(全国甲卷)高考数学大二轮总复习与增分策略专题一集合与常用逻辑用语、不等式第2讲不等式与线性规划练习
- 格式:doc
- 大小:374.00 KB
- 文档页数:17
第一章 集合与常用逻辑用语、不等式第1讲 集合及其运算链教材·夯基固本 激活思维 1. D 2. A 3.ABD【解析】 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}.因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3},所以A∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2},(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.4.4【解析】因为集合A 必须含有元素5,元素1和3不确定,所以集合A 的本质是{1,3}的所有子集与元素5组成的集合,共4个.5.7【解析】A ={x∈Z |-1≤x ≤4}={-1,0,1,2,3,4},B ={x |1<x <e 2},所以A ∩B ={2,3,4},所以A ∩B 的真子集的个数为23-1=7.知识聚焦1. (1) 确定性 互异性 无序性2. 2n 2n -1 4. U A 研题型·融会贯通 分类解析【答案】 (1) D (2) B (3) A 【题组·高频强化】 1. C 2. C3. C【解析】 由题意知A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,所以满足条件的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.4.B【解析】由x 2-4≤0,得A ={x |-2≤x ≤2}.由2x +a ≤0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≤-a 2.因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.5. B【解析】 由图可知,阴影区域为∁U (A∪B ).由题知A ∪B ={1,3,5},U ={1,3,5,7},则由补集的概念知,∁U (A ∪B )={7}.故选B.(1) 【答案】 {1,-1} 【解析】若集合{x |x 2+2kx +1=0}中有且仅有一个元素,则方程x 2+2kx +1=0有且只有一个实数根,即Δ=(2k )2-4=0,解得k =±1,所以k 的取值集合是{1,-1}.(2) 【答案】 -1 【解析】因为A ∩B 中只有一个元素,又a ≠0且a ≠2.若a =1,则a 2-a =0,不满足题意;若a ≠1,显然a 2-a ≠0,故a 2-a =2或a 2-a =a ,解得a =-1.综上,a =-1.(3) 【答案】 [0,+∞) ∅ 【解析】由题知集合A 是函数y =x 2的定义域,即A =R ,集合B 是函数y =x 2的值域,即B =[0,+∞),所以A ∩B =[0,+∞),集合C 是函数y =x 2的图象上的点集,故A ∩C =∅.(1) 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14 【解析】 当k =0时,A ={-1},符合题意;当k ≠0时,若集合A 只有一个元素,由一元二次方程判别式Δ=1-4k =0,得k =14.综上,当k =0或k =14时,集合{x |kx 2+x +1=0}中有且只有一个元素.(2) 【答案】 -2或1 【解析】因为集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},所以⎩⎪⎨⎪⎧a +1=-1,a2-2=2或⎩⎪⎨⎪⎧a +1=2,a2-2=-1,解得a =-2或a =1.(1) 【答案】 D【解析】 当B =∅时,a =0,此时B ⊆A .当B ≠∅时,则a ≠0,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =-1a . 又B ⊆A ,所以-1a∈A ,所以a =±1.综上可知,实数a 的所有可能取值的集合为{-1,0,1}. (2) 【答案】 [2,3]【解析】 由A ∩B =B 知,B ⊆A .(例3(2))又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3,则实数m 的取值范围为[2,3].【答案】 B【解析】 由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2). 因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3].【解答】 (1) 由题知⎩⎪⎨⎪⎧x<0,⎝ ⎛⎭⎪⎪⎫12x -3<1或⎩⎪⎨⎪⎧x ≥0,x<1,解得-2<x <0或0≤x <1, 所以A ={x |-2<x <1}. (2) 因为A ∪B =A ,所以B ⊆A .(ⅰ) 当B =∅时,2a >a +1,所以a >1满足题意;(ⅱ) 当B ≠∅时,⎩⎪⎨⎪⎧2a ≤a +1,2a>-2,a +1<1,解得-1<a <0.综上,a ∈(-1,0)∪(1,+∞). 课堂评价1. BCD 【解析】 对于选项A ,因为xy >0⇔⎩⎪⎨⎪⎧x>0,y>0或⎩⎪⎨⎪⎧x<0,y<0,所以集合{(x ,y )|xy >0}表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于选项B ,方程|x -2|+|y +2|=0的解集为{(2,-2)},故B 错误; 对于选项C ,集合{(x ,y )|y =1-x }表示直线y =1-x 上的点, 集合{x |y =1-x }表示函数y =1-x 中x 的取值范围,故集合{(x ,y )|y =1-x }与{x |y =1-x }不相等,故C 错误;对于选项D ,A ={x ∈Z |-1≤x ≤1}={-1,0,1},所以-1.1∉A ,故D 错误. 2. ABC3. B 【解析】 由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}.由x 2-3mx +2m 2<0(m >0)得m <x <2m , 所以集合B ={x |m <x <2m }. 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 故实数m 的取值范围是[4,+∞). 4. [2 020,+∞)【解析】 由x 2-2 021x +2 020<0,解得1<x <2020,故A ={x |1<x <2 020}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 020.(第4题)5.(-∞,2]【解析】当a >1时,A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),当且仅当a -1≤1时,A ∪B =R ,故1<a ≤2;当a =1时,A =R ,B ={x |x ≥0},A ∪B =R ,满足题意;当a <1时,A =(-∞,a ]∪[1,+∞),B =[a -1,+∞),又因为a -1<a ,所以A ∪B =R ,故a <1满足题意.综上可知a ∈(-∞,2].第2讲 充分条件、必要条件、充要条件链教材·夯基固本 激活思维 1. A 2. B 3. BCD【解析】由x 2-x -2<0,解得-1<x <2,所以(-1,2)(-2,a ),所以a ≥2,所以实数a 的值可以是2,3,4.4. [-2,1] 【解析】 因为綈p :x ≤-1或x ≥3,綈q :x ≤m -2或x ≥m +5,且綈p 是綈q 的必要不充分条件,所以⎩⎪⎨⎪⎧m -2≤-1,m +5≥3,且等号不能同时取到,解得-2≤m ≤1.5. 充要 必要 【解析】 因为q ⇒s ⇒r ⇒q ,所以r 是q 的充要条件.又q ⇒s ⇒r ⇒p ,所以p 是q 的必要条件.知识聚焦1. (1) 充分 必要 非充分 非必要 (2) ①充分不必要 ②必要不充分 ③充要 ④既不充分也不必要研题型·融会贯通 分类解析(1) 【答案】 A【解析】 因为1x >1,所以x ∈(0,1).因为e x -1<1,所以x <1,所以“1x >1”是“e x -1<1”的充分不必要条件.(2) 【答案】 A 【解析】当a >0,b >0时,得4≥a +b ≥2ab ,即ab ≤4,充分性成立;当a =4,b =1时,满足ab ≤4,但a +b =5>4,不满足a +b ≤4,必要性不成立.故“a +b ≤4”是“ab ≤4”的充分不必要条件.【题组·高频强化】 1. A 【解析】 由a 2>a 得a >1或a <0,据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A.2.B【解析】由2-x ≥0,得x ≤2;由|x -1|≤1,得-1≤x -1≤1,即0≤x ≤2.所以“2-x ≥0”是“|x -1|≤1”的必要不充分条件.故选B.3.C【解析】当存在k∈Z ,使得α=k π+(-1)k β时,若k 为偶数,则sin α=sin(k π+β)=sin β;若k 为奇数,则sin α=sin(k π-β)=sin[(k -1)π+π-β]=sin(π-β)=sin β.当sin α=sin β时,α=β+2m π或α+β=π+2m π,m ∈Z ,即α=k π+(-1)k β(k =2m )或α=k π+(-1)k β(k =2m +1),亦即存在k ∈Z ,使得α=k π+(-1)k β,所以“存在k∈Z ,使得α=k π+(-1)k β”是“sin α=sin β”的充要条件.故选C.4. B【解析】 依题意知m ,n ,l 是空间不过同一点的三条直线,当m ,n ,l 在同一平面内时,可能m ∥n∥l ,故不一定得出m ,n ,l 两两相交.当m ,n ,l 两两相交时,设m ∩n =A ,m ∩l =B ,n ∩l =C ,可知m ,n 确定一个平面α,而B ∈m ⊂α,C ∈n ⊂α,可知直线BC 即l ,l ⊂α,所以m ,n ,l 在同一平面内.综上所述,“m ,n ,l 在同一平面内”是“m ,n ,l 两两相交”的必要不充分条件.故选B.(1) 【答案】 (-∞,-2]∪[2,+∞) 【解析】由y =x +1x在⎝ ⎛⎭⎪⎪⎫12,1上单调递减,在(1,2)上单调递增,得2≤y <52,所以A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪2≤y<52. 由x +m 2≥6,得x ≥6-m 2,所以B ={x |x ≥6-m 2}. 因为“x ∈A ”是“x ∈B ”的充分不必要条件, 所以A B ,所以6-m 2≤2,解得m ≥2或m ≤-2, 故实数m 的取值范围是(-∞,-2]∪[2,+∞). (2) 【答案】 (2,+∞)【解析】 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.(1) 【答案】 (0,2]【解析】 由|2x +1|<m (m >0),得-m <2x +1<m ,所以-m +12<x <m -12,且-m +12<0.由x -12x -1>0,得x <12或x >1. 因为p 是q 的充分不必要条件, 所以m -12≤12,所以0<m ≤2.(2) 【答案】 (0,2]【解析】 由题可得p :x >3或x <-1,q :x 2-2x +1-a 2≥0,[x -(1-a )]·[x -(1+a )]≥0, 因为a >0,所以1-a <1+a ,解得x ≥1+a 或x ≤1-a . 因为q 是p 的必要不充分条件, 所以⎩⎪⎨⎪⎧1+a ≤3,1-a ≥-1,a>0,解得0<a ≤2.【解答】 因为mx 2-4x +4=0是一元二次方程,所以m ≠0. 又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都有实根, 所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1. 因为两方程的根都是整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m2-4m -5∈Z ,所以m 为4的约数.又因为m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1,所以m =-1或1. 当m =-1时,第一个方程x 2+4x -4=0的根不是整数;当m =1时,两方程的根均为整数.所以两方程的根均为整数的充要条件是m =1. 课堂评价 1. A 2. A【解析】 “∀x ∈[-1,1],|x |<a 恒成立”等价于“∀x ∈[-1,1],a >|x |max ”,所以a >1.故充要条件为a >1.3. A 【解析】 因为f (x )是偶函数,所以f (x )=f (|x |). 又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立; 若f (a )>f (b ),则等价于f (|a |)>f (|b |),即|a |>|b |, 即a >|b |或a <-|b |,故必要性不成立.则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 4. ABC【解析】 对于选项A ,由 A ∩B =A ,可得A ⊆B . 由 A ⊆B可得A ∩B =A ,故A 满足条件.对于选项B ,由∁S A ⊇∁S B 可得A ⊆B ,由A ⊆B 可得∁S A ⊇∁S B ,故∁S A ⊇∁S B 是A ⊆B 的充要条件,故B 满足条件.对于选项C ,由∁S B ∩A =∅,可得A ⊆B ,由A ⊆B 可得∁S B ∩A =∅,故∁S B ∩A =∅是A ⊆B 的充要条件,故C 满足条件.对于选项D ,由∁S A ∩B =∅,可得B ⊆A ,不能推出A ⊆B ,故∁S A ∩B =∅不是A ⊆B 的充要条件,故D 不满足条件.故选ABC.5.(-∞,0]【解析】由⎝ ⎛⎭⎪⎪⎫13x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.第3讲 全称量词和存在量词链教材·夯基固本 激活思维 1. C 2. B 3.(-∞,2)【解析】设f (x )=⎝ ⎛⎭⎪⎪⎫12x+1,x ∈[0,+∞),若p 为真命题,则a <f (x )max =f (0)=2.4. (-∞,2] 【解析】 若“∃x 0∈(0,+∞),λx >x 2+1”是假命题,则“∀x ∈(0,+∞),λx ≤x 2+1”是真命题,所以当x ∈(0,+∞)时,λ≤x +1x恒成立.又x +1x≥2x ·1x =2,当且仅当x =1时取“=”,所以实数λ的取值范围是(-∞,2]. 5.⎝ ⎛⎦⎥⎥⎤54,2【解析】当命题p 为真命题时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,所以Δ=1-4(a -1)<0,解得a >54.当命题q 为真命题时,2a ≤(2x 0)max ,x 0∈[-2,2],所以a ≤2.故54<a ≤2,所以实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤54,2. 知识聚焦1. 全体 全称量词 ∀x ∈M ,p (x )2. 部分 ∃ 存在量词 ∃x 0∈M ,p (x 0)3. ∃x ∈M ,綈p (x )4. 不是 不一定是 不都是 小于或等于 大于或等于 或 一个也没有 至多有n -1个 至少有两个 存在一个x 不成立研题型·融会贯通 分类解析【解答】 (1) 綈p :∃x ∈R ,x 2-x +14<0,假命题.(2) 綈q :至少存在一个正方形不是矩形,假命题. (3) 綈r :所有的实数都有平方根,假命题.(4) 綈s :存在一个末位数字是0或5的整数不能被5整除,假命题.(1) 【答案】 C(2) 【答案】 ∀x ∈R ,x 2-x +1≠0 (1) 【答案】 (-∞,-2] 【解析】由命题p 为真,得a ≤0.由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a≤-2.