.【答案】A【解析】∵直线a α,∴a∥α或a∩α=A.如图,显然①②③④都有反例,所以应选A.【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.5.【答案】A【解析】根据条件可知,和的交点都在平面ABD与平面BCD中,故和相交于两平面的交线BD上.故选A.6.【答案】D【解析】由题可得,要使直线与平面平行,则直线应平行于平面内的一条直线,且该直线在平面外,由此可得,选项A错误;要使平面与平面平行,则只需平面内两条相交直线与平面平行即可,选项B中,没说明直线是否相交,所以结论不一定成立,所以选项B错误;要使直线垂直平面,则直线垂直于平面内的任意一条直线,而无数条直线不能代表任意条,所以选项C错误,所以正确的选项是D.7.【答案】A8.【答案】D【解析】若,则由平面,知平面,而平面,所以,与为异面直线矛盾,所以平面与平面相交.由平面,且,可知,,同理可知,所以与两平面的交线平行.故选D . 9.【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l .若取AD 为1l ,BC 为4l ,则14l l ∥;若取AD 为1l ,AB 为4l ,则14l l ⊥;若取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA10.【答案】D【解析】取DD 1的中点G ,连接BG,FG ,易知四边形BED 1G 是平行四边形,则BG //ED 1,则∠FBG 是异面直线与所成的角或其补角,令正方体的棱长为2,则BF =FG =BG =3,cos ∠FBG 255235=⨯⨯. 11.【答案】A【解析】假设l AD ∥,则由11AD BC B C ∥∥,可得11l B C ∥,这与“l 与11B C 不平行”矛盾,所以l 与AD 不平行. 12.【答案】A13.【答案】B【解析】过点作,如图:根据题意知,所以是异面直线与所成的角,又因为尺,尺,且侧面为等腰梯形,则尺,间的距离为尺,故尺,由勾股定理得尺,所以,故选B.14.【答案】C【解析】将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:15.【答案】平行或异面【解析】由条件可知直线和没有公共点,故直线和的位置关系为平行或异面. 学……16.【答案】①③【解析】连接A1C1、AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O、A在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线,故①正确.由①易知②错误,③正确.易知OM与BB1为异面直线,故④错误.17.【答案】②④【解析】若,则与的位置关系不确定,即①错误;由线面平行的性质和平行公理可得②正确;若不垂直于平面,则可垂直于内的无数条直线,即③错误;若,则,又,所以,即④正确.故填②④.18.【答案】19.【解析】在平面内,连接并延长,交的延长线于点,则有, 在平面内,连接并延长,交于点.取中点,连接,AF,20.【解析】(1)假设BC与AD共面,不妨设它们所共平面为,则.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾. @网所以BC与AD是异面直线.(2),因此;同理,则EFGH为平行四边形.又EG,FH是平行四边形的对角线,所以EG与HF相交.21.【解析】取AC的中点F,连接BF、EF,1.【答案】C【解析】用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115455cos 2545DB B P DP DB P DB PB +-+-∠===⋅.故选C.2.【答案】C直通高考【解析】如图所示,补成直四棱柱1111ABCD A BC D -, 则所求角为21111,2,21221cos 603,5BC D BC BDC D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C .【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; 学@④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 3.【答案】D4.【答案】A【解析】如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角. 过1D 作11D E B C ∥,交AD 的延长线于点E ,连接CE ,则CE 为'm . 连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11BF 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60 , 故,m n 所成角的正弦值为32,选A.【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补. 5.【答案】②③【名师点睛】(1)平移直线法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π0,2⎛⎤⎥⎝⎦,可知当求出的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的范围.6.【答案】87【解析】如下图,连接DN,取DN中点E,连接EM,EC,则可知EMC∠即为异面直线AN,CM 所成角(或其补角),易得122EM AN==22213EC EN CN+=+2222=-=AMACCM,∴7 cos82222EMC∠==⨯⨯,31 即异面直线AN ,CM 所成角的余弦值为87. 7.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 长为π3,可知111π3ΑΟΒ∠=. 111111111113sin 24ΟΑΒS ΟΑΟΒA ΟΒ=⋅⋅∠=△, 11111113312C O A B ΟΑΒV S h -=⋅=△.【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.。
