空间中线面及面面的位置关系
- 格式:pptx
- 大小:339.55 KB
- 文档页数:18
空间中的线面关系知识框架空间中的线面关系要求层次重难点空间线、面的位置关系 B ①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证公理1,公理2,公理3,公理4,定理*A高考要求明一些空间位置关系的简单命题.*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行.定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.(一) 知识内容线面垂直1.线线垂直:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称 这两条直线互相垂直.由定义知,垂直有相交垂直和异面垂直. 2.直线与平面垂直:⑴概念:如果一条直线和一个平面相交于点O ,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如右图.αl直线l 与平面α互相垂直,记作l α⊥.⑵线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. ⑶线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.<教师备案>1.如果定义了异面直线所成角,则异面垂直即异面直线所成角为90︒.2.线面垂直的判定定理把定义中的与任意一条直线垂直这个很强的命题,转化为只需证明与两条相交直线垂直这个问题,从而大大简化了线面垂直的判断.例题精讲板块三:线线垂直与线面垂直n mA'EDCB Aβα要证明判定定理,只能用定义,若',',AA m AA n m n B ⊥⊥=,,m n α⊂,要证'AA α⊥,在平面α内任选一条直线g ,去证'AA g ⊥,结合右图,通过全等三角形的证明可得到,从而得到判定定理,具体的证法略.3.线面垂直的性质定理,可以用同一法证明, 如图:laABm'mβα直线,l m αα⊥⊥,若直线,l m 不平行,则过直线l 与平面α的交点B 作直线'//m l ,从而有'm α⊥.又相交直线,'m m 可以确定一个平面β,记a αβ=,则因为,'m m 都垂直于平面α,故,'m m 都垂直于交线a .这与在一个平面内,过直线上一点有且只有一条直线与已知直线垂直相矛盾.故,'m m 重合,//m l ,性质定理得证. 由同一法还可以证明:过一点与已知平面垂直的直线只有一条.(三)典例分析:【例1】 直线和平面所成的角为α,则( )A .090α︒<<︒B .090α︒︒≤≤C .090α︒<︒≤D .090α︒<︒≤【例2】 m ,n 是空间两条不同直线,α,β是空间两条不同平面,下面有四个命题:①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ③,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号).【例3】 室内有一根直尺,无论怎么放置,在地面上总有这样的直线,它与直尺所在的直线A .异面B .相交C .平行D .垂直【例4】 (2007湖南文6)如图,在正四棱柱 1111ABCD A B C D -中,E 、F 分别是1AB 、1BC 的中点,则以下结论中不成立的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11A C 异面AB CDE F A 1B 1C 1D 1【例5】 (2008辽宁卷11)在正方体1111ABCD A B C D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( ) A .不存在 B .有且只有两条C .有且只有三条D .有无数条【例6】 如图所示,在正方体1111ABCD A B C D -中..求证:1BD ⊥面1AB C .A 1D 1C 1B 1DCBA【例7】 在长方体1111ABCD A B C D -中,点E ,F 分别在1AA ,1CC 上且1BE A B ⊥,1BF BC ⊥,求证:1BD ⊥面BEF【解析】 FEC 1B 1D 1A 1AB C D【例8】 如图O 是正方体下底面ABCD 中心,B H D O ''⊥,H 为垂足.求证:B H '⊥平面AD C '.【解析】OH DCBAD'C'B'A'【例9】 已知三棱锥P ABC -中,PC ⊥底面ABC ,AB BC =,D F ,分别为AC PC ,的中点,DE AP⊥于E .⑴求证:AP ⊥平面BDE ;⑵求证:平面BDE ⊥平面BDF ;⑶若:1:2AE EP =,求截面BEF 分三棱锥P ABC -所成两部分的体积比.【解析】 FEBDCAP【例10】 在正方体1111ABCD A B C D -中,P 为1DD 的中点,O 为底面ABCD 的中心.求证:1B O ⊥面PAC . 【解析】 P OA 1D 1C 1B 1D CB A【例11】 (2000全国,文19)如图已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠. ⑴ 证明1C C BD ⊥; ⑵ 当1CDCD 的值为多少时,能使1A C ⊥平面1C BD ?请给出证明.图 9-2-284D 1A 1C 1B 1DCBA【例12】 已知平行六面体1111ABCD A B C D -的底面是菱形,且1160A AB A AD ∠=∠=.求证:1CC ⊥BDOABCD A 1B 1C 1D 1【例13】 在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,M ,N 分别为PC ,AB 的中点.(1)求证:MN ∥平面PAD ;(2)若45PDA ∠=,求证:MN ⊥面PCD .QPD BCAMN【例14】 如图,四面体P ABC -,PA ⊥面ABC ,AB ⊥BC ,过A 作AE ⊥PB 交PB 于E ,过A 作AF⊥PC 交PC 于F .求证:PC ⊥EF .【例15】 下列说法正确的有__________.①过一点有且只有一条直线垂直于已知直线.②若一条直线与平面内无数条直线垂直,则这条直线与这个平面垂直. ③若一条直线平行于一个平面,则垂直于这个平面的直线必垂直于这条直线. ④若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必平行于这个平面. ⑤若一条直线平行于一个平面,则它和这个平面内的任何直线都不垂直. ⑥平行于同一个平面的两条直线可能垂直.【例16】 (2009安徽,理15)对于四面体ABCD ,下列命题正确的是_____ (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线异面;②由顶点A 做四面体的高,其垂足是BCD ∆三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高线所在的直线异面;④分别做三组相对棱中点的连线,所得的三条线段相交于一点; ⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 在正方体1111ABCD A B C D -中,P Q ,分别是棱1AA ,1CC 的中点,则过点B P Q ,,的截面( ) A .邻边不等的平行四边形 B .菱形但不是正方形C .邻边不等的矩形D .