(2) 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪⎪a ≤52【解析】 若命题p :∃x ∈[2,3],x 2-ax +1<0为假命题,则“∀x ∈[2,3],x 2-ax +1≥0,即a ≤x +1x ”为真命题.令g (x )=x +1x ,易知g (x )在[1,+∞)上单调递增,所以当x ∈[2,3]时,g (x )∈[g (2),g (3)].又∀x ∈[2,3],a ≤x +1x恒成立等价于∀x ∈[2,3],a ≤g (x )min ,而g (x )min =g (2)=52,所以“∀x ∈[2,3],x 2-ax +1≥0”为真命题时,a ≤52.(1) 【答案】 ⎝ ⎛⎭⎪⎪⎫56,+∞ 【解析】由“∀x∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫56,+∞. (2) 【答案】 (-2,-1]【解析】 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0为真命题,可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立为真命题,得Δ=m 2-4<0,可得-2<m <2.综上,m ∈(-2,-1].【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 ①当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,对任意x 1∈[0,3],存在x 2∈[1,2],使得f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)min ,即0≥14-m ,所以m ≥14.②当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )max =g (1)=12-m ,对任意x 1∈[0,3],任意x 2∈[1,2],有f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)max ,即0≥12-m ,所以m ≥12.【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 依题意知对x 1∈⎣⎢⎢⎡⎦⎥⎥⎤12,1,x 2∈[2,3],f (x 1)max ≤g (x 2)max . 因为f (x )=x +4x 在⎣⎢⎢⎡⎦⎥⎥⎤12,1上是减函数, 所以f (x )max =f ⎝ ⎛⎭⎪⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数,所以g (x )max =8+a , 因此172≤8+a ,则a ≥12.课堂评价 1. ABC 2. D3. A 【解析】 因为命题“∃x ∈[1,2],x 2+ln x -a ≤0”为假命题,所以当x ∈[1,2]时,x 2+ln x >a 恒成立,只需a <(x 2+ln x )min ,x ∈[1,2].又函数y =x 2+ln x 在[1,2]上单调递增,所以当x =1时,y min =1,所以a <1.故选A.4. B 【解析】 由题可知,命题“∀x ∈R ,(k 2-1)x 2+4(1-k )x +3>0”是真命题. 当k 2-1=0,得k =1或k =-1.若k =1,则原不等式为3>0,恒成立,符合题意;若k =-1,则原不等式为8x +3>0,不恒成立,不符合题意. 当k 2-1≠0时,依题意得⎩⎪⎨⎪⎧k2-1>0,16(1-k )2-4(k 2-1)×3<0,即⎩⎨⎧(k +1)(k -1)>0,(k -1)(k -7)<0,解得1<k <7. 综上所述,实数k 的取值范围为{k |1≤k <7}. 5.(-3,+∞) 【解析】 假设∀x ∈[1,2],x 2+2ax +2-a ≤0.设f (x )=x 2+2ax +2-a ,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,所以⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0,解得a ≤-3.因为假设成立,所以a >-3,所以实数a 的取值范围是(-3,+∞).第4讲 不等式的性质、一元二次不等式链教材·夯基固本 激活思维 1. AC 2.ACD【解析】由1a<1b<0,得a <0,b <0且a >b ,所以a +b <0,ab >0,A 正确;|a |<|b |,B 错误;a 3>b 3,C 正确;因为函数y =2x 在R 上单调递增,故D 正确.故选ACD.3. ABD4. -112 7125.(-∞,-2)∪(2,+∞)【解析】由x 2-2x +k 2-2>0,得k 2>-x 2+2x +2.设f (x )=-x 2+2x +2=-(x -1)2+3,当x ≥2时,f (x )max =2,则k 2>f (x )max =2,所以k >2或k <-2.知识聚焦2. {x |x <x 1或x >x 2} R {x |x 1<x <x 2} ∅ ∅ 研题型·融会贯通 分类解析(1) 【答案】 AC【解析】 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以B 错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln4>0,所以D 错误.因为1a <1b<0,所以a +b <0,但ab >0,所以1a +b <1ab ,A 正确;a -1a -⎝ ⎛⎭⎪⎪⎫b -1b =a -b -⎝ ⎛⎭⎪⎪⎫1a -1b =a -b -⎝ ⎛⎭⎪⎪⎫b -a ab =(a -b )⎝ ⎛⎭⎪⎪⎫1+1ab ,因为1a<1b <0,所以0>a >b ,所以a -b >0,1+1ab>0,所以a -1a-⎝ ⎛⎭⎪⎪⎫b -1b >0,所以a -1a >b -1b ,C 正确. (2) 【答案】 B 【解析】 p -q =b2a +a2b -a -b=b2-a2a +a2-b2b =(b 2-a 2)·⎝ ⎛⎭⎪⎪⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab , 因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-π,π8 【解析】 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,所以⎩⎪⎨⎪⎧m =12,n =32,即2α-β=12(α+β)+32(α-β).因为π<α+β<5π4,-π<α-β<-π3,所以π2<12(α+β)<5π8,-3π2<32(α-β)<-π2,所以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以2α-β的取值范围是⎝ ⎛⎭⎪⎪⎫-π,π8. 【题组·高频强化】 1.A【解析】 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c<bd,所以C ,D 错,故选A. 2.C【解析】因为a +b +c =0,且a <b <c ,所以a <0,c >0.因为b <c ,a <0,所以ab >ac ,所以B 不成立;因为a <b ,c >0,所以ac <bc ,所以C 成立;当b =0时,A ,D 都不成立.故选C.3. BD4. ABC 【解析】 取a =13,b =12,可知A ,B ,C 错误.因为0<a <b <1,所以b -a∈(0,1),所以lg(b -a )<0,故D 正确.故选ABC.5.(-4,2) (1,18)【解析】因为-1<x <4,2<y <3,所以-3<-y <-2,所以-4<x -y <2.因为-3<3x <12,4<2y <6,所以1<3x +2y <18.【解答】(1)原不等式转化为6x 2+5x -1>0,因为方程6x 2+5x -1=0的解为x 1=16,x 2=-1,所以根据二次函数y =6x 2+5x -1的图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<-1或x>16.(2) 若a =0,原不等式转化为-x +1<0,即x >1. 若a <0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)>0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1, 所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1.若a >0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)<0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1. 当1a=1,即a =1时,原不等式的解集为∅; 当1a >1,即0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当1a <1,即a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1. 综上所述,当a =0时,原不等式的解集为{x |x >1}; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1;当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当a =1时,原不等式的解集为∅; 当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1.【解答】 (1) 由不等式x -3x >-2,可得x >2或x <1.由x>2,得x >4;由x<1,得x <1且x ≥0,即0≤x <1.所以不等式的解集为{x |x >4或0≤x <1}.(2)原不等式转化为(x -a )(x -a 2)<0.当a 2>a ,即a >1时,不等式的解集为{x |a <x <a 2};当a 2<a ,即0<a <1时,不等式的解集为{x |a 2<x <a };当a 2=a ,即a =1时,不等式的解集为∅.(1) 【答案】 [0,4] 【解析】当a =0时,原不等式变为1≥0,恒成立,符合题意;当a ≠0时,由ax 2-ax +1≥0恒成立,得⎩⎪⎨⎪⎧a>0,Δ=a2-4a ≤0,解得0<a ≤4.综上,实数a 的取值范围为[0,4].(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 方法一:当a =0时,原不等式可化为x <0,易知不合题意;当a ≠0时,令f (x )=ax 2-x +a ,要满足题意,需⎩⎪⎨⎪⎧a>0,12a ≤1,f (1)≥0或⎩⎪⎨⎪⎧a>0,12a>1,f ⎝ ⎛⎭⎪⎪⎫12a >0,解得a ≥12,所以a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. 方法二:ax 2-x +a >0⇔ax 2+a >x ⇔a >x x2+1,因为x ∈(1,+∞)时,x x2+1=1x +1x<12,所以a ≥12. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-1+72,1+32 【解析】已知不等式可化为(x 2-1)m +(1-2x )<0.设f (m )=(x 2-1)m +(1-2x ),这是一个关于m 的一次函数(或常数函数),从图象上看,要使f (m )<0在-2≤m ≤2时恒成立,其等价条件是⎩⎨⎧f (2)=2(x 2-1)+(1-2x )<0,f (-2)=-2(x 2-1)+(1-2x )<0,即⎩⎪⎨⎪⎧2x2-2x -1<0,2x2+2x -3>0,解得-1+72<x <1+32,所以实数x 的取值范围是⎝ ⎛⎭⎪⎪⎫-1+72,1+32. 【解答】 (1) 因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 所以Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,所以实数a 的取值范围是[-6,2].(2) 由题意,可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g⎝ ⎛⎭⎪⎪⎫-a 2=-a24-a +3≥0,解得-6≤a ≤2,所以-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,所以-7≤a <-4.综上,满足条件的实数a 的取值范围是[-7,2]. (3) 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立, 只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x2+4x +3≥0,x2+6x +3≥0,解得x ≤-3-6或x ≥-3+6, 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).课堂评价 1.C【解析】 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A ,B ,D 项均不正确;C 项,|b||a|<|b|+1|a|+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,因为a <b <0,所以|b |<|a |成立,故选C. 2. C3. ABCD 【解析】 关于实数x 的一元二次不等式a (x -a )(x +1)>0,则a ≠0. 当a =-1时,原不等式的解集为∅,故A 正确;当a >0时,原不等式的解集为(-∞,-1)∪(a ,+∞),故D 正确; 当-1<a <0时,原不等式的解集为(-1,a ),故B 正确; 当a <-1时,原不等式的解集为(a ,-1),故C 正确. 4.BCD【解析】对于A ,因为2x 2-x -1=(2x +1)(x -1),所以由2x 2-x -1>0得(2x +1)(x -1)>0,解得x>1或x <-12,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>1或x<-12,故A 错误;对于B ,因为-6x 2-x +2≤0,所以6x 2+x -2≥0, 所以(2x -1)(3x +2)≥0,所以x ≥12或x ≤-23,故B 正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,所以-7×(-1)=21a,所以a =3,经检验符合题意,故C 正确; 对于D ,依题意知q,1是方程x 2+px -2=0的两个根,则q +1=-p ,即p +q =-1,故D 正确.故选BCD.5.-3【解析】因为函数f (x )=-x 2+ax +b (a ,b∈R )的值域为(-∞,0],所以Δ=0,即a 2+4b =0,所以b =-14a 2.又关于x 的不等式f (x )>c -1的解集为(m -4,m ),所以方程f (x )=c -1的两根分别为m -4,m ,即方程-x 2+ax -14a 2=c -1的两根分别为m -4,m .又方程-x 2+ax -14a 2=c -1的根为x =a2±1-c ,所以两根之差为21-c =m -(m -4)=4,解得c =-3.第5讲 基本不等式链教材·夯基固本 激活思维1. C 【解析】 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎪⎫x +y 22=81,当且仅当x =y =9时取等号,故(xy )max =81. 