推荐学习高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4
- 格式:doc
- 大小:45.14 KB
- 文档页数:3
直线的参数方程黄煜芳一、教材分析本节课节选自《高中数学北师大版选修4-4》第二章第二节直线的参数方程二、学情分析学生上节课刚学了参数方程的概念以及参数方程与普通方程的互化,接受程度良好,印象还比较清晰,有助于本节课的学习但学生对于平面向量的相关知识已经淡忘,所以课前需要简单的复习一下三、教学目标1 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用;2通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想;3 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.四、教学重点直线的参数方程及参数的几何意义五、教学难点参数的几何意义六、教学方法与手段引导探究式教学,多媒体课件辅助教学七、教学过程(一)知识回顾教师提出问题:1.共线向量的条件是什么?→→→→→→=⇔≠a b a a b λ)0(// 2.直线方程的有几种形式?这些问题先由学生思考,回答,教师补充完善。
【设计意图】引导学生从几何条件思考参数的选择,为学生推导直线的参数方程做好准备.(二)探索新知1直线的参数方程问题1:已知直线上一点M 0(1,2),倾斜角为6π,求直线的方程 问题2:如何建立的参数方程?问题3:如何建立经过点M 0,0,倾斜角为⎪⎭⎫ ⎝⎛≠2παα的直线的参数方程 【设计意图】有特殊到一般推导出直线的参数方程有助于学生更好理解【师生活动】(1)回顾数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >;当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <;当M 与O 重合时,0t =;【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.(2)类比分析:问题1:类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?问题2:把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?教师提出问题后,引导学生思考并得出以下结论:选取直线l 上的定点0M 为原点,与直线l 平行且方向向上l 的倾斜角不为0时或向右(l 的倾斜角为0时)的单位向量e 确定直线l 的正方向,同时在直线l 上确定进行度量的单位长度,这时直线l 就变成了数轴.于是,直线l 上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.(3)选取参数问题1:当点M 在直线l 上运动时,点M 满足怎样的几何条件?让学生充分思考后,教师引导学生得出结论:将直线l 当成数轴后,直线l 上点M 运动就等价于向量0M M 变化,但无论向量怎样变化,都有0M M te =.因此点M 在数轴上的坐标t 决定了点M 的位置,从而可以选择t 作为参数来获取直线l 的参数方程.【设计意图】明确参数.问题2:如何确定直线l 的单位方向向量e ?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.教师引导学生确定单位方向向量,在此基础上启发学生得出(cos ,sin )e αα=,从而明确直线l 的方向向量可以由倾斜角α来确定.当0απ<<时,sin 0α>,所以直线l 的单位方向向量e 的方向总是向上.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.(4) 等价转化,深入探究问题:如果点0M ,M 的坐标分别为00(,)(,)x y x y 、,怎样用参数t 表示,x y ?教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:因为(cos ,sin )e αα=,([0,)απ∈),00000(,)(,)(,)M M x y x y x x y y =-=--,0//M M e 又,所以存在实数t R ∈,使得0M M te =,即 00(,)(cos ,sin )x x y y t αα--=.于是0cos x x t α-=,0sin y y t α-=,即0cos x x t α=+,0sin y y t α=+.因此,经过定点00(,)M x y ,倾斜角为α的直线的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 牛刀小试:1.若直线l 经过点(x 0 , y 0)且倾斜角α=0,则直线l 的参数方程是什么?2. 设直线l 经过点M 0(1,5)、倾斜角为π3,求直线l 的参数方程.3. 已知直线l :⎩⎪⎨⎪⎧ x =-3+32t ,y =2+12t ,(t 为参数).求:( 1) 直线l 过哪个定点;(2)直线l 的倾斜角.【设计意图】通过本题训练,使学生进一步体会直线的参数方程2 参数的几何意义思考探究:①直线的参数方程中哪些是变量?哪些是常量?②参数t 的系数有何数量关系?③参数t 的几何意义是什么?总结如下:①00,x y ,α是常量,,,x y t 是变量;②系数的平方和为1;③由于||1e =,且0M M te =,得到0M M t =,因此t 表示直线上的动点M 到定点0M 的距离.当0M M 的方向与数轴(直线)正方向相同时,0t >;当0M M 的方向与数轴(直线)正方向相反时,0t <;当0t =时,点M 与点0M 重合.【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.(三)简单运用,培养能力例1.已知直线l :⎩⎪⎨⎪⎧ x =-3+32t ,y =2+12t ,(t 为参数). 点M (-33,0)在直线l 上,求t ,并说明t 的几何意义. 