正方形【例18】 如图,在侧棱和底面垂直的四棱柱1111ABCD A B C D -中,当底面ABCD 满足条件时,有11AC B D ⊥(写出你认为正确的一种条件即可.)ABCD 是菱形或是正方形或是对角线互相垂直的四边形D 1C 1B 1A 1A DCB【例19】 如图,A 、B 、C 、D 是空间四点,在ABC △中,2AB =,AC BC ==ADB △所在的平面以AB 为轴可转动.当ADB △转动过程中,是否总有AB CD ⊥?请证明你的结论ABC DO【例20】 在正方体1111ABCD A B C D -中,M 是1AA 的中点,问当点N 位于AB 上何处时,1MN MC ⊥?【例21】 如图,已知P 为ABC ∆外一点,PO ⊥平面ABC ,垂足为O ,⑴若PA 、PB 、PC 两两垂直,求证:O 为ABC ∆的垂心;⑵若PA PB PC ==,求证:O 为ABC ∆的外心.⑶若PA 、PB 、PC 两两垂直,且PA PB PC a ===,求P 点到平面ABC 的距离.OCBAP【例22】 在空间四面体的四个面中,为直角三角形的最多有_________个.【例23】 如图,A 、B 、C 、D 是空间四点,在ABC △中,2AB =,AC BC ==ADB △所在的平面以AB 为轴可转动.当ADB △转动过程中,是否总有AB CD ⊥?请证明你的结论.ABC DO【例24】 如右图,是一个边长为a 的正方体1111ABCD A B C D -,⑴求证:1AC ⊥平面1A BD ; ⑵求A 点到平面1A BD 的距离.AA 1【例25】 如图所示,直角ABC ∆所在平面外一点S ,且SA SB SC ==,D 为AC 中点,连结SD ,BD .⑴求证:SD ⊥面ABC ;⑵若直角边BA BC =,求证:BD ⊥面SAC .SABD【例26】 如图,已知111A B C ABC -是正三棱柱,D 是AC的中点,11AB ==,⑴证明:BD ⊥平面11ACC A ,1//AB 平面1BDC ; ⑵求点D 到平面11BCC B 的距离. ⑶证明:11AB BC ⊥.D CBA A 1B 1C 1【例27】 如图,在正方体1111ABCD A B C D -中,EF ⊥1A D ,EF ⊥AC ,求证:⑴1BD ⊥平面11A C D ;⑵1//EF BD .FE ABCDA 1B 1C 1D 1【例28】 已知四面体ABCD ,①若棱AB CD ⊥,求证2222AC BD AD BC +=+ ②若2222AC BD AD BC +=+,求证棱AB CD ⊥.【例29】 设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a α∥,b β∥,αβ∥,则a b ∥C .若a α⊂,b β⊂,a b ∥,则αβ∥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥【例30】 已知在三棱锥A BCD -中AC AD =,BD BC =,求证:AB ⊥CDABCDE【例31】 如图,正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点.求E 到平面11ABC D 的距离.A 1D 1CA【例32】 (07全国2文7)已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) ABC.2D【例33】 (2007湖北文5)在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1DEF 的距离为( ) ABCD ABCDE【例34】 (2007江苏14)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的距离是 .【例35】 (2008福建卷6)如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D所成角的正弦值为( ) A.3B .5C .5D .5DCBAA 1D 1B 1C 1【例36】 如图,已知四棱锥S ABCD -的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的一点.求证:平面EBD ⊥平面SACE DCBAS【例37】 正方体1111ABCD A B C D -中,作截面1BDC ,求二面角1B DC C --的正切值的大小.O A 1D 1C 1B 1D CBA【例38】 如图,正方体1111ABCD A B C D -中.求平面1A BD 和平面1C BD 相交所组成的二面角11A BD C --的余弦值.OA 1D 1C 1B 1DCBA【例39】 在长方体1111ABCD A B C D -中,点E ,F 分别在1AA ,1CC 上且1BE A B ⊥,1BF BC ⊥,求证:1BD ⊥面BEF【解析】 FEC 1B 1D 1A 1AB C D【例40】 如图,在梯形ABCD 中,AB ∥CD ,90DAB ∠=,AD a =,PD ⊥面ABCD ,PD a =,求点D 到平面PAB 的距离.HACBDP【例41】 如图,正方体1111ABCD A B C D -的棱长为1,P 是AB 的中点.⑴求二面角1A BC A --的大小; ⑵求二面角1B AC P --的大小. PF E A 1D 1C 1B 1DCBA【例42】 已知空间四边形ABCD ,E 、F 、G 分别是AB 、BC 、CD 的中点,求证://AC 平面EFG ,//BD 平面EFG .【解析】 GFEBA【例43】 (2006年湖南高考题·理3)过平行六面体1111ABCD A B C D -任意两条棱的中点作直线,其中与平面11DBB D 平行的直线共有( ). A .4条B .6条C .8条D .12条【例44】 下列命题中,真命题有_______.①若,,//a b a b αβ⊂⊂,则//αβ; ②若//,//,//,//a a b b αβαβ,则//αβ; ③若,,//a b a αββ⊂⊂,则a b =∅; ④若//,//,//,//,a a b b a b A αβαβ=,则αβ=∅;【例45】 已知正方体1111-ABCD A B C D ,求证:平面11//AB D 平面1C BD .ABCDA 1B 1C 1D 1【例46】 判断下面命题的正误:⑴一条直线和一个平面平行,它就和这个平面内的任何直线平行. ⑵如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直. ⑶垂直于三角形两边的直线必垂直于第三边.⑷过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.⑸如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.【例47】 如图,四边形ABCD 是矩形,P ∉面ABCD ,过BC 作平面BCEF 交AP 于E ,交DP 于F ,求证:四边形BCEF 是梯形.PFE DCBA【例48】 设,P Q 是单位正方体1AC 的面11AA D D 、1111A B C D 的中心,如图,⑴证明://PQ 平面11AA B B ;⑵求线段PQ 的长.AB CDA 1B 1C 1D 1PQ【例49】 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G , 求证:AE SB ⊥,AG SD ⊥.EBCFDGSA【例50】 已知:四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 是直角梯形,90A ∠=,且AB CD ∥,12AB CD =,点F 为线段PC 的中点.EFDCBAP⑴求证:BF ∥平面PAD ; ⑵求证:BF CD ⊥.