2. D【解析】 因为1x +3y =1,所以x +3y =(x +3y )⎝ ⎛⎭⎪⎪⎫1x +3y =10+3y x +3x y ≥10+23y x ·3x y =16,当且仅当3y x =3x y 且1x +3y=1,即x =y =4时取等号,故选D. 3.BD【解析】A 不正确,因为a ,b 不满足同号,故不能用基本不等式;B 正确,因为lg x 和lg y 一定是正实数,故可用基本不等式;C 不正确,因为x 和4x 不是正实数,故不能直接利用基本不等式;D 正确,因为 2x 和2-x 都是正实数,且2x ≠1,2-x ≠1,故2x +2-x >22x ·2-x =2成立,故D 正确.故选BD.4. 5 【解析】 令t =sin x ∈(0,1],由y =t +4t 在(0,1]上单调递减,得y min =1+41=5.5. 1【解析】 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时取等号,故f (x )=4x -2+14x -5的最大值为1.知识聚焦1. (1) a >0,b >02. (1) x =y 2p (2) x =yp24研题型·融会贯通 分类解析【解答】 (1) 当a =0时,xy =x +4y ,两边同除以xy 得1y+4x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎪⎫1y +4x =x y +4y x +1+4≥2x y ·4y x +5=9,当且仅当xy=4y x,即x =6,y =3时取“=”,即当a =0时,x +y 的最小值为9.(2) 当a =5时,xy =x +4y +5≥24xy +5=4xy +5,即有(xy )2-4xy -5=(xy -5)(xy +1)≥0, 所以xy ≥5,即xy ≥25,当且仅当x =4y ,即x =10,y =52时取“=”,即当a =5时,xy 的最小值为25. 【题组·高频强化】 1.20【解析】 因为log 5x +log 5y =2,所以x 和y 均为正数,由指数和对数的关系可得xy =52=25,所以x +4y ≥2x ·4y=20,当且仅当x =4y ,即x =10且y =52时等号成立,所以x +4y 的最小值是20.2. 45 【解析】 因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y45y2,所以x 2+y 2=1-y45y2+y 2=15y2+4y25≥215y2·4y25=45,当且仅当15y2=4y25,即x 2=310,y 2=12时取等号,所以x 2+y 2的最小值为45.3. 5+26 【解析】 因为x +y =1,所以x +2xy =x +2(x +y )xy =3x +2y xy =2x +3y=⎝ ⎛⎭⎪⎪⎫2x +3y (x +y )=2y x +3x y +5≥5+26,当且仅当⎩⎪⎨⎪⎧2y x =3x y ,x +y =1,即⎩⎪⎨⎪⎧x =6-2,y =3-6时取等号.4. 6 【解析】 方法一(换元消元法): 由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号, 即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 方法二(代入消元法):由x +3y +xy =9,x >0,y >0,得x =9-3y1+y ,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y =9+3y21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y -6=12-6=6, 当且仅当3(1+y )=121+y,即y =1,x =3时取等号,所以x +3y 的最小值为6.5. 94 【解析】 1a +1+4b +1=⎝ ⎛⎭⎪⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎢⎡⎦⎥⎥⎤1+4+b +1a +1+4(a +1)b +1≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2b +1a +1·4(a +1)b +1=94,当且仅当b +1a +1=4(a +1)b +1,即a =13,b =53时取等号,所以1a +1+4b +1的最小值为94.【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,174 【解析】 对于正实数x ,y ,由x +y +4=2xy , 得x +y +4=2xy ≤(x +y )22,解得x +y ≥4.不等式x 2+2xy +y 2-ax -ay +1≥0可化为(x +y )2-a (x +y )+1≥0,令t =x +y (t ≥4),则该不等式可化为t 2-at +1≥0,即a ≤t +1t 对于任意的t ≥4恒成立.令u (t )=t +1t(t ≥4),则u ′(t )=1-1t2=t2-1t2>0对于任意的t ≥4恒成立,从而函数u (t )=t +1t(t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,所以a ≤174.(1) 【答案】 4【解析】 原不等式变形为k (x -1)+4x -1+k ≥12, 则原问题转化成不等式k (x -1)+4x -1≥12-k 在(1,+∞)上恒成立,所以只需12-k ≤⎣⎢⎡⎦⎥⎤k (x -1)+4x -1min 即可.根据均值定理可知,k (x -1)+4x -1≥2k (x -1)·4x -1=4k ,当且仅当k (x -1)=4x -1时等号成立,所以只需12-k ≤4k 成立,即(k+6)(k -2)≥0,所以k ≥4,即k min =4.(2) 【答案】 (-∞,22]【解析】 因为x >y >0,且xy =1,所以由x 2+y 2≥a (x -y ), 得a ≤x2+y2x -y.又x2+y2x -y=(x -y )2+2xyx -y =x -y +2x -y≥2(x -y )·2x -y=22,所以a ≤22.【解答】 (1) 设休闲区的宽为a m ,则长为ax m , 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20) =a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝ ⎛⎭⎪⎪⎫2x +5x +4 160(x >1). (2) 由(1)知, S (x )=8010⎝⎛⎭⎪⎪⎫2x +5x +4 160 ≥8010×22x ×5x +4 160=1 600+4 160=5 760, 当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100.所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100 m ,宽40 m.【解答】 (1) 设污水处理池的宽为x m ,则长为162x m ,总造价y =400×⎝ ⎛⎭⎪⎪⎫2x +2×162x +248×2x +80×162 =1 296x +1 296×100x +12 960=1 296⎝ ⎛⎭⎪⎪⎫x +100x +12 960 ≥1 296×2x ×100x+12 960=38 880(元),当且仅当x =100x(x >0),即x =10时取等号,所以当污水处理池的长为16.2 m ,宽为10 m 时总造价最低,最低为38 880元. (2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,所以818≤x ≤16.设g (x )=x +100x ⎝ ⎛⎭⎪⎪⎫818≤x ≤16,则g (x )在⎣⎢⎢⎡⎦⎥⎥⎤818,16上是增函数, 所以当x =818时,g (x )有最小值,即f (x )有最小值,即y min =1 296×⎝ ⎛⎭⎪⎪⎫818+80081+12 960=38 882(元). 所以当污水处理池的长为16 m ,宽为818 m 时总造价最低,最低为38 882元.课堂评价 1.BCD【解析】不等式a +b ≥2ab 恒成立的条件是a ≥0,b ≥0,故A 不正确;当a 为负数时,不等式a +1a≤2成立,故B 正确;由基本不等式可知C 正确;2x +1y =⎝ ⎛⎭⎪⎪⎫2x +1y (x +2y )=4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =12,y =14时取等号,故D 正确. 2. ABD 【解析】 若m ,n >0,m +n =2,则1m +2n =12(m +n )⎝ ⎛⎭⎪⎪⎫1m +2n =12⎝ ⎛⎭⎪⎪⎫3+n m +2m n ≥3+222,当且仅当n =2m =4-22时等号成立,A 正确.m +n =2≥2mn ,解得mn ≤1,所以mn 2≤12,(m+n )2=m +n +2mn ≤4,即m +n ≤2,B 正确,C 错误.m 2+n 2≥(m +n )22=2,当且仅当m =n =1时取等号,D 正确.故选ABD.3. (-1,4) 【解析】 由正实数x ,y 满足1x +4y =1,则x +y4=⎝ ⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎪⎫1x +4y =2+4x y +y 4x≥2+24x y ·y4x=4,当且仅当y =4x =8时取等号,所以x +y 4的最小值为4.由x+y4>m2-3m恒成立,可得m2-3m<4,解得m∈(-1,4).4. 4 【解析】因为a>0,b>0,所以a+b>0,ab=1,所以12a+12b+8a+b=b2ab+a2ab+8a+b=a+b2+8a+b≥2a+b2·8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3或a=2+3,b=2-3时等号成立.5. 2105【解析】因为4x2+y2+xy=1,所以(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,所以(2x+y)2-32·⎝⎛⎭⎪⎪⎫2x+y22≤1,解得(2x+y)2≤85,即2x+y≤2105。
1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[问题1] 已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0或 3 B.0或3C.1或 3 D.1或32.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=f(x)}——函数的定义域;{y|y=f(x)}——函数的值域;{(x,y)|y=f(x)}——函数图象上的点集.[问题2] 集合A={x|x+y=1},B={(x,y)|x-y=1},则A∩B=________.3.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,不要忽略A=∅的情况.[问题3] 设集合A={x|x2-5x+6=0},集合B={x|mx-1=0},若A∩B=B,则实数m组成的集合是________________________________________.4.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.[问题4] 满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.5.注重数形结合在集合问题中的应用,列举法常借助Venn图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[问题5] 已知全集I=R,集合A={x|y=1-x},集合B={x|0≤x≤2},则(∁I A)∪B等于( )A.[1,+∞) B.(1,+∞)C.[0,+∞) D.(0,+∞)6.“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否定命题p的结论.[问题6] 已知实数a、b,若|a|+|b|=0,则a=b.该命题的否命题和命题的否定分别是________________________________________________________________________________________________________________________________________________.7.要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A 是B的充分不必要条件”则是指A能推出B,且B不能推出A.[问题7] 设集合M={1,2},N={a2},则“a=1”是“N⊆M”的________条件.8.要注意全称命题的否定是特称命题,特称命题的否定是全称命题.如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”.求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[问题8] 若存在a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,则实数x的取值范围是________________.易错点1 忽视空集致误例1 设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.错因分析 集合B 为方程x 2+2(a +1)x +a 2-1=0的实数根所构成的集合,由B ⊆A ,可知集合B 中的元素都在集合A 中,在解题中容易忽视方程无解,即B =∅的情况,导致漏解. 解 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4a +12-4a 2-1>0,-2a +1=-4,a 2-1=0,解得a =1; ②当∅≠BA 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是a ≤-1或a =1.易错点2 忽视区间端点取舍例2 记f (x )=2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .若B ⊆A ,求实数a 的取值范围.错因分析 在求解含参数的集合间的包含关系时,忽视对区间端点的检验,导致参数范围扩大或缩小. 解 ∵2-x +3x +1≥0,∴x -1x +1≥0. ∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞). 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0. ∵a <1,∴a +1>2a ,∴B =(2a ,a +1). ∵B ⊆A ,∴2a ≥1或a +1≤-1, 即a ≥12或a ≤-2,而a <1,∴12≤a <1或a ≤-2. 故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪[12,1).易错点3 混淆充分条件和必要条件例3 若p :a ∈R ,|a |<1,q :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一个根小于零,但不满足p ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件错因分析 解答本题易出现的错误是颠倒了充分条件和必要条件,把充分条件当成必要条件而致误.解析 p :a ∈R ,|a |<1⇔-1<a <1⇒a -2<0,可知满足q 的方程有两根,且两根异号,所以p 是q 的充分条件,但p 不是q 的必要条件,如当a =1时,q 中方程的一个根大于零,另一个根小于零,但不满足p .本题也可以把命题q 中所有满足条件的a 值求出来,再进行分析判断,实际上一元二次方程两根异号的充要条件是两根之积小于0,对于本题就是a -2<0,即a <2,故选A. 答案 A易错点4 “或”“且”“非”理解不清例4 已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是( ) A .(-12,-4)∪[4,+∞)B .