【设计意图】通过本题训练,使学生进一步体会直线的参数方程,以及在标准形式下参数t 的几何意义⎪⎩⎪⎨⎧--=+=,221222t x t y 2y x =,B 两点,求线段AB 的长度和点(1,2)M -到A,B 两点的距离之积.先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:解法一:由210x y y x +-=⎧⎨=⎩,得210(*)x x +-=.设11(,)A x y ,22(,)B x y ,由韦达定理得:121211x x x x +=-⋅=-,.AB ∴===由(*)解得12x x ==12y y ∴==.所以A B ,.则MA MB ⋅=2===.解法二、因为直线l 过定点M ,且l 的倾斜角为34π,所以它的参数方程是31cos 432sin 4x t y t ππ⎧=-+⎪⎪⎨⎪=+⎪⎩ (t 为参数),即1222x y ⎧=--⎪⎪⎨⎪=+⎪⎩ (t 为参数).把它代入抛物线的方程,得220t +-=,解得1t =,2t = 由参数t的几何意义得:12AB t t =-=122MA MB t t ⋅==.在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.【设计意图】通过本题训练,使学生进一步体会利用参数解决有关线段长度问题的方法,对比总结,查漏补缺,培养学生从不同角度分析问题和解决问题能力以及动手能力. (四)归纳总结,提升认识先让学生从知识、思想方法以及对本节课的感受等方面进行总结.教师在学生总结的基础上再进行概括.变式训练:在平面直角坐标系O 中,已知直线的参数方程为⎪⎩⎪⎨⎧+=+=,221222t x ty t 参 直线与椭圆1222=+y x 相交于A ,B 两点,点M (1,2)在直线上,求:(1)线段AB 的长;(2)点M 到A 、B 两点的距离之和.1.知识方面本节课联系数轴、向量等知识,推导出了直线的参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用.2.数学思想方法方面在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想.【设计意图】对学习内容有一个整体的认识,培养归纳、概括能力.(五)布置作业,巩固提高1 书面作业:教材P39—1;课后练习:三维设计P34~352 思考题:若直线l 的参数方程为 ⎩⎨⎧+=+=bt y y at x x 00 (b a ,为常数,t 为参数),请思考参数t 的意义.【设计意图】使学生进一步巩固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间.八、板书设计九、教案设计说明本节课研究了直线的参数方程,并进行了简单的应用.本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力.在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实.本节课选择直线的参数方程的参数是比较困难的,这是因为从确定直线的几何条件较难联想到“距离”.因此在教学中除了复习预备知识以外,还复习了数轴.联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点就可以用坐标t 表示,因此可以选择坐标t 为直线参数方程中的参数.从而,建立直线的参数方程就转化为建立坐标t 与坐标00,x y 及倾斜角 之间关系的问题.这样设计既注重了知识的产生过程,又使学生深刻理解了参数的几何意义.在教学过程中,注重以教师为主导,学生为主体的教学模式.在实施教学和完成教学目标的过程中,适时将学生分组讨论、师生对话、学生动手、学生归纳小结等方式服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念.本节课恰当地利用多媒体辅助教学,增强了教学中的直观性.。
课题:圆的极坐标方程(第1课时)授课老师:张秀红授课班级:高二(6)班●教学目的:通过类比直角坐标系下求曲线的方程的过程,探讨圆的极坐标方程。
本课题通过课本例题及习题归类学习,让学生经历由简单到复杂的过程,增强解决圆的极坐标方程的能力。
●教学重点与难点:重点:如何根据条件列出圆的极坐标方程,比较这些图形在极坐标和平面直角坐标系中的方程。
难点:如何寻找条件列出圆的极坐标方程●教学过程:一尝试自学1、直角坐标与极坐标的互化2、圆心为M(a,0),半径为a(a>0)的圆的直角坐标方程为。
3、上述1中如何推导圆的直角坐标方程(方法步骤)4、求曲线方程的步骤(求轨迹方程的步骤)二、主干讲解类型一:圆心在极点的圆例1:求圆心在极点、半径为r 的圆的极坐标方程。
类型二:圆心在极轴上且过极点的圆例2:求圆心坐标为Ca,0 (a>0)、半径为a 的圆的极坐标方程?类型三:圆心在点⎪⎭⎫ ⎝⎛2,πa 处且过极点的圆 求圆心在⎪⎭⎫ ⎝⎛2,πa (a>0)、半径为a 的圆的极坐标方程?三、局部训练1、求以)2,4(π为圆心,4为半径的圆的极坐标方程2、求圆心在⎪⎭⎫ ⎝⎛23,πa (a>0)、半径为a 的圆的极坐标方程?3、求圆心在⎪⎭⎫ ⎝⎛4,1π,半径为1的圆的极坐标方程四、效果反馈1、,圆θρcos 2=圆心极坐标是 半径是 θρsin 4=的圆心极坐标是 半径是 两圆的圆心距是2、求圆心在点(3,0),且过极点的圆的极坐标方程3、求圆心在A ()π,3、半径为3的圆的极坐标方程 圆的方程是为半径的为圆心,、以极坐标系中的点1)1,1(4A )4cos(2πθρ-=、A )4sin(2πθρ-=、B )1cos(2-=θρ、C )1sin(2-=θρ、D5、已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半6.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=7、求极坐标方程分别是1=ρ与θρcos 2-=的两个圆的公共弦所在的极坐标方程。
江西省于都中学高二数学中心发言稿选修4-4 第二章参数方程【课标要求】1、了解抛物运动轨迹的参数方程及参数的意义。
2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。