(一) 知识内容线线关系与线面平行1.平行线:在同一个平面内不相交的两条直线.平行公理:过直线外一点有且只有一条直线与这条直线平行. 公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行;等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. 2.空间中两直线的位置关系:⑴共面直线:平行直线与相交直线;⑵异面直线:不同在任一平面内的两条直线. 3.空间四边形:顺次连结不共面的四点所构成的图形.这四个点叫做空间四边形的顶点;所连结的相邻顶点间的线段叫做空间四边形的边;连结不相邻的顶点的线段叫做空间四边形的对角线.如右图中的空间四边形ABCD ,它有四条边,,,AB BC CD DA ,两条对角线,AC BD . 其中,AB CD ;,AC BD ;,AD BC 是三对异面直线.DCBA4.直线与平面的位置关系:⑴直线l 在平面α内:直线上所有的点都在平面内,记作l α⊂,如图⑴;⑵直线l 与平面α相交:直线与平面有一个公共点A ;记作l A α=,如图⑵;⑶直线l 与平面α平行:直线与平面没有公共点,记作//l α,如图⑶.l3()2()1()lAαααl5.直线与平面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.符号语言表述:,,////l m l m l ααα⊄⊂⇒. 图象语言表述:如右图:mlα6.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相板块二:空间中的平行关系交,那么这条直线和两平面的交线平行.符号语言表述://,,//l l m l m αβαβ⊂=⇒. 图象语言表述:如右图:βαl m<教师备案>1.画线面平行时,常常把直线画成与平面的一条边平行; 2.等角定理证明:已知:如图所示,BAC ∠和B A C '''∠的边//AB A B '',//AC A C '',且射线AB 与A B ''同向,射线AC 与A C ''同向. 求证:BAC B A C '''∠=∠证明:对于BAC ∠和B A C '''∠在同一平面内的情形,在初中几何中已经证明,下面证明两个角不在同一平面内的情形.分别在BAC ∠的两边和B A C '''∠的两边上截取线段AD AE 、和A D A E ''''、,使,AD A D AE A E ''''==,因为//''AD A D ,所以AA D D ''是平行四边形所以//AA DD ''.同理可得//AA EE '',因此//DD EE ''. 所以DD E E ''是平行四边形. 因此DE D E ''=.于是ADE A D E '''∆≅∆. 所以BAC B A C '''∠=∠.E'E DC BAA'D 'B 'C '3.根据等角定理可以定义异面直线所成的角的概念:过空间一点作两异面直线的平行线,得到两条相交直线,这两条相交直线成的直角或锐角叫做两异面直线成的角.异面直线所成角的范围是π(0,]24.线面平行判定定理(,,////l m l m l ααα⊄⊂⇒),即线线平面,则线面平行. 要证明这个定理可以考虑用反证法,因为线线平行(//l m ),所以它们可以确定一个平面β,β与已知平面α的交线恰为m ,若线面不平行,则线面相交于一点,此点必在两个平面的交线m 上,从而得到l 与m 相交,与已知矛盾.5.线面平行性质定理,即线面平行,则线线平行,这平行的定义立即可得(共面且无交点).面面平行的判定与性质1.两个平面的位置关系⑴两个平面,αβ平行:没有公共点,记为//αβ;画两个平行平面时,一般把表示平面的平行四边形画成对应边平行,如右图:⑵两个平面,αβ相交,有一条交线,l αβ=.2.两个平面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面, 那么这两个平面平行.符号语言表述:,,,//,////a b a b A a b ααββαβ⊂⊂=⇒.推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行. 3.两个平面平行的性质定理:如果两个平面同时与第三个平面相交,那么它们的交线平行. 符号语言表述://,,//a b a b αβαγβγ==⇒. 图象语言表述:如右图:γbaβα<教师备案>1.画两个平面相交时,可以先画出交线,再补充其它,平面被遮住的部分画成虚线或不画. 如右图所示:2.面面平行的判定定理可以由线面平行的性质直接得到,如果满足定理条件的两个平面相交,则这两条相交直线都平行于平面的交线,与过直线外一点只能作一条直线与已知直线平行的公理矛盾.故这两个平面不相交,是平行平面. 3.面面平行的性质定理可以直接由两条交线无交点且共面得到.4.在证明线面平行,线线平行和面面平行的题时,常常遇到平行关系的转化,要灵活运用两个性质定理与两个判定定理,证明要求的结论.(二)主要方法:由于空间中平行关系与垂直关系是高考的核心内容,因此在出题时经常会有所结合,本板块专门就平行知识的题目类型归纳,更综合的题目会在第十一讲中详细讲解.由于线面与面面问题之间都是互相转化的,因此本板块中的面面平行题目较少,多数都为线面平行问题.本板块题目多采用两种方法,事实上就是两种思路证明线面平行,一种方法线线平行⇒线面平行,另一种方法是面面平行⇒线面平行.(三)典例分析:【例1】 (2005湖北,理10)如图,在三棱柱ABC A B C '''-中,点E 、F 、H 、K 分别为AC '、CB '、A B '、B C ''的中点,G 为ABC ∆的重心.从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( ) A .K B .H C .G D .B 'A'B【例2】 如图,三棱柱111ABC A B C -中,D 是BC 的中点. 求证:1A C //平面1AB D .EABCA 1B 1C 1D【例3】 如图,在四棱锥P ABCD -中,90ABC BCD ︒∠=∠=,12DC AB =,E 是PB 的中点. 求证:EC ∥平面APD .E PDABC【例4】 如图,四棱锥P ABCD -中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PD 的中点.求证:AF ∥平面PCE .CBADEFP【例5】 已知PA 垂直于正方形ABCD 所在的平面, ,E F 分别是PB 和AC 的中点,求证:①EF ∥平面PAD ;②EF AB ⊥I H G FE DCBA P【例6】 如图,在底面是平行四边形的四棱锥P ABCD -中,点E 在PD 上,且:2:1PE ED =,F 为棱PC 的中点.求证:BF ∥平面AECE PDABCF【例7】 如图,在五面体ABCDEF 中,点O 是平行四边形ABCD 的对角线的交点,面CDE 是等边三角形,棱1//2EF BC . 求证:FO ∥平面CDEFEDCBAO【例8】 如图,正方体1111ABCD A B C D -中,,,,M N E F 分别是11111111,,,A B A D B C C D 的中点.求证:平面AMN ∥平面EFDB .