空间几何中的点线面的位置关系在空间几何学中,点、线和面是最基本的几何元素。
它们在空间中的位置关系对于理解和解决几何问题至关重要。
本文将讨论点线面在空间中的常见位置关系以及它们之间的相互作用。
一、点与线的位置关系1.1 点在直线上当一个点位于一条直线上时,称该点在直线上。
点在直线上的特点是它与直线上的任意两个点都在同一直线上。
1.2 点在直线上的延长线上当一个点位于直线的延长线上时,称该点在直线上的延长线上。
点在直线延长线上的特点是它与直线上的任意两个点都在同一直线上,包括线的两个端点。
1.3 点在线段上当一个点位于一条线段上时,称该点在线段上。
点在线段上的特点是它位于线段的两个端点之间。
1.4 点在线段的延长线上当一个点位于线段的延长线上时,称该点在线段的延长线上。
点在线段延长线上的特点是它位于线段的两个端点之外。
二、点与面的位置关系2.1 点在平面上当一个点位于一个平面上时,称该点在平面上。
点在平面上的特点是它与平面上的任意两个点都在同一平面上。
2.2 点在平面上的延长线上当一个点位于平面的延长线上时,称该点在平面上的延长线上。
点在平面延长线上的特点是它与平面上的任意两个点都在同一平面上,包括平面的边界和内部点。
2.3 点在平面外当一个点不在平面上时,称该点在平面外。
点在平面外的特点是它无法与平面上的任意两个点构成一条直线。
三、线与面的位置关系3.1 线在平面上当一条线位于平面内时,称该线在平面上。
线在平面上的特点是它与平面上的任意两个点都在同一平面上。
3.2 线平行于平面当一条线与平面上的所有点都不相交时,称该线平行于平面。
平行于平面的特点是线上的所有点与平面上的任意两个点的连线都平行。
3.3 线与平面相交于一点当一条线与平面上的某个点相交时,称该线与平面相交于一点。
线与平面相交于一点的特点是线上的所有点与平面上的任意两个点的连线都相交于同一点。
四、面与面的位置关系4.1 平行面当两个面的法向量平行时,称这两个面为平行面。
高一升高二暑假衔接立体几何第一讲:空间中的点线面一,生活中的问题?生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象.二,概念明确1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。
所以:点与线的关系是_____________________,用符号______________。
线与面的关系是_____________________,用符号______________。
点与面的关系是_____________________,用符号______________。
2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角)3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。
点,线,面都是抽象的几何概念。
不必计较于一个点的大小,直线的长度与粗细。
4,平面的画法与表示描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用画出来,如图b所示记法(1)用一个α,β,γ等来表示,如图a中的平面记为平面α(2)用两个大字的(表示平面的平行四边形的对角线的顶点)来表示,如图a中的平面记为平面AC或平面BD(3)用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a中的平面记为平面ABC或平面等(4)用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD检验检验:下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为()A.1B.2C.3D.4三,点,线,面的位置关系和表示A是点,l,m是直线,α,β是平面.文字语言符号语言图形语言A在l上A在l外A在α内A在α外文字语言符号语言图形语言l在α内l与α平行l ,m 相交于Al ,m 都在平面α内且平行l ,m 异面(不同在任何一个平面内,且没有交点)α,β相交于lα,β平行(没有交点)熟悉熟悉:如图所示,平面ABEF 记作平面α,平面ABCD 记作平面β,根据图形填写: (1)A ∈α,B ________α,E ________α,C ________α,D ________α; (2)α∩β=________;(3)A ∈β,B ________β,C ________β,D ________β,E ________β,F ________β; (4)AB ________α,AB ________β,CD ________α,CD ________β,BF ________α,BF ________β.四,立体几何的公理与定理1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
若A ,B ,C 不共线,则A ,B ,C 确定平面α lBAα B AαC推论1:过直线的直线外一点有且只有一个平面 若A l ∉,则点A 和l 确定平面α推论2:过两条相交直线有且只有一个平面若mn A =,则,m n 确定平面α推论3:过两条平行直线有且只有一个平面若m n ,则,m n 确定平面α公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
,P P l P l αβαβ∈∈⇒=∈且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。
4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.,a b c b a c ⇒公理4作用:证明两直线平行。