[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[12,+∞)错因分析 当p 或q 为真命题时,p ,q 之间的真假关系判断错误.解析 命题p 等价于Δ=a 2-16≥0,解得a ≤-4或a ≥4;命题q 等价于-a4≤3,解得a ≥-12.因为p 或q 是真命题,p 且q 是假命题,则命题p 和q 一真一假.当p 真q 假时,a <-12;当p 假q 真时,-4<a <4,故选C. 答案 C1.已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a 为( ) A .-1 B .2C .-1或2D .1或-1或22.设全集U =R ,A ={x |xx -2<0},B ={x |2x<2},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}3.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ) A .a ≤1 B.a <1 C .a ≥2 D.a >24.(2015·天津)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 5.已知集合A ={x ∈R |x -4x +1≤0},B ={x ∈R |(x -2a )(x -a 2-1)<0},若A ∩B =∅,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞)C .{1}∪[2,+∞)D .(1,+∞)6.已知p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,q :y =(2a -1)x为减函数,若p 且q 为真命题,则a 的取值范围是( ) A .a ≤23 B .0<a <12 C.12<a ≤23 D.12<a <17.已知集合A ={-1,m },B ={x |x >1},若A ∩B ≠∅,则实数m 的取值范围是________. 8.设全集U ={(x ,y )|x ,y ∈R },集合M ={(x ,y )|y +2x -2=1},N ={(x ,y )|y ≠x -4},那么(∁U M )∩(∁U N )=______.9.已知条件p :x 2+2x -3>0,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则a 的取值范围为__________. 10.给出如下四个结论:①若“p ∨q ”为真命题,则p ,q 均为真命题;②“若a >b ,则2a >2b -1”的否命题为“若a ≤b ,则2a ≤2b-1”; ③“∀x ∈R ,x 2+x ≥1”的否定是“∃x 0∈R ,x 20+x 0≤1”; ④“x >0”是“x +1x≥2”的充要条件.其中正确的是________.学生用书答案精析第四篇 回归教材,纠错例析,帮你减少高考失分点 1.集合与常用逻辑用语 要点回扣 [问题1] B [问题2] ∅ [问题3] {0,12,13}[问题4] 7 [问题5] C[问题6] 否命题:已知实数a 、b ,若|a |+|b |≠0,则a ≠b ; 1命题的否定:已知实数a 、b ,若|a |+|b |=0,则a ≠b [问题7] 充分不必要[问题8] (-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞ 解析 不等式即(x 2+x )a -2x -2>0,设f (a )=(x 2+x )a -2x -2.研究“任意a ∈[1,3],恒有f (a )≤0”.则⎩⎪⎨⎪⎧f 1≤0,f3≤0,解得x ∈⎣⎢⎡⎦⎥⎤-1,23.则实数x 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞.查缺补漏1.C [因为B ⊆A ,所以a 2-a +1=3或a 2-a +1=a . 若a 2-a +1=3,即a 2-a -2=0,解得a =-1或a =2. 当a =-1时,A ={1,3,-1},B ={1,3},满足题意; 当a =2时,A ={1,3,2},B ={1,3},满足题意. 若a 2-a +1=a ,即a 2-2a +1=0,解得a =1, 此时集合A 中有重复元素1,舍去. 由以上,可知a =-1或a =2.故选C.]2.B [A ={x |0<x <2},B ={ x | x <1},由题图可知阴影部分表示的集合为(∁U B)∩A={ x|1≤x <2}.]3.C [∵B ={ x |1< x <2},∴∁R B ={x |x ≤1,或x ≥2}, 又∵A ={x |x <a },且A ∪(∁R B )=R , 利用数轴易知应有a ≥2,故选C.]4.A [由| x -2|<1得,1<x <3,由x 2+x -2>0,得x <-2或x >1,而1<x <3⇒x <-2或x >1,而x <-2或x >1⇏1<x <3,所以,“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,选A.] 5.C [由x -4x +1≤0,得A ={x ∈R |-1<x ≤4},B ={x ∈R |(x -2a )(x -a 2-1)<0}={x ∈R |2a <x <a 2+1}.若B ≠∅,则在数轴上可以看出2a ≥4,所以a ≥2;若B =∅,只能a =1,综上选C.]6.C [p ⇔a ∈⎝ ⎛⎦⎥⎤-∞,23,q ⇔a ∈⎝ ⎛⎭⎪⎫12,1, ∴a ∈⎝ ⎛⎦⎥⎤12,23.]7.(1,+∞)解析 因为A ∩B ≠∅且-1∉B ,所以必有m ∈B ,所以m >1. 8.{(2,-2)}解析 由题意,知M ={(x ,y )|y =x -4(x ≠2)},M 表示直线y =x -4上的点集,但是除掉点(2,-2),∁U M 表示直线y =x -4外的点集,且包含点(2,-2);N 表示直线y =x -4外的点集,∁U N 表示直线y =x -4上的点集,所以(∁U M )∩(∁U N )={(2,-2)}. 9.[1,+∞)解析 由x 2+2x -3>0可得x >1或x <-3,“綈p 是綈q 的充分不必要条件”等价于“q 是p 的充分不必要条件”,故a ≥1. 10.②④解析 ①若“p ∨q ”为真命题,则p ,q 不一定都是真命题,所以①不正确;②“若a >b ,则2a>2b-1”否命题为“若a ≤b ,则2a≤2b-1”,所以②正确;③“∀x ∈R ,x 2+x ≥1”的否定是“∃x 0∈R ,x 20+x 0<1”,所以③不正确;④“x >0”是“x +1x≥2”的充要条件,所以④正确.。
专题01集合与常用逻辑用语集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【教材回归】1.集合(1)集合间的关系与运算A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.(2)子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.【易错点】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如{x |y=lg x}——函数的定义域;{y |y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.3.空集是任何集合的子集.解题时勿漏A=∅的情况.【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【例题分析】例1下列元素与集合的关系表示不正确的是()A.0N∈B.0Z∈C.32Q∈D.Qπ∈【答案】D【考点】元素与集合关系的判断【专题】集合思想;定义法;集合;数学运算【分析】根据元素与集合的关系,结合数集的表示方法,判断选项中的命题真假性即可.【解答】解:根据元素与集合的关系知,0N∈,选项A正确;0Z∈,选项B正确;3 2Q∈,选项C正确;Qπ∉,选项D错误.故选:D.【点评】本题考查了元素与集合的关系应用问题,也考查了常用数集的应用问题,是基础题.【知识要点】子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集为U,集合{2A=-,0,1,2},{|20}B x x=-,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A .(2,0)-B .[1-,0]C .{1-,0}D .{2-,1,2}【答案】A【考点】Venn 图表达集合的关系及运算 【专题】集合思想;定义法;集合;数学运算 【分析】图中阴影部分表示的集合是()U BA ,由此能求出结果.【解答】解:全集为U ,集合{2A =-,0,1,2},{|20}B x x =-, 图中阴影部分表示的集合是:()(2UB A =-⋂,0).∴由韦恩图得图中阴影部分可表示为(2,0)-.故选:A .【点评】本题考查补集、交集的求法,考查补集、交集定义、韦恩图的性质等基础知识,考查运算求解能力,是基础题.例3对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合{2S =,3,4,5},定义集合{T f =(A )|A S ⊆,}A ≠∅,则集合T 的元素的个数为( ) A .11 B .12 C .13 D .14【答案】B【考点】元素与集合关系的判断【专题】集合思想;分析法;集合;逻辑推理【分析】因为A ≠∅,所以f (A )的最小值为2,最大值是S 中所有元素之和为14,再将不可能的取值剔除即可【解答】解:因为A ≠∅,所以f (A )的最小值为2,f (A )的最大值是S 中所有元素之和为14,但是34512++=,234514+++=,也就是f (A )无法取到13,所以T 中的元素有2,3,4,5,6,7,8,9,10,11,12,14,共12个 故选:B .【点评】本题不要去抓集合A 的所有情况,只需要判断其元素之和的最小值与最大值,再剔除掉其中不可能的取值即可,属于简单题 例4已知集合{1A =,3,2}a ,{1B =,2}a +,若A B A =,则实数a = 2 .【答案】2.【考点】并集及其运算【专题】集合思想;定义法;集合;数学运算【分析】推导出B A ⊆,从而21a +=,或23a +=,或22a a +=,再利用集合是元素的互异性能求出实数a .【解答】解:集合{1A =,3,2}a ,{1B =,2}a +,A B A =,B A ∴⊆,21a ∴+=,或23a +=,或22a a +=,解得1a =-或1a =,或2a =, 当1a =-时,{1A =,3,1},不成立; 当1a =时,{1A =,3,1},不成立;当2a =时,{1A =,3,4},{1B =,4},成立. 故实数2a =. 故答案为:2.【点评】本题考查实数值的求法,考查并集、子集定义、集合中元素的互异性等基础知识,考查运算求解能力,是基础题.例5已知集合2{|430A x x x =-+<,}x R ∈,{|||2B x x =>,}x R ∈,则()(RA B = )A .[2-,1)B .[2-,1]C .[2-,3]D .(1,2]【答案】B【考点】交、并、补集的混合运算【专题】计算题;集合思想;综合法;集合;数学运算【分析】可求出集合A ,B ,然后进行并集和补集的运算即可. 【解答】解:{|13}A x x =<<,{|2B x x =<-或2}x >,{|2AB x x ∴=<-或1}x >,()[2RA B =-,1].故选:B .【点评】本题考查了描述法和区间的定义,一元二次不等式和绝对值不等式的解法,并集和补集的定义及运算,考查了计算能力,属于基础题. 例6设集合{1A =,2,3},集合{|}B x x a =,若A B 有两个元素,则a 的取值范围是[2,3) .【答案】[2,3). 【考点】交集及其运算【专题】集合思想;定义法;集合;数学运算【分析】利用集合交集的定义结合数轴进行分析求解即可/ 【解答】解:{1A =,2,3},集合{|}B x x a =,A B 有两个元素,如图,可得a 的取值范围是[2,3). 故答案为:[2,3).【点评】本题考查了集合的运算,解题的关键是掌握交集的定义,属于基础题.例7已知集合2{|20}M x x x =-+>,{|N y y ==,则(M N = )A .(0,2)B .[0,2)C .(2,)+∞D .[1,2)【答案】A【考点】交集及其运算【专题】集合思想;定义法;集合;数学运算 【分析】求出集合M ,N ,由此能求出MN .【解答】解:集合2{|20}{|02}M x x x x x =-+>=<<, {|{|0}N y y y ===,{|12}(0,2)M N x x ∴=<=.故选:A .【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题. 例8已知M ,N 均为R 的子集,且R M N ⊆,则()(RM N =⋃ )A .∅B .MC .ND .R【答案】B【考点】并集及其运算【专题】集合思想;定义法;集合;逻辑推理;数学运算【分析】根据M ,N 均为R 的子集,且R M N ⊆,画出韦恩图,结合图形可求出()R M N .【解答】解:如图所示易知()R MN M =.故选:B .【点评】本题主要考查了集合的并集与补集,解题的关键是作出符合题意的韦恩图,同时考查了学生推理的能力.常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【教材回归】1.四种命题及其相互关系(1)(2)互为逆否命题的两个命题同真同假.3.含有逻辑联结词的命题的真值表 命题p 且q 、p 或q 、非p 的真假判断4.全称命题、特称命题及其否定(1)全称命题p :∀x ∈M ,p (x ),其否定为特称命题:p :∃x 0∈M ,┐p (x 0). (2)特称命题p :∃x 0∈M ,p (x 0),其否定为全称命题:p :∀x ∈M ,┐p (x ). 5.充分条件与必要条件的三种判定方法(1)定义法:若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,命题p :x ∈A ,命题q :x ∈B ,若A ⊆B ,则p 是q 的充分条件(q 是p 的必要条件);若A B ,则p 是q 的充分不必要条件(q 是p 的必要不充分条件);若A =B ,则p 是q 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 【易错点】判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以从集合的角度来思考,将问题转化为集合间的运算. 【例题分析】例1命题“对于任意a ,b R ∈,如果2a ab =,则a b =”的否命题为 “对于任意a ,b R ∈,如果2a ab ≠,则a b ≠” .【答案】“对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”. 【考点】四种命题;四种命题间的逆否关系 【专题】转化思想;定义法;简易逻辑;逻辑推理 【分析】把原命题的条件和结论均否定即可.【解答】解:根据原命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”, 写出命题“对于任意a ,b R ∈,如果2a ab =,则a b =”的否命题为: “对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”.故答案为:“对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”.【点评】本题考查了命题与它的否命题之间的关系应用问题,是基础题.例2写出命题p“若a是正数,则a的平方不等于0”的原命题,逆命题,否命题,逆否命题,并判断它们的真假【考点】四种命题的真假关系【专题】对应思想;简易逻辑;定义法【分析】根据四种命题的定义分别进行求解判断即可.【解答】解:原命题:“若a是正数,则a的平方不等于0”,为真命题,逆命题:“若a的平方不等于0,则a是正数”,为假命题,当a为负数时也成立,否命题:“若a不是正数,则a的平方等于0”,为假命题,与逆命题等价性相同,逆否命题:若a的平方等于0,则a不是正数”,为真命题,与原命题为等价命题.