【例9】 如图,在底面是平行四边形的四棱锥P ABCD -中,点E 在PD 上,且:2:1PE ED =,F 为棱PC 的中点.求证:BF ∥平面AECE PDABCF【例10】 如图,在五面体ABCDEF 中,点O 是平行四边形ABCD 的对角线的交点,面CDE 是等边三角形,棱1//2EF BC . 求证:FO ∥平面CDE【解析】FEDCBAO【例11】 如图所示,正方体1111ABCD A B C D -中,棱长为a ,,M N 分别为1AB 和11A C 上的点,1A N AM =.N MF EAB 1C 1D 1DCBA 1⑴求证:MN ∥平面11BB C C ; ⑵求MN 的最小值.【例12】 如图所示,正方体1111ABCD A B C D -中,棱长为a ,,M N 分别为1AB 和11A C 上的点,1A N AM =.⑴求证:MN ∥平面11BB C C ; ⑵求MN 的最小值.N MFEAB 1C 1D 1DC B A 1【例13】 已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,⑴若,,,E F G H 都分别是所在边的中点,求证:四边形EFGH 为平行四边形; ⑵若//EH FG ,求证://EH BD .H GFE D CBA【例14】 已知,,,E F G M 分别是四面体的棱,,,AD CD BD BC 的中点,G FEDCB AMN求证://AM 面EFG .【例15】 平行于平面α的a ,b 是两异面直线,且分别在平面α的两侧,,,,A B a C D b ∈∈,若AC 与α平面交于点M ,BD 与α平面交于点N .求证:AM BNMC ND=. ABCDαabMN【例16】 如图,正方体1AC 中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证://MN 平面11AA B B .D 1C 1B 1M B NFECDA 1A【例17】 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证://PQ 平面ACD .【例18】 下列命题中,真命题有_______.①若,,//a b a b αβ⊂⊂,则//αβ; ②若//,//,//,//a a b b αβαβ,则//αβ; ③若,,//a b a αββ⊂⊂,则a b =∅; ④若//,//,//,//,a a b b a b A αβαβ=,则αβ=∅;【例19】 如图,B 为ACD ∆所在平面外一点,M ,N ,G 分别为ABC ∆,ABD ∆,BCD ∆的重心,⑴求证:平面MNG ∥平面ACD ; ⑵求:MNG ADC S S ∆∆GFDC BAMNPH【例20】 已知平面//αβ,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证://EF α,//EF β.【解析】βBGDFEαCA【例21】 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9PA =,12AB =,12BQ =,ACF ∆的面积为72,求BDE ∆的面积.βD QB EαPC AF【例22】 已知长方体''''ABCD A B C D -中,,E F 分别是','AA CC 的中点.求证:平面//BDF 平面''B D E .AA'BB'CC'DD'E F【例23】 如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是11B C 、11A D 、11A B 的中点,求证:平面EBD ∥平面FGA .D 1C 1B 1A 1GF ED CBA【例24】 正方体1111ABCD A B C D -中,E 、G 分别是BC 、11C D 的中点,如下图.求证://EG 平面11BB D D .D 1C 1B 1A 1GEDCBA【例25】 (2008新课标海南宁夏)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).⑴在正视图下面,按照画三视图的要求画出该多面体的俯视图; ⑵按照给出的尺寸,求该多面体的体积;⑶在所给直观图中连结BC ',证明:BC '∥面EFG .侧视图正视图D'C'B'GFE DCBA【解析】⑴如图俯视图正视图侧视图。
空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。
(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。
这时我们就说或。
作用:判断直线在平面内。
2经过不在同一直线的三点,有且只有个平面。
也可以简单地说成:的三点确定一个平面。
过不共线的三点A、B、C的平面,通常记作:。
3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面。
这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。
2经过两条直线,有且只有个平面。
3经过两条直线,有且只有个平面。
(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。
共面的两条直线的位置关系有和两种。
异面直线:既又的直线叫异面直线。
判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。
(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。
直线l在平面α内,记作;直线l不在平面α内,记作。
平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。
基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。
例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。
例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。
空间中点、线、面的位置关系教案3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A在平面α内α∈A点A不是平面α内的点α∉A4.直线与平面(1)直线l在平面α内(或平面α过直线l):直线l上的所有点都在平面α内,记作α⊂l.(2)直线l在平面α外:直线l上至少有一个点不在平面α内,记作α⊄l . ①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .①直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面位置关系符号表示图形表示 平面βα与相交 l =βα平面βα与平行 βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l 与平面α相交于点A ,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.例 2 在正方体1111D C B A ABCD -中,(1)与直线1AA 异面的棱有 条; (2)与直线B A 1相交的棱有 条;(3)直线B A 1与直线C B 1的位置关系是 ; (4)直线B A 1与直线C D 1的位置关系是 .【答案】(1)排除相交和平行的情况,4条; (2)从一个顶点出发的棱有3条,所以共有6条;(3)异面,通过找到衬托平面来判断; (4)平行.例 3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离; (2)求直线AB 到平面1111D C B A 的距不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.。