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
,1212a a b b ''∠∠⇒∠∠且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒且与方向相反= 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。
6,线面平行的定义与判定1)若直线和平面没有交点,则称直线和平面平行。
2)线面平行判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭lαAlm αAm nαP· αL βa b b a b 'a '方向相反则∠1+∠2=180°方向相同则∠1=∠22121a 'b '五,典型例题【例1】下列命题正确的是( )A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共线的三点确定一个平面 【练习】1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A .0B .1C .2D .3 2.下列命题:⑴平面α与平面β相交,他们只有有限个公共点⑵经过一条直线和这条直线外一点,有且只有一个平面. ⑶经过两条相交直线有且仅有一个平面.⑷如果两个平面有三个不共线的公共点,那么这两个平面重合. 其中正确的个数为( )A.0 B .1 C .2 D .3点金秘笈:此类题可以由公理和定理经过综合判断;也可以利用你手边的一切资源比划比划,不要忘记了变换一下空间位置,或是旋转一下下。
【例2】2如图所示,用符号语言可表达为( ) A.α∩β=m ,n ⊂α,m∩n=A B.α∩β=m ,n∈α,m∩n=AC.α∩β=m ,n∈α,A ∈m,A∈nD.α∩β=m ,n ⊂α,A ⊂m ,A ⊂n【练习】1.下面推理过程,错误的是( ) A.αα∉⇒∈A l A l ,//B ααα⊂⇒∈∈∈l B A l A ,,C. AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,D. βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,ABC DOO 1A 1B 1C 1D 1AEFD BG H C P2.如图, 在长方体ABCD-A 1B 1C 1D 1中, 下列命题是否正确? 并说明理由. ①AC 1在平面CC 1B 1B 内;②若O 、O 1分别为面ABCD 、A 1B 1C 1D 1的中心, 则平面AA 1C 1C 与平面B 1BDD 1的交线为OO 1 .③由点A 、O 、C 可以确定平面;④由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.点金秘笈:类比集合的知识,通过类比来记忆。
【例3】已知E 、F 、G 、H 分别为空间四边形(四个顶点不共面的四边形)ABCD 各边AB 、AD 、BC 、CD 上的点, 且直线EF 和GH 交于点P, 求证: B 、D 、P 在同一条直线上.思维点拔:证明多点共线,通常利用公理2,即两相交平面交线的唯一性;证明点在相交平面的交线上,必须证明这些点分别在两个平面内。
A BCD D 1C 1B 1A 1EF AB D Clα 【练习】如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB,AA 1中点,求证CE,D 1F,DA 三条直线交于一点。
注意:证明题的逻辑要清晰而严密,书写要规范而有据。
不能凭想当然,不能混乱。
【例4】已知: 如图l D l C l B l A ∉∈∈∈,,,, 求证: 直线AD 、BD 、CD 共面.思维点拔:简单的点线共面的问题,一般是先由部分点或线确定一个平面,然后证明其他的点线也在这个平面内,这种证明点线共面的方法称为"落入法"【练习】如图, 已知正方体ABCD-A 1B 1C 1D 1中, E 、F 分别为D 1C 1、B 1C 1的中点, AC ∩BD=P , A 1C 1∩EF=Q , 求证:(1) D 、B 、F 、E 四点共面(2)若A 1C 交平面DBFE 于R 点, 则P 、Q 、R 三点共线 .点金秘笈:证明共点,共线,共面可以用落入法,也可以用同一法,还可以用反证法。
AB CD D 1 C 1B 1A 1六,课后作业1.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )(A ) 1个或3个 (B ) 1个或4个(C ) 3个或4个 (D ) 1个、3个或4个 2.以下命题正确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;(2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个 3.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )(A ) 2 (B ) 3 (C ) 6 (D ) 12 4.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α⊂b ,则a ∥α;(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个 5.若三个平面两两相交,则它们的交线条数是( )(A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条6.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。
7.在空间中,① 若四点不共面,则这四点中任何三点都不共线。
② 若两条直线没有公共点,则这两条直线是异面直线。
以上两个命题中为真命题的是 (把符合要求的序号填上)8.已知△ABC 在平面α外,AB ∩α=P ,AC ∩α=R ,BC ∩α=Q ,如图.求证:P 、Q 、R 三点共线.。