【点评】本题主要考查四种命题的求解,结合逆否命题的等价性是解决本题的关键.例3能够说明“设a,b是任意非零实数,若“a b>,则11a b<”是假命题的一组整数a,b的值依次为2,1-.【考点】26:四种命题的真假关系【专题】11:计算题;35:转化思想;49:综合法;5L:简易逻辑;62:逻辑推理【分析】可看出,取2a=,1b=-时,可说明”a b>,则11a b<”是假命题.【解答】解:取2a=,1b=-时,可得出“a b>,则11a b<“不成立,即该命题为假命题.故答案为:2,1-.【点评】本题考查了真假命题的定义,举反例说明一个命题是假命题的方法,考查了推理能力,属于基础题.例4已知a,b都是实数,则“log3a>log3b”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件.【专题】函数思想;定义法;简易逻辑;逻辑推理.【答案】A【分析】根据对数函数的单调性可化简log3a>log3b,根据幂函数的单调性可化简,最后根据充分条件、必要条件的定义进行判定即可.【解答】解:因为log3a>log3b,所以a>b>0,,所以“log 3a >log 3b ”是“”的充分不必要条件.故选:A .【点评】本题主要考查了对数函数和幂函数的单调性,以及充分条件、必要条件的判定,同时考查了逻辑推理能力和运算求解能力,属于基础题. 例5110a+>是1a <-成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【考点】充分条件、必要条件、充要条件 【专题】转化法;简易逻辑;对应思想 【分析】解不等式11a>-,根据集合的包含关系判断即可. 【解答】解:由11a>-,得:10a a +>, 解得:0a >或1a <-, 故11a>-是1a <-成立的必要不充分条件, 故选:B .【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.例6已知条件:211p x --,:33q x -<,且p 是q 的必要条件,则实数的取值范围为 (-∞,2]- . 【答案】(-∞,2]-.【考点】充分条件、必要条件、充要条件【专题】转化思想;综合法;不等式的解法及应用;简易逻辑;数学运算【分析】条件:211p x --,:33q x -<,根据p 是q 的必要条件,可得21331-⎧⎨-⎩,解得实数的取值范围.【解答】解:条件:211p x --,:33q x -<,且p 是q 的必要条件,∴21331-⎧⎨-⎩,解得2-.则实数的取值范围是(-∞,2]-.故答案为:(-∞,2]-.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.例7命题:“0x R ∃∈,00sin x x <”的否定为( ) A .0x R ∃∈,00sin x x > B .0x R ∃∈,00sin x x C .x R ∀∈,sin x x > D .x R ∀∈,sin x x【答案】D 【考点】命题的否定【专题】转化思想;定义法;简易逻辑;逻辑推理【分析】根据存在量词命题的否定是全称量词命题,写出对应的命题即可. 【解答】解:根据存在量词命题的否定是全称量词命题知, 命题:“0x R ∃∈,00sin x x <”的否定是: “x R ∀∈,sin x x ”. 故选:D .【点评】本题考查了存在量词命题的否定是全称量词命题的应用问题,是基础题. 例8已知命题:(1,)p x ∃∈+∞,24x >,则命题p ⌝为 (1,)x ∀∈+∞,24x . 【答案】(1,)x ∀∈+∞,24x . 【考点】命题的否定【专题】转化思想;定义法;简易逻辑;逻辑推理【分析】根据特称命题的否定是全称命题,写出命题p 的否定命题p ⌝即可. 【解答】解:根据特称命题的否定是全称命题知, 命题:(1,)p x ∃∈+∞,24x >, 则命题p ⌝为:(1,)x ∀∈+∞,24x . 故答案为:(1,)x ∀∈+∞,24x .【点评】本题考查了特称命题的否定是全称命题应用问题,是基础题. 例9有以下说法:①一年按365天计算,两名学生的生日相同的概率是1365; ②买彩票中奖的概率为0.001,那么买1000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比数大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是①③.【考点】2C:概率及其性质;2K:命题的真假判断与应用【专题】38:对应思想;49:综合法;5I:概率与统计;62:逻辑推理【分析】根据概率的意义和计算方法逐一判断每个选项即可得解.【解答】解:①两名学生的生日相同,是365天里的任意一天,因此两名学生的生日相同的概率是1365,即①正确;②买彩票中奖的概率为0.001,并不意味着买1000张彩票就一定能中奖,只有当买彩票的数量非常大时,才可以看成中奖的频率接近中奖的概率0.001,即②错误;③这种抽取方法抽到每个签的概率均为110,所以公平,即③正确;④昨天气象局的天气预报降水概率是90%,是指可能性非常大,并不一定会发生,即④错误.故答案为:①③.【点评】本题考查概率的意义,考查学生的推理论证能力和理解能力,属于基础题.例10一个口袋中有3个红球4个白球,从中取出2个球.下面几个命题:(1)如果是不放回地抽取,那么取出1个红球,1个白球的概率是27;(2)如果是不放回地抽取,那么在至少取出一个红球的条件下,第2次取出红球的概率是35;(3)如果是有放回地抽取,那么取出1个红球1个白球的概率是12 49;(4)如果是有放回地抽取,那么第2次取到红球的概率和第1次取到红球的概率相同.其中正确的命题是(2)(4).【答案】(2)(4).【考点】命题的真假判断与应用【专题】计算题;转化思想;综合法;概率与统计;数学运算【分析】根据题意,依次分析4个命题中概率的计算是否正确,即可得答案.【解答】解:根据题意,依次分析4个命题:(1)如果是不放回地抽取,那么取出1个红球,1个白球的概率11342747C CPC⨯==,因此不正确;(2)如果是不放回地抽取,至少取出一个红球的概率24127517CPC=-=,第2次取出红球的概率243323 76767P⨯⨯=+=⨯⨯,则在至少取出一个红球的条件下,第2次取出红球的概率是2135P P P ==,因此正确; (3)如果是有放回地抽取,那么取出1个红球1个白球的概率11341177241224949C C P C C =⨯⨯=≠,因此不正确;(4)如果是有放回地抽取,那么第2次取到红球的概率和第1次取到红球的概率相同,正确,其概率131737C P C ==. 其中正确的命题是(2)(4),故答案为:(2)(4).【点评】本题考查古典概型的计算,涉及条件概率的计算,属于基础题.例11已知(1,0)A ,(4,0)B ,圆22:4C x y +=,则以下选项正确的有( )A .圆C 上到B 的距离为2的点有两个B .圆C 上任意一点P 都满足||2||PB PA =C .若过A 的直线被圆C 所截得的弦为MN ,则||MN的最小值为D .若点D 满足过D 作圆C 的两条切线互相垂直,则||BD的最小值为4-【答案】BCD【考点】命题的真假判断与应用【专题】方程思想;转化法;直线与圆;数学运算【分析】由题意画出图形,数形结合可得A 错误;设出P 的坐标,由||2||PB PA =成立判定B 正确;直接求出||MN 的最小值判断C ;由题意求得点D 的轨迹,即可判断选项D 正确. 【解答】解:如图,圆C 的圆心坐标为(0,0),半径2r =,则圆C 上到B 的距离为2的点1个,为(2,0),故A 错误;设圆C 上任意一点(,)P x y ,则224x y +=,||PB2||PA =,若||2||PB PA =,则2222(4)4(1)4x y x y -+=-+,即224x y +=,此式显然成立,故B 正确; 若过A 的直线被圆C 所截得的弦为MN ,则当MN x ⊥轴时,||MN 的最小值为=C 正确;若点D 满足过D 作圆C 的两条切线互相垂直,则||OD =可得D 的轨迹是以O 为圆心,以而B 在圆外,则||BD 的最小值为4-故D 正确.故选:BCD .【点评】本题考查命题的真假判断与应用,考查点与圆、直线与圆位置关系的判定及应用,是中档题.。
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
第讲不等式与线性规划.(·浙江)已知实数,,,().若+++++≤,则++<.若++++-≤,则++<.若++++-≤,则++<.若++++-≤,则++<答案解析由于此题为选择题,可用特值排除法找正确选项.对选项,当==,=-时,可排除此选项;对选项,当=,=-,=时,可排除此选项;对选项,当=,=-,=时,可排除此选项.故选..(·课标全国丙)若,满足约束条件则=+的最大值为.答案解析满足约束条件的可行域为以(-,-),(),为顶点的三角形内部及边界,如图,过时取得最大值..(·上海)设∈,则不等式-<的解集为.答案()解析-<-<,即<<,故解集为()..(·上海)设>,>,若关于,的方程组无解,则+的取值范围是.答案(,+∞)解析由已知得,=,且≠,∴+>=..利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点;.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数取值范围;.利用不等式解决实际问题.热点一不等式的解法.一元二次不等式的解法先化为一般形式++>(≠),再求相应一元二次方程++=(≠)的根,最后根据相应二次函数图象与轴的位置关系,确定一元二次不等式的解集..简单分式不等式的解法()>(<)⇔()()>(<);()≥(≤)⇔()()≥(≤)且()≠..指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例()已知函数()=++(,∈)的值域为[,+∞),若关于的不等式()<的解集为(,+),则实数的值为.()已知一元二次不等式()<的解集为,则()>的解集为().{<-或>-}.{-<<-}。
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
第2讲 不等式与线性规划1.(2014·大纲全国)不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}2.(2015·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4 B.235 C .6 D.3153.(2015·浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cxD .ay +bx +cz4.(2015·重庆)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点;2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数取值范围;3.利用不等式解决实际问题.热点一 不等式的解法1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. 2.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解. 例1 (1)(2015·广东)不等式-x 2-3x +4>0的解集为________(用区间表示).(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}思维升华 (1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.跟踪演练1 (1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.热点二 基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).例2 (1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( )A.53B.83C .8D .24(2)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪演练2 (1)(2015·天津)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.(2)若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值是________________________________________________________________________.热点三 简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3 (1)(2015·北京)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32D .2(2)(2014·安徽)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.跟踪演练3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,y ≤-x +2,x ≥a ,且目标函数z =2x +y 的最小值为9,则实数a 的值是( )A .1B .2C .3D .71.若点A (a ,b )在第一象限,且在直线x +2y =1上,则ab 的最大值为( ) A .1 B.12 C.14D.182.已知函数f (x )=⎩⎪⎨⎪⎧x +3x -2 (x >2),log 2(2-x ) (x <2),则不等式f (x )≤4的解集为________.3.已知O 是坐标原点,点M (x ,y ),且实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≥0,y ≤2,x ≤2,则|OM →|的最小值为________.4.已知不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立,则a 的取值范围是________.提醒:完成作业 专题一 第2讲二轮专题强化练专题一第2讲 不等式与线性规划A 组 专题通关1.(2015·成都外国语学校10月月考)若a >b >0,c >d >0,则一定有( ) A.a c >b d B.a c <b d C.a d <b c D.a d >b c2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.(2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A .3B .2C .-2D .-34.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2 D .23-25.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(0)>0,且f (x )的值域为[0,+∞),则f (1)f ′(0)的最小值为( ) A .3 B.52 C .2 D.326.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,(13)x ,x ≤0,那么不等式f (x )≥1的解集为________________.7.(2015·绵阳市一诊)某商场销售某种商品的经验表明,该产品生产总成本C 与产量q (q ∈N *)的函数关系式为C =100-4q ,销售单价p 与产量q 的函数关系式为p =25-116q .要使每件产品的平均利润最大,则产量q =________.8.(2015·资阳市测试)若两个正实数x ,y 满足2x +1y =1,且x +2y >m 2+2m 恒成立,则实数m的取值范围是________.9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a)(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.B 组 能力提高10.