空间几何与向量运算点线面的位置关系与运算空间几何与向量运算是数学中的重要分支,研究点、线、面在空间中的位置关系以及进行相应的运算操作。
在实际应用中,空间几何与向量运算广泛应用于物理学、工程学等领域。
本文将详细讨论点、线、面在空间中的位置关系和对应的运算方式。
一、点在空间中的位置关系在空间几何中,点是空间的最基本元素,它没有长度、宽度和高度。
点与点之间的位置关系可以通过坐标系来描述。
常用的坐标系有直角坐标系、柱坐标系和球坐标系。
1. 直角坐标系直角坐标系是最常用的坐标系,用三个坐标轴x、y、z相互垂直组成,固定在空间中的三个直线上。
点在直角坐标系中的位置可以用三个坐标(x, y, z)来表示,其中x表示点在x轴上的投影位置,y表示点在y轴上的投影位置,z表示点在z轴上的投影位置。
2. 柱坐标系和球坐标系柱坐标系和球坐标系是常用的极坐标系。
在柱坐标系中,点的位置由径向距离、极角和高度来确定,记作(r, θ, z),其中r表示点到极坐标原点的距离,θ表示点到正极轴的角度,z表示点在z轴上的投影位置。
在球坐标系中,点的位置由球半径、极角和方位角来确定,记作(r, θ, φ),其中r表示点到球心的距离,θ表示点到正半轴的角度,φ表示点到正极面的角度。
二、线在空间中的位置关系与运算线是由无数个点连接而成的集合,线在空间中的位置关系有直线、平行线、相交线等。
对于线的运算操作,主要包括长度、夹角、平移、旋转等。
1. 长度线的长度是线段两个端点之间的距离,可以通过计算两个点的坐标来求得。
对于直线则无法直接求得长度。
2. 夹角两条线之间的夹角是指这两条线在空间中交汇处的夹角。
可以通过计算两条线的方向向量来求得夹角。
3. 平移平移是指将一条线段按照指定的平移向量进行移动,其位置和形状保持不变。
平移操作可以通过向直线的每个点添加平移向量得到。
4. 旋转旋转是指将一条线段按照指定的旋转角度和旋转轴进行旋转,其位置和形状保持不变。
第三节 空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[小题体验]1.(2019·湖州模拟)已知l,m,n为三条不重合的直线,α,β为两个不同的平面,则( )A.若m⊥α,m⊥β,则α∥βB.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αC.若α∩β=l,m⊂α,m⊥l,则m⊥βD.若m∥n,m⊂α,则n∥α解析:选A 由l,m,n为三条不重合的直线,α,β为两个不同的平面知,在A中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故A正确;在B中,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故B错误;在C中,若α∩β=l,m⊂α,m⊥l,则m与β相交,故C错误;在D中,若m∥n,m⊂α,则n∥α或n⊂α,故D错误.故选A.2.(教材习题改编)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1.(2018·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.2.(2019·杭州诊断)设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.①②B.①②③C.②③④ D.①③④解析:选A ①可以根据直线与平面垂直的性质定理得出;②可以根据三垂线定理的逆定理得出;对于③,n可以在平面α内,故③不正确;对于④,反例:正方体共顶点的三个平面两两垂直,故④错误.故选A.3.(教材习题改编)下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数为( )A.4 B.3C.2 D.1解析:选D ①中若三点在一条直线上,则不能确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定四个平面;④中这三个公共点可以在这两个平面的交线上.故错误的是①③④,正确的是②.所以正确命题的个数为1.考点一平面的基本性质及应用重点保分型考点——师生共研[典例引领]如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,A1B,CD1.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.[由题悟法]1.点线共面问题证明的2种方法(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题的2个步骤(1)先证其中两条直线交于一点;(2)再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.[即时应用]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.考点二空间两直线的位置关系重点保分型考点——师生共研[典例引领]如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[由题悟法][即时应用]1.上面例题中正方体ABCDA1B1C1D1的棱所在直线中与直线AB 是异面直线的有________条.解析:与AB异面的有4条:CC1,DD1,A1D1,B1C1.答案:42.在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填上所有正确答案的序号)解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.答案:②④考点三异面直线所成的角重点保分型考点——师生共研[典例引领](2018·全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 法一:如图,将长方体ABCD A 1B 1C 1D 1补成长方体ABCD A 2B 2C 2D 2,使AA 1=A 1A 2,易知AD 1∥B 1C 2,所以∠DB 1C 2或其补角为异面直线AD 1与DB 1所成的角.易知B 1C 2=AD 1=2,DB 1=12+12+32=5,DC 2=DC 2+CC 22=12+232=13.在△DB 1C 2中,由余弦定理,得cos ∠DB 1C 2=DB 21+B 1C 22-DC 222DB 1·B 1C 2=5+4-132×5×2=-55, 所以异面直线AD 1与DB 1所成角的余弦值为55. 法二:以A 1为坐标原点建立空间直角坐标系(如图),则A (0,0,3),D 1(0,1,0),D (0,1,3),B 1(1,0,0), 所以AD 1=(0,1,-3),DB 1=(1,-1,-3),所以cos 〈AD 1,DB 1〉=AD 1·DB 1|AD 1|·|DB 1|=0×1+1×-1+-3×-32×5=55.[由题悟法]1.用平移法求异面直线所成的角的3步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.2.有关平移的3种技巧求异面直线所成的角的方法为平移法,平移的方法一般有3种类型:(1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移.计算异面直线所成的角通常放在三角形中进行.[即时应用]如图所示,在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.一抓基础,多练小题做到眼疾手快1.(2019·台州一诊)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β解析:选D 由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12C.12 2 D.242解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCDA1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+222-322×2×22=78.答案:78二保高考,全练题型做到高考达标1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n ⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A ∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCDA1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行 D.MN与A1B1平行解析:选D 如图,连接C1D,在△C1DB中,MN∥BD,故C正确;因为CC1⊥平面ABCD,所以CC1⊥BD,所以MN与CC1垂直,故A正确;因为AC⊥BD,MN∥BD,所以MN与AC垂直,故B正确;因为A1B1与BD异面,MN∥BD,所以MN与A1B1不可能平行,故D错误.3.(2018·义乌二模)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.若α⊥β,m⊥β,则m∥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α解析:选D 由m,n为两条不同的直线,α,β为两个不同的平面知,在A中,若α⊥β,m⊥β,则m∥α或m⊂α,故A错误;在B中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故B错误;在C中,若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;在D中,若m∥n,n⊥α,则由线面垂直的判定定理得m⊥α,故D正确.故选D.4.(2019·湖州模拟)如图,在下列四个正方体ABCDA1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( )解析:选D 如图,在正方体ABCDA1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知多边形EFMN Q G是一个平面图形,且直线BD1与平面EFMN Q G垂直,结合各选项知,选项A、B、C中的平面与这个平面重合,只有选项D中的平面既不与平面EFMN Q G重合,又不与之平行.故选D.5.(2018·宁波九中一模)正三棱柱ABCA1B1C1中,若AC=2 AA1,则AB1与CA1所成角的大小为( )A.60°B.105°C.75° D.90°解析:选D 取A1C1的中点D,连接AD,B1D(图略),易证B1D⊥A1C,因为tan∠CA1C1·tan∠ADA1=22×2=1,所以A1C⊥AD,又B1D∩AD=D,所以A1C⊥平面AB1D,又AB1⊂平面AB1D,所以A1C ⊥AB1,故AB1与CA1所成角的大小为90°.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c 可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD , 所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2.答案:29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC=3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34,GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角.同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32.又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求: (1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校 1.(2019·绍兴质检)如图,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,A 1C 与底面ABCD 所成的角为60°.(1)求四棱锥A 1ABCD 的体积;(2)求异面直线A 1B 与B 1D 1所成角的余弦值.解:(1)∵在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,连接AC ,∴AC =22+22=22,又易知AA 1⊥平面ABCD ,∴∠A 1CA 是A 1C 与底面ABCD 所成的角,即∠A 1CA =60°,∴AA 1=AC ·tan 60°=22×3=26,∵S 正方形ABCD =AB ·BC =2×2=4,∴VA 1ABCD =13·AA 1·S 正方形ABCD =13×26×4=863. (2)连接BD ,易知BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成的角(或所成角的补角).∵BD =22+22=22,A 1D =A 1B =22+262=27,∴cos ∠A 1BD =A 1B 2+BD 2-A 1D 22·A 1B ·BD =28+8-282×27×22=1414, 即异面直线A 1B 与B 1D 1所成角的余弦值是1414. 2.(2018·台州一模)如图所示的圆锥的体积为33π,圆O 的直径AB =2,点C 是AB 的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.解:(1)∵圆锥的体积为33π,圆O 的直径AB =2,圆锥的高为PO ,∴13π×12×PO =33π,解得PO =3,∴PA = 32+12=2,∴该圆锥的侧面积S =πrl =π×1×2=2π.(2)法一:如图,连接DO ,OC .由(1)知,PA =2,OC =r =1.∵点D 是PA 的中点,点O 是AB 的中点,∴DO ∥PB ,且DO =12PB =12PA =1,∴∠CDO 是异面直线PB 与CD 所成的角或其补角.∵PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC ,又点C 是 AB 的中点,∴OC ⊥AB . ∵PO ∩AB =O ,PO ⊂平面PAB ,AB ⊂平面PAB ,∴OC ⊥平面PAB ,又DO ⊂平面PAB ,∴OC ⊥DO ,即∠DOC =90°.