(2015·陕西)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <qD .p =r >q11.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A .7B .8C .9D .1412.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是__________________________________________________.13.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时).学生用书答案精析第2讲 不等式与线性规划高考真题体验1.C [由⎩⎪⎨⎪⎧ x (x +2)>0,|x |<1,得⎩⎪⎨⎪⎧x >0或x <-2,-1<x <1,所以0<x <1,所以原不等式组的解集为 {x |0<x <1},故选C.]2.B [不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z 2,依题当目标函数直线l :y =-32x +z2经过A ⎝⎛⎭⎫1,45时,z 取得最小值即z min =3×1+2×45=235,故选B.] 3.B [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10; C 项:ay +bz +cx =2+6+3=11; D 项:ay +bx +cz =2+2+9=13.故选B.] 4.3 2解析 ∵a ,b >0,a +b =5,∴(a +1+b +3)2=a +b +4+2a +1b +3≤a +b +4+(a +1)2+(b +3)2=a +b +4+a +b +4=18,当且仅当a =72,b =32时,等号成立,则a +1+b +3≤32,即a +1+b +3最大值为3 2.热点分类突破 例1 (1)(-4,1) (2)C解析 (1)不等式-x 2-3x +4>0,即x 2+3x -4<0,解得-4<x <1. (2)由题意可知f (-x )=f (x ).即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立, 故2a -b =0,即b =2a ,则f (x )=a (x -2)·(x +2). 又函数在(0,+∞)单调递增,所以a >0. f (2-x )>0即ax (x -4)>0,解得x <0或x >4. 故选C.跟踪演练1 (1)52(2)(-1,2-1)解析 (1)由x 2-2ax -8a 2<0,得(x +2a )·(x -4a )<0,因为a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.(2)当x ≥0时,f (x )=x 2+1是增函数; 当x <0时f (x )=1,因此由题设f (1-x 2)>f (2x )得,⎩⎨⎧ 1-x 2>02x <0或⎩⎨⎧1-x 2>2x ,2x ≥0. 解得-1<x <0或0≤x <2-1.故所求实数x 的取值范围是(-1,2-1). 例2 (1)C (2)B解析 (1)∵a ∥b ,∴3(y -1)+2x =0, 即2x +3y =3. ∵x >0,y >0,∴3x +2y =(3x +2y )·13(2x +3y ) =13(6+6+9y x +4x y )≥13(12+2×6)=8. 当且仅当3y =2x 时取等号. (2)2x +2x -a =2(x -a )+2x -a +2a≥2·2(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.跟踪演练2 (1)4 (2)4解析 (1)log 2a ·log 2(2b )=log 2a ·(1+log 2b ) ≤⎝⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122=⎝ ⎛⎭⎪⎫log 28+122=4,当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2.(2)易知圆x 2+y 2+2x -4y +1=0的半径为2,圆心为(-1,2),因为直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,所以直线2ax -by +2=0(a >0,b >0)过圆心,把圆心坐标代入得:a +b =1,所以1a +1b =(1a +1b )·(a +b )=2+b a +a b ≥4,当且仅当b a =ab ,a +b=1,即a =b =12时等号成立.例3 (1)D (2)D解析 (1)可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x+12z 过点A (0,1)时,z 取得最大值2. (2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.跟踪演练3 C [依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z =2x +y 过点B (a ,a )时,z min =2a +a =3a ;因为目标函数z =2x +y 的最小值为9,所以3a =9,解得a =3,故选C .]高考押题精练1.D [因为点A (a ,b )在第一象限,且在直线x +2y =1上, 所以a >0,b >0,且a +2b =1, 所以ab =12·a ·2b ≤12·(a +2b 2)2=18,当且仅当a =2b =12,即a =12,b =14时,“=”成立.故选D.]2.{x |-14≤x <2或x ≥113}解析 由题意得⎩⎪⎨⎪⎧x >2,x +3x -2≤4或⎩⎪⎨⎪⎧x <2,log 2(2-x )≤4, 解得x ≥113或-14≤x <2,故不等式f (x )≤4的解集为{x |-14≤x <2或x ≥113}.3. 2解析 依题意得|OM →|=x 2+y 2可视为点M (x ,y )到原点O (0,0)的距离.在坐标平面内画出不等式组所表示的平面区域(如图所示阴影部分及边界).结合图形可知,在该平面区域内,点O (0,0)到直线x +y -2=0的距离即点M (x ,y )与原点O (0,0)之间距离的最小值,因此|OM →|的最小值是|0+0-2|2= 2. 4.[-1,2] 解析 设y =2x -1,y ′=-2(x -1)2, 故y =2x -1在x ∈[2,6]上单调递减, 即y min =26-1=25, 故不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立等价于15|a 2-a |≤25恒成立, 化简得⎩⎪⎨⎪⎧a 2-a -2≤0,a 2-a +2≥0,解得-1≤a ≤2, 故a 的取值范围是[-1,2].二轮专题强化练答案精析第2讲 不等式与线性规划1.D [∵c >d >0,∴1d >1c>0, 又∵a >b >0,∴a d >b c.] 2.C [根据题意,由于不等式x 2+x <a b +b a 对任意a ,b ∈(0,+∞)恒成立,则x 2+x <(a b +b a)min , ∵a b +b a ≥2a b ·b a=2, ∴x 2+x <2,求解此一元二次不等式可知其解集为(-2,1).]3.B [不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值,∴2a =4,∴a =2,排除A ,故选B.]4.D [由a (a +b +c )+bc =4-23,得(a +b )(a +c )=4-23,又a ,b ,c >0,所以2a +b +c =(a +b )+(a +c )≥2(a +b )(a +c )=24-23=2(3-1),当且仅当a +b =a +c 时取等号.故选D.]5.C [f ′(x )=2ax +b ,f ′(0)=b >0,函数f (x )的值域为[0,+∞),所以a >0,且b 2-4ac =0,即4ac =b 2,所以c >0.又f (1)=a +b +c ,所以f (1)f ′(0)=a +b +c b =1+a +c b ≥1+2ac b =1+4ac b =1+1=2(当且仅当b =2a =2c 时取等号),所以f (1)f ′(0)的最小值为2,故选C.] 6.(-∞,0]∪[3,+∞)解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由(13)x ≥1可得x ≤0, ∴不等式f (x )≥1的解集为(-∞,0]∪[3,+∞).7.40解析 每件产品的利润y =25-116q -100-4q q =29-(q 16+100q)≤29-2q 16·100q =24, 当且仅当q 16=100q且q >0,即q =40时取等号. 8.(-4,2)解析 ∵x +2y =(x +2y )(2x +1y )=4+x y +4y x≥4+2x y ·4y x =8,∴(x +2y )min =8, 令m 2+2m <8,得-4<m <2.9.解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2). y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1,此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3,此时x =-2,符合要求.所以B =(-∞,-3]∪[1,+∞),所以A ∩B =(-4,-3]∪[1,2).(2)∁R A ={x |x ≤-4或x ≥2}.(ax -1a )(x +4)=0有两根x =-4或x =1a 2. 当a >0时,C ={x |-4≤x ≤1a 2},不可能C ⊆∁R A ; 当a <0时,C ={x |x ≤-4或x ≥1a 2}, 若C ⊆∁R A ,则1a 2≥2,∴a 2≤12, ∴-22≤a <0.故a 的取值范围为[-22,0). 10.C [∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.]11.C [作出约束条件对应的可行域,如图中阴影部分,作直线l :3x +y =0,平移直线l 可知,经过点A 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧x -2=0,x +2y -8=0,得A (2,3), 故z max =3×2+3=9.选C.]12.(-∞,376] 解析 要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y 恒成立.由x +y +3=xy ,得x +y +3=xy ≤(x +y 2)2, 即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y=t +1t . 设f (t )=t +1t ,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是(-∞,376]. 13.解 (1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )=ax +b 在[20,200]上是减函数,由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60,解得⎩⎨⎧ a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60x , (0≤x <20),13(200-x ), (20≤x ≤200).(2)依题意并由(1)可得 f (x )=⎩⎪⎨⎪⎧ 60x (0≤x <20),13x (200-x )(20≤x ≤200),当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13[x +(200-x )2]2=10 0003,当且仅当x =200-x ,即x =100时,等号成立,所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.。
第讲集合与常用逻辑用语.(·课标全国乙)设集合={-+<},={->},则∩等于()答案解析由={-+<}={<<},={->}=,得∩==,故选..(·北京)设,是向量,则“=”是“+=-”的().充分而不必要条件.必要而不充分条件.充分必要条件.既不充分也不必要条件答案解析若=成立,则以,为邻边构成的四边形为菱形,+,-表示该菱形的对角线,而菱形的对角线不一定相等,所以+=-不一定成立;反之,若+=-成立,则以,为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以=不一定成立,所以“=”是“+=-”的既不充分也不必要条件..(·浙江)命题“∀∈,∃∈*,使得≥”的否定形式是().∀∈,∃∈*,使得<.∀∈,∀∈*,使得<.∃∈,∃∈*,使得<.∃∈,∀∈*,使得<答案解析原命题是全称命题,条件为∀∈,结论为∃∈*,使得≥,其否定形式为特称命题,条件中改量词,并否定结论,只有选项符合..集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.热点一集合的关系及运算.集合的运算性质及重要结论()∪=,∪∅=,∪=∪.()∩=,∩∅=∅,∩=∩.()∩(∁)=∅,∪(∁)=.()∩=⇔⊆,∪=⇔⊆..集合运算中的常用方法()若已知的集合是不等式的解集,用数轴求解;()若已知的集合是点集,用数形结合法求解;()若已知的集合是抽象集合,用图求解.例()已知集合={<},={=,∈},则∩等于().{-<<}.{-}.{-}.{}。