在Rt △DOC 中,∵OC =DO =1,∴∠CDO =45°.故异面直线PB 与CD 所成角为45°.法二:连接OC ,易知OC ⊥AB ,又∵PO ⊥平面ABC ,∴PO ,OC ,OB 两两垂直,以O 为坐标原点,OC所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系.其中A (0,-1,0),P (0,0,3),D ⎝ ⎛⎭⎪⎪⎫0,-12,32,B (0,1,0),C (1,0,0),∴PB =(0,1,-3),CD =⎝⎛⎭⎪⎪⎫-1,-12,32, 设异面直线PB 与CD 所成的角为θ,则cos θ=|PB ·CD ||PB |·|CD |=222=22, ∴θ=45°,∴异面直线PB 与CD 所成角为45°.3.如图所示,三棱柱ABC A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB , 所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接P Q ,PB ,B Q.因为EC =2FB =2,所以PE 綊BF ,所以P Q ∥AE ,PB ∥EF ,所以P Q ∥平面AFE ,PB ∥平面AEF ,因为PB ∩P Q =P ,PB ,P Q ⊂平面PB Q ,所以平面PB Q ∥平面AEF .又因为B Q ⊂平面PB Q ,所以B Q ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。
第二十二讲 空间线线、线面、面面之间的位置关系一、引言(一)本节的地位:空间线线、线面、面面之间的位置关系,特别是平行与垂直的位置关系,是立体几何中的重要内容,也是我们继续研究空间角和空间距离的基础,是高考的重点考查方向(二)考纲要求:了解平面公理及推论;掌握直线与平面平行的判定定理与性质定理,两个平面平行的判定定理和性质定理;掌握直线与平面垂直的判定定理与性质定理;掌握两个平面垂直的判定定理和性质定理.(三)考情分析:本讲内容在高考中,主要考查线线、线面、面面平行与垂直位置关系的判定及其性质,题型以选择题为主,解答题极有可能在第一个小问题中出现,主要考查空间想象能力、逻辑推理与计算能力以及文字语言、图形语言和符号语言相互转化的能力.二、考点梳理1.空间两条直线的位置关系有且只有三种:(1)相交直线:在同一平面内,有且只有一个公共点;(2)平行直线:在同一平面内,没有公共点;(3)异面直线:不同在任何一个平面内,没有公共点.2.直线与平面平行的判定直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.该定理可用符号表示为:,,a b αα⊄⊂且////a b a α⇒.定理揭示出直线与平面的平行关系的证明可以转化为直线与直线的平行关系的证明.正确理解和应用定理,应注意是“平面外”的一条直线和“平面内”一条直线平行.3.平面与平面平行的判定平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.该定理可用符号表示为:,,,//,////a b a b P a b ββααβα⊂⊂=⇒ .定理揭示出平面与平面平行关系的证明可以转化为直线与平面平行关系的证明.利用此判定定理证明两个平面平行,必须同时具备以下两个条件:(1)一个平面内有两条直线平行于另一个平面;(2)这两条直线必须相交.4.直线与平面平行的性质直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.该定理可用符号表示为://,,//a a b a b αβαβ⊂=⇒ .此性质定理可以作为直线与直线平行的判定方法.利用此定理证明两条直线平行时,必须同时满足以下三个条件:(1)直线a 和平面α平行;(2)平面α和平面β相交于直线b ;(3)直线a 在平面β内.5.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.该定理可用符号表示为://,,//a b a b αβαγβγ==⇒ .此定理揭示出由平面与平面平行可以得到直线与直线平行.我们可以看到,通过直线与直线平行可以判定直线与平面平行;通过直线与平面平行可以判定平面与平面平行;而由直线与平面平行的性质定理,可以得出直线与直线平行;由平面与平面平行的定义与性质定理可以得出直线与平面平行、直线与直线平行.这揭示出直线与直线、直线与平面、平面与平面之间的平行关系可以相互转化.6.直线与平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.该定理可用符号表示为:,,,,a b a b P l a l b l ααα⊂⊂=⊥⊥⇒⊥ .定理揭示出直线与平面垂直关系的证明可以转化为直线与直线垂直关系的证明.利用此判定定理证明直线与平面垂直,必须同时具备以下两个条件:(1)平面内有两条直线垂直于已知直线;(2)这两条直线必须相交.7.两个平面的垂直及判定两个平面相交,如果它们所成的二面角为直二面角,就说这两个平面互相垂直.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直.这个定理说明,可以由直线与平面垂直证明平面与平面垂直.8.直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.这个定理告诉我们,可以由两条直线与一个平面垂直判定两条直线平行,同时也揭示了“平行”与“垂直”之间的内在联系.9.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.定理揭示出直线与平面垂直关系的证明可以转化为直线与直线垂直关系的证明.利用此定理证明直线与平面垂直,必须同时具备以下三个条件:(1)两个平面互相垂直;(2)直线在其中一个平面内;(3)直线与交线垂直.三、典型例题选讲例1 (2007辽宁)若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ= ,n βγ= ,//m n ,则//αβC .若m β⊥,//m α,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥解析:选项A ,直线m 与平面α的位置关系各种可能都有;选项B ,平面α与平面β也可能相交;选项C ,∵//m α,过m 作平面γ交平面α于m ',则//m m '.又因为m β⊥,所以m β'⊥.由面面垂直的判定定理可知,a β⊥;选项D ,平面β与γ也可能相交或平行.故正确选项为C .归纳小结:本题重点考查了直线与平面以及平面与平面的位置关系.提高空间想象能力和逻辑推理能力是问题解决的关键,同时,要注意培养思维的完备性和严谨性,既要考虑特殊情况,也要考虑一般结论,切不可以偏概全.例2 (2007湖南)如图,在正四棱柱1111ABCD A B C D -中,E 、F 分别是1AB 、1BC 的中点,则以下结论中不成立的是( )A .EF 与1BB 垂直B .EF 与BD 垂直C .EF 与CD 异面D .EF 与11A C 异面解析:连结1B C ,则1B C 与1BC 相交于点F .∵E 、F 分别是1AB 、1CB 的中点,∴EF ∥AC .又1BB AC ⊥,∴1BB EF ⊥.∴A 成立.又BD AC ⊥,EF ∥AC ,∴BD EF ⊥.∴B 成立.