本资源的初衷,是希望通过网络分享,能够为广阔读者提供更好的效劳,为您水平的提高提供坚强的动力和保证 .内容由一线名师原创,立意新,图片精,是非常强的一手资料 .专题一考前教材重温(对应学生用书第58页)■要点重温…………………………………………………………………………·1.考查集合问题 ,一定要弄清楚集合所研究的对象 ,把握集合的实质.如: {x|y=x2+1 ,x∈R} - -函数的定义域;{y|y=x2+1 ,x∈R} - -函数的值域;{(x ,y)|y=x2+1} - -函数图象上的点集.特别注意括号中的附加条件 ,如x∈Z、x∈N等.[应用1] A={x|y=3+2x-x2 ,x∈R } ,B={y|y=lg(x2+1) ,x∈R} ,C={(x ,y)|y =2x ,x∈R} ,那么A∩B=________;A∩C=________.[答案][0,3] ∅2.集合的元素具有确定性、无序性和互异性 ,在解决有关集合的问题时 ,尤其要注意元素的互异性.[应用2] 集合A={a+2 ,(a+1)2 ,a2+3a+3} ,假设1∈A ,那么实数a=________.[答案]03.在解决集合间的关系时 ,不能忽略空集的情况.[应用3] 设集合A={-1,1} ,集合B={x|ax=1 ,a∈R} ,那么使得A∩B=B的a的所有取值构成的集合是( )【导学号:07804156】A.{0,1} B.{0 ,-1}C.{1 ,-1} D.{-1,0,1}[解析]因为A∩B=B ,所以B⊆A ,所以B=∅ ,{-1} ,{1} ,因此a=0 ,-1,1 ,选D.[答案] D4.进行集合运算时 ,注重数形结合在集合例如中的应用 ,列举法常借助Venn图解题 ,描述法常借助数轴来运算 ,求解时要特别注意端点值.[应用4] 设全集U=R ,集合A={x|x2-2x-3<0} ,B={x|x-1≥0} ,那么图1中阴影局部所表示的集合为( )图1A.{x|x≤-1或x≥3} B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}[解析]由图象可知阴影局部对应的集合为∁U(A∪B) ,由x2-2x-3<0得-1<x<3 ,即A=(-1,3) ,∵B={x|x≥1} ,∴A∪B=(-1 ,+∞) ,那么∁U(A∪B)=(-∞ ,-1] ,应选D.[答案] D5.命题 "假设p ,那么q〞的否命题是 "假设﹁p ,那么﹁q〞 ,而此命题的否认(非命题)是 "假设p ,那么﹁q〞.[应用5] 以下有关命题的说法正确的选项是( )A.命题 "假设xy=0 ,那么x=0〞的否命题为: "假设xy=0 ,那么x≠0〞B.命题 "∃x0∈R ,使得2x20-1>0〞的否认是: "∀x∈R ,均有2x2-1<0〞C. "假设x+y=0 ,那么x ,y互为相反数〞的逆命题为真命题D.命题 "假设cos x=cos y ,那么x=y〞的逆否命题为真命题[解析]A中的否命题是 "假设xy≠0 ,那么x≠0〞;B中的否认是 "∀x∈R ,均有2x2-1≤0〞;C正确;D中当x=0 ,y=2π时 ,其逆否命题是假命题.[答案] C6.理解充分必要条件:如 "A的充分不必要条件是B〞是指B⇒A,且A⇒/B;而 "A是B的充分不必要条件〞那么是指A⇒B ,且B⇒/A.[应用6] a ,b∈R ,以下四个条件中 ,使a>b成立的必要而不充分的条件是( )【导学号:07804157】A .a >b -1B .a >b +1C .|a |>|b |D .2a>2b[解析] 由a >b 可得a >b -1 ,但由a >b -1不能得出a >b ,∴a >b -1是a >b 成立的必要而不充分条件;由a >b +1可得a >b ,但由a >b 不能得出a >b +1 ,∴a >b +1是a >b 成立的充分而不必要条件;易知a >b 是|a |>|b |的既不充分也不必要条件;a >b 是2a>2b成立的充分必要条件. [答案] A7.否认含有一个量词的命题时注意量词的改变(如命题 "p 或q 〞的否认是 "﹁p 且﹁q 〞 , "p 且q 〞的否认是 "﹁p 或﹁q 〞 );全称命题的否认是特称命题(存在性命题) ,特称命题(存在性命题)的否认是全称命题.[应用7] f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x )<0 ,那么( )A .p 是假命题 ,﹁p :∀x ∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x )≥0B .p 是假命题 ,﹁p :∃x 0∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x 0)≥0C .p 是真命题 ,﹁p :∃x 0∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x 0)≥0D .p 是真命题 ,﹁p :∀x ∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x )>0[解析] ∵f ′(x )=3cos x -π ,∴当x ∈⎝ ⎛⎭⎪⎪⎫0 π2时 ,f ′(x )<0 ,函数f (x )单调递减 ,即对∀x ∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x )<f (0)=0恒成立 ,∴p 是真命题.又﹁p 是∃x 0∈⎝ ⎛⎭⎪⎪⎫0 π2 ,f (x 0)≥0.应选C.[答案] C8.求参数范围时 ,常与补集思想联合应用 ,即表达了正难那么反思想.[应用8] 假设存在a ∈[1,3] ,使得不等式ax 2+(a -2)x -2>0成立 ,那么实数x 的取值范围是________.[解析] 不等式即(x 2+x )a -2x -2>0 ,设f (a )=(x 2+x )a -2x -2.研究 "任意a ∈[1,3] ,恒有f (a )≤0〞.那么⎩⎪⎨⎪⎧f1≤0f 3≤0解得x ∈⎣⎢⎢⎡⎦⎥⎥⎤-1 23.那么实数x 的取值范围是(-∞ ,-1)∪⎝ ⎛⎭⎪⎪⎫23 +∞.[答案] (-∞ ,-1)∪⎝ ⎛⎭⎪⎪⎫23 +∞■查缺补漏………………………………………………………………………..· 1.集合A ={x ∈N |x <3} ,B ={x |x =a -b ,a ∈A ,b ∈A } ,那么A ∩B =( )A .{1,2}B .{-2 ,-1,1,2}C .{1}D .{0,1,2}D [因为A ={x ∈N |x <3}={0,1,2} ,B ={x |x =a -b ,a ∈A ,b ∈A }={-2 ,-1,0,1,2} ,所以A ∩B ={0,1,2}.]2.设集合A ={x |2x +3>0} ,B ={x |x 2+4x -5<0} ,那么A ∪B =( )【导学号:07804158】A.⎝⎛⎭⎪⎫-5 +∞ B .⎝ ⎛⎭⎪⎪⎫-5 -32 C.⎝ ⎛⎭⎪⎪⎫-32 1 D .⎝ ⎛⎭⎪⎪⎫-32 +∞ A [A ={x |2x +3>0}=⎝ ⎛⎭⎪⎪⎫-32 +∞ ,B ={x |x 2+4x -5<0}=(-5,1) ,所以A ∪B =⎝ ⎛⎭⎪⎪⎫-32 +∞∪(-5,1)=(-5 ,+∞) ,选A.]3.集合A ={x |3x<16 ,x ∈N } ,B ={x |x 2-5x +4<0} ,A ∩(∁R B )的真子集个数为( )A .1B .3C .4D .7B [因为A ={x |3x<16 ,x ∈N }={0,1,2} ,B ={x |x 2-5x +4<0}={x |1<x <4} ,故∁R B ={x |x ≤1或x ≥4} ,故A ∩(∁R B )={0,1} ,故A ∩(∁R B )的真子集个数为3 ,应选B.] 4.函数f (x )的定义域为R ,M 为常数.假设p :对∀x ∈R ,都有f (x )≥M ;q :M 是函数f (x )的最|小值 ,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件B [M 是函数f (x )的最|小值⇒对∀x ∈R ,都有f (x )≥M ;反之 ,不成立.应选B.] 5.设全集U =R ,集合A ={x |y =lg x } ,B ={-1,1} ,那么以下结论正确的选项是( )A .A ∩B ={-1} B .(∁R A )∪B =(-∞ ,1)C .A ∪B =(0 ,+∞)D .(∁R A )∩B ={-1}D [A ={x |y =lg x }={x |x >0} ,从而A 、C 错 ,∁R A ={x |x ≤0} ,应选D.]6.命题p :假设a >b ,那么a 2>b 2;q : "x ≤1〞是 "x 2+2x -3≤0〞的必要不充分条件 ,那么以下命题是真命题的是( ) A .p ∧q B .(﹁p )∧q C .(﹁p )∧(﹁q )D .p ∧(﹁q )B [命题p 为假命题 ,比方1>-2 ,但12<(-2)2,命题q 为真命题 ,不等式x 2+2x -3≤0的解为-3≤x ≤1 ,所以x ≤1⇒/ -3≤x ≤1 ,而-3≤x ≤1⇒x ≤1 ,所以 "x ≤1〞是 "x2+2x -3≤0〞的必要不充分条件 ,由命题p ,q 的真假情况 ,得出(﹁p )∧q 为真命题 ,选B.]7.p :x 2-2x <0 ,q :x +3x -1≤0 ,假设p 真q 假 ,那么x 的取值范围是( ) A .[1,2) B .(1,2) C .(-∞ ,-3)D .(-∞ ,-3]A [p 真 ,可得x 2-2x <0 ,解得x ∈(0,2);q 真 ,可得-3≤x <1 ,故q 假 ,得x <-3或x ≥1.所以 ,假设p 真q 假 ,那么x 的取值范围是 [1,2).应选A.]8.命题p :x 2+2x -3>0;命题q :x >a ,且¬q 的一个充分不必要条件是¬p ,那么a 的取值范围是( ) A .[1 ,+∞) B .(-∞ ,1] C .[-1 ,+∞)D .(-∞ ,-3]A [由x 2+2x -3>0 ,得x <-3或x >1 ,故¬p :-3≤x ≤1 ,¬q :x ≤a .由¬q 的一个充分不必要条件是¬p ,可知¬p 是¬q 的充分不必要条件 ,故a ≥1 ,应选A.]9.命题 "∃x 0∈R ,a sin x 0+cos x 0≥2〞为假命题 ,那么实数a 的取值范围是________.【导学号:07804159】⎝ ⎛⎭⎪⎫- 3 3 [由题意 ,命题 "∀x ∈R ,a sin x +cos x <2〞为真命题 ,又a sin x +cos x =a 2+1sin(x 0+θ)<2 ,∴-3<a < 3 ,那么实数a 的取值范围是⎝ ⎛⎭⎪⎫- 3 3.]10.以下命题正确的有________.(1)命题 "p ∧q 为真〞是命题 "p ∨q 为真〞的必要不充分条件;(2)命题 "∃x ∈R ,使得x 2+x +1<0〞的否认是: "对∀x ∈R, 均有x 2+x +1>0〞; (3)经过两个不同的点P 1(x 1 ,y 1)、P 2(x 2 ,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)来表示;(4)在数列{a n }中 ,a 1=1 ,S n 是其前n 项和 ,且满足S n +1=12S n +2 ,那么{a n }是等比数列;(5)假设函数f (x )=x 3+ax 2-bx +a 2在x =1处有极值10 ,那么a =4 ,b =11. (3)(5) [(1)错误 ,命题 "p ∧q 为真〞是命题 "p ∨q 为真〞的充分不必要条件; (2)错误 ,命题 "∃x ∈R ,使得x 2+x +1<0〞的否认是: "对∀x ∈R, 均有x 2+x +1≥0〞;(3)正确;(4)错误 ,由S n +1=12S n +2得S n =12S n -1+2 ,两式相减得a n +1=12a n (n ≥2) ,又S 2=a 1+a 2=12a 1+2⇒a 2=32 ,不满足a 2=12a 1 ,故{a n }不是等比数列;(5)正确 ,假设函数f (x )=x 3+ax 2-bx +a 2在x =1处有极值10 ,那么f ′(1)=0 ,f (1)=10 ,所以3+2a -b =0,1+a -b +a 2=10 ,解得a =4 ,b =11.]。
第2讲 不等式与线性规划的最大值为y +x =z 则 ⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,满足约束条件y ,x 若)课标全国丙(2016·.1________. 32答案 为顶⎝ ⎛⎭⎪⎫1,12C ,(0,1)B ,1),-2-(A 的可行域为以⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0足约束条件满 解析.32时取得最大值⎝ ⎛⎭⎪⎫1,12C 点的三角形内部及边界,如图,过2.(2016·浙江改编)已知实数a ,b ,c ,下列判断正确的是________.;100<2c +2b +2a ,则|≤1c +2b +a |+|c +b +2a |若① ;100<2c +2b +2a ,则|≤1c -b +2a |+|c +b +2a |若② ;100<2c +2b +2a ,则|≤12c -b +a |+|2c +b +a |若③ 100.<2c +2b +2a ,则|≤1c -2b +a |+|c +b +2a |若④ 答案 ④解析 ①中,设a =b =10,c =-110,>100.2c +2b +2a ,0≤1=|c +2b +a |+|c +b +2a |则 ②中,设a =10,b =-100,c =0,则>100.2c +2b +2a ,0≤1=|c -b +2a |+|c +b +2a | ③中,设a =100,b =-100,c =0,则>100.2c +2b +2a ,0≤1=|2c -b +a |+|2c +b +a | ∴④对.3.(2016·上海)设x ∈R ,则不等式|x -3|<1的解集为________.答案 (2,4)解析 -1<x -3<1,即2<x <4,故解集为(2,4).的取值范b +a 无解,则⎩⎪⎨⎪⎧ax +y =1,x +by =1的方程组y ,x ,若关于>0b ,>0a 设)上海(2016·.4围是________. 答案 (2,+∞)2.=ab >2b +a ∴,b ≠a ,且1=ab 由已知得, 解析1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点;2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围;3.利用不等式解决实际问题.热点一 不等式的解法1.一元二次不等式的解法的根,最≠0)a 0(=c +bx +2ax ,再求相应一元二次方程≠0)a >0(c +bx +2ax 先化为一般形式后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法;)>0(<0)x (g )x (f ⇔>0(<0)f xg x(1))≠0.x (g 且)≥0(≤0)x (g )x (f ⇔≥0(≤0)f x g x(2) 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.c)<x (f 的不等式x ,若关于∞),+[0的值域为)R ∈b ,a (b +ax +2x =)x (f 已知函数(1) 1例的解集为(m ,m +6),则实数c 的值为__________..________________的取值范围是0x ,则)>00x (f 若⎩⎪⎨⎪⎧3x ,x≤0,log2x ,x>0,=)x (f 已知函数(2) 答案 (1)9 (2)(-∞,0]∪(1,+∞),a24=b ,即0=b 4-2a =Δ时有0=b +ax +2x ,可知当∞),+[0由值域为(1) 解析 .2⎝ ⎛⎭⎪⎫x +a 2=a24+ax +2x =b +ax +2x =)x (f ∴ ,c <2⎝ ⎛⎭⎪⎫x +a 2=)x (f ∴ .a2-c <x <a 2-c ,-c <a 2+x <c 解得- ∵不等式f (x )<c 的解集为(m ,m +6),9.=c ,解得6=c 2=)a 2-c -(-⎝⎛⎭⎪⎫c -a 2∴ 的取值范围是0x ,所以>10x ,得>00x 2log 时,由>00x ;当≤00x ,得>0 时,由≤00x 当(2)(-∞,0]∪(1,+∞).思维升华 (1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.+m ,则1,3)-(的解集为<0n +mx +2x 的不等式x 为实数,若关于n ,m 已知(1) 1跟踪演练n 的值为________.(2)不等式 <4的解集为________.答案 (1)-5 (2)(-1,2)m ⇒n =1×3,-m =-3+1的两根,因此-0=n +mx +2x 为方程1,3由题意得:-(1) 解析<2.x 1<,解得-0<2-x -2x ,即2<x -2x ∴,22=4< 5.(2)∵=-n +m ,3=-n ,2=-热点二 基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x =,)定值(s =y +x ,>0y ,>0x 如果(2);)简记为:积定,和有最小值(p 2有最小值y +x 时,y.)简记为:和定,积有最大值(2s 14有最大值xy 时,y =x 当 的最小值为21-b+11-a ,则∈(0,1)b ,a ,14=ab 已知(1)2例________..________值,为________有最n +m 4,则1=1n+1m ,且<0n ,>0m 满足n ,m 设实数(2) 1大(2) 423+(1)4 答案 21-14a+11-a =21-b +11-a (1) 解析 )24a -1+44-4a (+2= [4-4a +4a -1]3)24a -1+44-4a (+2= )24-4a4a -1+44a -14-4a (13+2+2= ,423+4=44a -14-4a ·24-4a 4a -1×213+≥4 时取等号.24-4a4a -1=44a -14-4a 当且仅当,1=1n+1m 因为(2) ,n m +4m n +5=⎝ ⎛⎭⎪⎫1m +1n )n +m (4=n +m 4所以 ,1=4-≤5nm+4m n +5时取等号,故m 2=-n ,当且仅当≥4n m -4m n ,所以-<0n ,>0m 又 时取等号.1=-n ,12=m 当且仅当 思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误..________的最大值为bb +1+a a +1,则1=b +a 满足b ,a 若正数(1) 2跟踪演练 的最小值为b +a ,则2的最大值为>0)b ≥a ( yb+x a =z 时,⎩⎪⎨⎪⎧x≥2,y≥2,x +y≤8满足y ,x 已知(2)________. (2)823(1) 答案 解析 (1)∵正数a ,b 满足a +b =1,2ab +a +b ab +a +b +1=a b +1+b a +1a +1b +1=b b +1+a a +1∴3ab +2-2=2ab +2-3ab +2=2ab +1ab +2=,23=314+2-2=3⎝ ⎛⎭⎪⎫a +b 22+2-≤2 时取等号,12=b =a 当且仅当 .23的最大值为b b +1+a a +1∴(2)画出不等式组表示的可行域,如图中阴影部分(包括边界)所示..bz +x ba=-y ,得>0)b ≥a ( y b +x a =z 由 有最大值,z 时,A 经过点bz +x ba=-y 当直线 1.=3b+1a ,即2=6b +2a ∴,(2,6)A 得⎩⎪⎨⎪⎧x =2,x +y =8,由 ,3ab+b a +4=)3b +1a )(b +a (=b +a ∵ ,≤1t 0<,则t =ba令≤1.t 0<,3t +t +4=b +a ∴ ,≤1t 0<,3t +t +4=)t (f 令 ,<0t2-3t2=3t2-1=)t ′(f 则 ∴y =f (t )在(0,1]上是减函数. 8.=3+1+4=(1)f =min )b +a ∴(热点三 简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决..__________的最大值为y +x 3=z 则⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,满足约束条件y ,x 若(1) 3例 表示的平面区域是等腰直角三角形,则其表示⎩⎪⎨⎪⎧x≤0,x +y≥0,kx -y +1≥0的不等式组y ,x 若关于(2)的区域面积为__________.14或12(2) (1)4 答案 解析 (1)可行域为△ABC 及其内部,其中A (1,1),B (0,2),C (-1,0),当直线z =3x +y 过点A 时取最大值4.(2)直线kx -y +1=0过点(0,1),要使不等式组表示的区域为直角三角形,只有直线kx -y +×1×112=S 时才符合题意.所以(2))如图(垂直0=y +x 或与直线(1))如图(轴y 垂直于0=1.14=22×22×12=S 或12=思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得..__________的取值范围是y +x 4=z 则⎩⎪⎨⎪⎧ x≥0,y≥0,x +y≤2,满足y ,x 已知实数(1) 3跟踪演练 的取值范围a 恒成立,则实数5-≥y 2+x 若⎩⎪⎨⎪⎧x +y≤1,x -y≤1,x≥a,满足约束条件y ,x 已知变量(2)为__________.答案 (1)[0,8] (2)[-1,1]解析 (1)作出不等式组所表示的平面区域,如图阴影部分所示,由图知当目标函数z =4x +y 经过点B (2,0)时z 取得最大值,最大值为4×2+0=8;当目标函数z =4x +y 经过点O (0,0)时z 取得最小值,最小值为4×0+0=0,所以z =4x +y 的取值范围是[0,8].(2)由题意作出不等式组所表示的平面区域,如图中阴影部分所示, 则x +2y ≥-5恒成立可转化为图中的阴影部分在直线x +2y =-5的上方,⎩⎪⎨⎪⎧ x -y =1,x +2y =-5,由 ⎩⎪⎨⎪⎧ x =-1,y =-2,得 ⎩⎪⎨⎪⎧x =1,y =0,得 ⎩⎪⎨⎪⎧x -y =1,x +y =1,由 则实数a 的取值范围为[-1,1].1.若点A (a ,b )在第一象限,且在直线x +2y =1上,则ab 的最大值为________. 押题依据 基本不等式在历年高考中的地位都很重要,已成为高考的重点和热点,用基本不等式求函数(和式或积式)的最值问题,有时与解析几何、数列等知识相结合.18答案 解析 因为点A (a ,b )在第一象限,且在直线x +2y =1上,所以a >0,b >0,且a +2b =1,,18=2)a +2b 2·(12≤b ·2a ·12=ab 所以 成立.”=“时,14=b ,12=a ,即12=b 2=a 当且仅当 恒成立,则x 对任意实数≥1⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ,若不等式bc -ad =⎪⎪⎪⎪⎪⎪a b c d 上定义运算:R .在2实数a 的最大值为________.押题依据 不等式的解法作为数学解题的一个基本工具,在高考中是必考内容.往往与函数的单调性相结合,最后转化成一元一次不等式或一元二次不等式.32答案,2)≥1-a -2a (-x -2x 等价于≥1⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x 由定义知,不等式 解析 恒成立,x 对任意实数a -2a 1≥+x -2x ∴ ,34≥34+2)12-x (=1+x -2x ∵ ,32≤a ≤12,解得-34≤a -2a ∴ .32的最大值为a 则实数 .________的最小值为y 2+x =z 则⎩⎪⎨⎪⎧x -2y +4≥0,3x -y -3≤0,x ≥12,y≥1,满足y ,x .已知实数3 押题依据 线性规划的实质是数形结合思想的应用,利用线性规划的方法求一些线性目标函数的最值是近几年高考的热点. 52答案 解析 由题意可得不等式组所表示的可行域为如图中阴影部分所示的四边形ABCD 及其内部.,其表示过可行域上的z2+x 2=-y 可化为y 2+x =z 因为目标函数的直线.由图可知,z2轴上的截距为y 且在12,斜率为-)y ,x (点.52=2+12=min z 取得最小值z 时,1),12(D 过点y 2+x =z 当 .________的取值范围是x 恒成立,则实数∞),+∈(0b ,a 对任意16b a +a b <x 2+2x .若不等式4 押题依据 “恒成立”问题是函数和不等式交汇处的重要题型,可综合考查不等式的性质,函数的值域等知识,是高考的热点.答案 (-4,2)⎝ ⎛⎭⎪⎫a b +16b a <x 2+2x 恒成立,等价于不等式∞),+∈(0b ,a 对任意16b a +a b <x 2+2x 不等式 解析.min,)时取等号b 4=a ,即16b a=a b 当且仅当8(=a b ·16b a ≥216ba+a b ,∞),+∈(0b ,a 因为对任意<2.x 4<,解得-<8x 2+2x 所以A 组 专题通关.________的取值范围是a ,则<01+a21+aa 2log .若1 1),12( 答案 ,<01+a21+aa 2log 时,若12>a ⇒>1a 2当 解析 ,<1a 0<⇒<11+a21+a0<则 <1.a <12∴ 时,12<a 0<⇒>0a 1>2当 ,此时无解.>1a ⇒>11+a21+a,则<01+a21+a a 2log 若 _________.的取值范围是a 恒成立,则>0y 上1],∞-∈(x 在x·4a +x2+1=y .函数2 ∞),+34-( 答案 =)12x+14x (,因此-∞),+12∈[t ,则12x =t ,令≤1)x (max )]12x +14x (->[a 由题意得 解析.34->a ,从而34-)≤t +2t (- 的最小值为y 4+x 3=z 则目标函数⎩⎪⎨⎪⎧x +1≥0,x +2y -2≥0,2x -y -2≤0,满足约束条件y ,x .设变量3________. 答案 3,作出直)图中阴影部分(,表示的平面区域如图所示⎩⎪⎨⎪⎧x +1≥0,x +2y -2≥02x -y -2≤0作出不等式组 解析 3.取得最小值,最小值为z 时,)32,1-(经过点y 4+x 3=z 并平移,可知当直线0=y 4+x 3线.____________的最大值为1+y2x ,则1=y22+2x ,≥0y ≥0, x .设4 324答案 ,1=y22+2x ≥0, y ≥0, x ∵ 方法一 解析 2x21+y22=x21+y2=1+y2x ∴ .324=x2+y22+1222=x2+1+y2222≤ .324取得最大值1+y2x 时,)1+y22=2x 即(22=y ,32=x 当且仅当 ,)π2≤θ(0≤ ⎩⎨⎧x =co s θ,y =2sin θ令 方法二 1+2sin2θθcos =1+y2x 则 2cos2θ1+2sin2θ·12=,324=12·[2cos2θ+1+2sin2θ2]2≤,θ22sin +1=θ22cos 当 .324取得最大值1+y2x 时,22=y ,32=x 时,π6=θ即 .________的最大值为2y -12x +3则⎩⎪⎨⎪⎧x≥1,x +y≤5,x -y≤-2,满足约束条件y ,x .已知实数5 75答案 y -12x +32=2y -12x +3,而)72,32(C ,(1,3)B ,(1,4)A 及其内部,其中ABC 可行域为一个三角形 解析.75=4-121+32=EA k 连线的斜率,因此其最大值为)12,32-(E 到点)y ,x (P 表示可行域内的点 .________的值为k ,则4所表示的平面区域的面积为⎩⎪⎨⎪⎧0≤x≤2,x +y -2≥0,kx -y +2≥0.已知不等式组6 答案 1表示的平面区域,可得点⎩⎪⎨⎪⎧0≤x≤2,x +y -2≥0先作出不等式组 解析表示的平面区域⎩⎪⎨⎪⎧0≤x≤2,x +y -2≥0,kx -y +2≥0.要使不等式组(0,2),(2,0)的面积为4,那么直线kx -y +2=0与直线x =2的交点应为(2,4),将其代入kx -y +2=0,得k =1.的无盖长方体容器.已知该容器的底面造价是每平方米1 m ,高为34 m .要制作一个容积为720元,侧面造价是每平方米10元,则该容器的最低总造价是________元.答案 160,1 m =h ,高34 m =V 由题意知,体积 解析 元,y ,又设总造价是m 4x ,则另一条边长是m x ,设底面矩形的一条边长是24 m =S 所以底面积时取得等号.2=x ,即8x =x 2,当且仅当160=2x ·8x 20+≥80⎝⎛⎭⎪⎫2x +8x 10×+20×4=y 则.________的取值范围是m 恒成立,则实数m 2+2m >8x y+2y x ,若>0y ,>0x .已知8 答案 (-4,2)≥2 8xy+2y x 的最小值,所以由基本不等式可得8x y +2y x 应小于m 2+2m 由题意可得 解析,8=2y x ·8xy<2.m 4<-⇒<8m 2+2m 所以 用.(D ,求集合B ∩A =D ,>0}a 6+x )a +3(1-2x |2R ∈x {=B ,>0}x |R ∈x {=A ,集合<1a 0<.设9区间表示),a 6+x )a +3(1-2x 2=)x (g 令 解 ,)a +(134=x 其对称轴方程为 .3)-a 1)(-a 3(3=9+a 30-2a 9=a 48-2)a +9(1=Δ ,>0a 6=(0)g ,)>0a +(134=x ,≥0Δ时,13≤a 0<当① 方程g (x )=0的两个根分别为 <3a +3-9a2-30a +94=1x 0< ,3a +3+9a2-30a +94=2x ∪⎝ ⎛⎭⎪⎫0,3a +3-9a2-30a +94=B ∩A =D ∴ ⎝⎛⎭⎪⎫3a +3+9a2-30a +94,+∞; 恒成立,)>0x (g ,则<0Δ时,<1a <13当② 所以D =A ∩B =(0,+∞). 时,13≤a 0<综上所述,当 ∪⎝ ⎛⎭⎪⎫0,3a +3-9a2-30a +94=D ⎝⎛⎭⎪⎫3a +3+9a2-30a +94,+∞; .∞),+(0=D 时,<1a <13当 10.运货卡车以每小时x 千米的速度匀速行驶130千米(按交通法规限制50≤x ≤100)(单位:升,司机的工资是每小)x2360+(2元,而汽车每小时耗油2.假设汽油的价格是每升)小时/千米时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.,(h)130x=t 行车所用时间为(1) 解 .∈[50,100]x ,130x14×+)x2360+×2×(2130x =y 所以,这次行车总费用y 关于x 的表达式是.∈[50,100]x ,x 1318+2 340x =y ,x 1318=2 340x ,当且仅当10≥26x 1318+2 340x =y (2) 时,上述不等式中等号成立.1018=x 即 元.1026时,这次行车的总费用最低,最低费用为1018=x 故当B 组 能力提高+)a (f (12=r ,⎝⎛⎭⎪⎫a +b 2f =q ,)ab (f =p ,若b <a <0x,ln =)x (f 设)陕西改编(2016·.11f (b )),则p 、q 、r 的大小关系为____________.答案 p =r <q,ab >a +b2∴,b <a <∵0 解析 又∵f (x )=ln x 在(0,+∞)上为增函数,.p >q ,即)ab (f >⎝ ⎛⎭⎪⎫a +b 2f 故 )b ln +a (ln 12=))b (f +)a (f (12=r 又 12)ab ln(=b ln 12+a ln 12= .p =)ab (f = 故p =r <q .,则)n 4,m 5(P 过点αx =y 取得最小值,若曲线16n +1m ,且使1=n +m 满足n ,m .已知正实数12α的值等于________.12答案 ,当且17≥25+16mn +n m =16m +16n n +m +n m =16n +1m ,所以1=n +m 满足n ,m 因为正实数 解析,所以α)125(=15,即)15,125(P 过点αx =y 取得最小值.所以曲线16n +1m 时,45=n ,15=m 仅当.12=α =2+y 1)+m (-x 2)+m (,若直线D 所表示的平面区域为⎩⎪⎨⎪⎧x +y≤1,x -y≥-1,y≥0.已知不等式组130与平面区域D 有公共点,则实数m 的取值范围为________________.答案 (-∞,-4]∪[0,+∞)是D 对应的平面区域⎩⎪⎨⎪⎧x +y≤1,x -y≥-1,y≥0如图所示,不等式组 解析以点(-1,0),(0,1)和(1,0)为顶点的三角形.直线(m +2)x -(m +1)y +2=0可化为m (x -y )+2x -y +2=0,该直线恒过点(-2,-2).若直线与平面区域D 有时,直线的斜率取得最大1,0)-(,经过点23时,直线的斜率取得最小值(1,0)公共点,经过点.∞),+4]∪[0,-∞-(的取值范围是m ,故实数≥0m 或4-≤m 解得≤2.m +2m +1≤23,则2值 14.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)解 (1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )⎩⎪⎨⎪⎧a =-13,b =2003,解得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,上是减函数,由已知得[20,200]在b +ax = 故函数v (x )的表达式为⎩⎪⎨⎪⎧60 0≤x<20,13200-x 20≤x≤200.=)x (v (2)依题意并由(1)可得20=x 为增函数,故当)x (f 时,≤20x 0≤当⎩⎪⎨⎪⎧60x 0≤x<20,13x 200-x 20≤x≤200,=)x (f 2]x +200-x 2[13)≤x -(200x 13=)x (f 时,≤200x 20≤;当1 200=60×20时,其最大值为在区间)x (f 时,100=x 时,等号成立,所以,当100=x ,即x -200=x ,当且仅当10 0003=.10 0003上取得最大值[20,200] ,≈3 33310 0003上取得最大值[0,200]在区间)x (f 时,100=x 综上,当 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.。