观察图形易知C 成立.∵//EF AC ,11//A C AC ,∴11//EF A C .故D 不成立.正确选项为D .归纳小结:为了分析和解决问题,常常要添加辅助线.在立体几何中,出现中点时,我们经常要利用特殊四边形的性质,构造对角线交点,进而得到三角形中位线,来证明直线与直线的平行关系.在本题中,对于正四棱柱概念的理解是基础,矩形对角线互相平分的性质是关键,合理构造,适当转化,问题便很容易得到解决.例3 在正四面体P ABC -中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A . //BC 平面PDFB . DF ⊥平面PAEC . 平面PDF ⊥平面ABCD . 平面PAE ⊥平面ABC答案:C .分析:因为D 、F 分别是AB 、CA 的中点,所以//BC DF ,又因为BC ⊄平面PDF ,DF ⊂平面PDF ,由直线与平面平行的判定定理知选项A 正确.因为P ABC -是正四面体,E 是BC 的中点,所以,PE BC AE BC ⊥⊥,又因为PE AE E = ,由直线与平面垂直的判定定理得BC ⊥平面PAE .因为//BC DF ,所以DF ⊥平面PAE .选项B 正确.因为BC ⊥平面PAE ,BC ⊂平面ABC ,由平面与平面垂直的判定定理得平面PAE ⊥平面ABC ,故选项D 正确.根据已知条件,不能得到平面PDF ⊥平面ABC ,故符合要求的选项为C .归纳小结:本题主要考查直线与平面平行的判定,直线与平面垂直的判定,以及平面与平面垂直的判定.准确理解相关概念和判定定理是问题解决的关键,另外要注意培养和不断提高空间想象能力,认真体会由线线平行证明线面平行,由线线垂直证明线面垂直,由线面垂直证明面面垂直的过程,体会普遍联系和相互转化的观点.例4 (2008北京)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=︒,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥.分析:线线垂直的证明,我们往往可以转化为线面垂直的证明.证法一:取AB 中点D ,连结PD CD ,.AP BP = ,PD AB ∴⊥.AC BC = ,CD AB ∴⊥.PD CD D = ,AB ∴⊥平面PCD .PC ⊂ 平面PCD ,PC AB ∴⊥.证法二:AC BC = ,AP BP =,∴APCBPC △≌△.又∵PC AC ⊥,∴PC BC ⊥.AC BC C = ,∴PC ⊥平面ABC .∵AB ⊂平面ABC ,∴PC AB ⊥.归纳小结:本题主要考查线线垂直、线面垂直,以及相互转化.充分利用已知条件和平面几何知识,适当构造辅助线,是问题得以解决的关键.在等腰三角形中,构造底边中点证明垂直是常用的方法. 值得指出的是,在平时的学习中,一题多解,既能灵活应用所学知识解决问题,又能增强对知识的理解,也有助于能力提高和创新思维意识的培养,我们要有意识的加强这方面的练习.例5 如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC .分析:要证//PB 平面AEC ,需要证明PB 和平面AEC 内的一条直线平行.证明:连结BD 交AC 于点O ,连结EO .因为ABCD 是平行四边形,所以OB OD =.又因为点E 是PD 的中点,所以EO 是△PBD 的中位线,则//EO PB .因为PB ⊄平面AEC ,EO ⊂平面AEC ,由直线与平面平行的判定定理得//PB 平面AEC .归纳小结:本题考查直线与平面平行的证明.解决这类问题的关键是充分利用已知条件,在平面内确定(或构造)一条与已知直线平行的直线,把空间中直线与平面平行关系的证明转化为平面中直线与直线平行关系的证明.其中,构造三角形中位线(特别是出现中点或特殊四边形,如平行四边形,菱形,长方形,正方形等时)是证明直线与直线平行的常用方法.例6 如图,,a b 是异面直线,,//,,//a a b b αββα⊂⊂,求证://αβ.分析:要证明//αβ,需要证明平面β(或α)内有两条相交的直线与平面α(或β)平行.其中一条平行线是已知条件,另一条平行线的构造则需要直线与平面平行的性质.证明:如图,设P 为b 上任意一点,则a 与P 确定一个平面,记为γ,设β与γ相交于c .因为//,,a a c βγβγ⊂= ,所以//a c .又因为,c c βα⊂⊄,所以//c α.因为//b α,又因为c 与b 有公共点P ,且c 与b 不重合(否则//a b ,与已知矛盾),即c 与b 相交,由平面与平面平行的判定定理得//αβ.归纳小结:本题考查平面与平面平行的证明,需要证明其中一个平面内有两条相交直线与另一个平面平行,问题的关键是由已知直线与平面平行,利用直线与平面平行的性质定理构造一条平行线.直线与平面平行的判定定理是由直线与直线平行得到直线与平面平行,直线与平面平行的性质定理是由直线与平面平行得到直线与直线平行.直线与平面的位置关系与直线与直线的位置关系的相互转化是立体几何的一种重要的数学思想方法.例7(2009江苏)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,1A D ⊥1B C .求证:(1)EF ∥平面ABC ; (2)平面1A FD ⊥平面11BB C C .分析:线面平行的证明可以转化为线线平行的证明,面面垂直的证明可以转化为线面垂直的证明.证明:(1)因为E 、F 分别是1A B 、1A C 的中点,所以EF ∥BC .因为 EF ⊄平面ABC ,BC ⊂平面ABC ,所以EF ∥平面ABC .(2)由三棱柱111ABC A B C -为直三棱柱知1CC ⊥平面111A B C .因为1A D ⊂平面111A B C ,故1CC ⊥1A D .又因为1A D ⊥1B C ,11CC B C C = ,1CC 、1B C 平面11BB C C ,所以1A D ⊥平⊂面11BB C C ,又1A D ⊂平面1A FD ,所以平面1A FD ⊥平面11BB C C .归纳小结:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.在证明的过程中,要注意规范书写,注意细节,养成严谨思维和表达的习惯.例如,证明线面平行,一定要注意是平面外的一条直线和平面内的一条直线平行;而面面垂直需要满足一个平面经过另一个平面的一条垂线,垂线在面内.四、本专题总结本专题研究的主要问题是直线与平面、平面与平面平行的判定与性质,直线与平面、平面与平面垂直的判定与性质.本部分内容的学习,要注意以下的数学思想与方法:转化的思想方法( 位置关系的转化;空间问题向平面问题的转化等);分类讨论的思想方法;运动变化的思想方法; 函数与方程的思想方法.本专题学习中需要注意的问题:1.本专题内容,概念、判定定理与性质定理较多,要深刻理解,才能灵活应用.2.应充分认识面面关系、线面关系、线线关系之间的相互转化过程,熟练掌握转化条件.3.作辅助线或辅助面时,要注意以下两点:第一,辅助线,辅助面不能随意作,要有理论根据;第二,辅助线,辅助面有什么性质,一定要以某一性质定理为依据,绝不能凭主观臆断,否则谬误难免.4.在线面垂直和面面垂直的判定定理中,有一些非常重要的限制条件,如“两条相交直线”“一个平面经过另一个平面的一条垂线”等,这既为证明指明了方向,同时又有很强的制约性,使用这些定理时,一定要注意逻辑推理能力的规范性.5.立体几何的学习,对计算和推理能力,特别是空间想象能力有较高的要求,我们要在平时的学习中加强这方面的练习.。