3、会进行曲线的参数方程与普通方程的互化。
第一课时参数方程的概念一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析曲线的几何性质,选择适当的参数写出它的参数方程。
二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
三、教学方法:启发诱导,探究归纳四、教学过程(一).参数方程的概念ν,与地1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为面成α2.分析探究理解:(1)、斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα (2)、抽象概括:参数方程的概念。
(见课本第27页) 说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
(3)平抛运动:【课本P27页例题】为参数)t gt y t x (215001002⎪⎩⎪⎨⎧-== (4)思考交流:把引例中求出的铅球运动的轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。
(二)、应用举例:例1、(课本第28页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y t x (t 为参数)(1)判断点1M(0,1),2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a)在曲线C 上,求a 的值。
分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。
学生练习。
反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。
例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。
高二数学选修4-4教案06圆的参数方程教学目的:学习圆的参数方程,理解参数θ的几何意义;会用圆的参数方程解题。
教学重点:圆的参数方程的推导及应用。
教学难点:参数θ的几何意义及应用。
教学方法:师生互动,培养创新思维。
教学过程:一、问题情景:【1】已知1y x 22=+,怎样求22y xy 2x -+的最大与最小值?【2】函数ϑϑcos 2sin 2y --=的值域怎么求?你知道有哪几种方法?二、数学构建.从上面的问题可以看到:圆的方程1y x 22=+与方程组⎩⎨⎧==θθsin y cos x 之间有着一定的对应关系,那么我们怎样来认识和理解它们的这种关系呢?事实上:1.设点P 在圆O :222r y x =+上,从点P 0开始按逆时针方向运动到达点P ,且设∠P 0OP=θ.若设点P 的坐标是(x,y),由三角函数的定义不难发现,点P 的横坐标x 、纵坐标y 都是θ的函数,即⎩⎨⎧==θθsin r y ,cos r x ① 另一方面,对于θ的每一个允许值,由方程组①所确定的点P (x,y )都在圆O 上.这表明,方程①也可用来表示圆。
那么,我们就把方程组①叫做圆心为原点、半径为r 的圆的参数方程。
其中θ是参数.注意:根据点与θ角的一一对应性质,我们一般设定)2,0[πθ∈。
2.对于圆心为O (a,b )、半径为r 的圆(x-a)2+(y-b)2=r 2,可以看成由圆心为原点O ,半径为r 的圆222r y x =+按向量ν=(a,b)平移得到的(如右图).不难求出,圆心在(a,b )、半径为r 的圆的参数方程为:⎩⎨⎧+=+=.sin r b y ,cos r a x θθ (θ为参数且)2,0[πθ∈)② 注意:若将方程组①、②中的参数θ消去,则可得到这一圆的标准方程,即:222r y x =+和(x-a)2+(y-b)2=r 2。
反之,由圆的标准方程也可直接采用三角换元的方法得到圆的参数方程。
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M(x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M的位移,可以用有(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),a,=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.对应学生用书P24][例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+t cos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a2+b 2=1时,|t |a 2+b 2≠1时,|t |的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆3+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D t t .则参数方程为⎩⎪⎨⎪⎧x =1+-t π3,y =5+-tπ3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t ,y =-t ,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110°,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +2++2t -2= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos 5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程1.能依据圆锥曲线的几何性质,选择适当的参数,写出它们的参数方程. 2.能利用圆锥曲线的参数方程来解决简单的实际问题.1.圆的参数方程(1)圆x 2+y 2=r 2的参数方程是______________,参数α的几何意义是________________(O 为坐标原点,P 为圆上任意一点).(2)圆(x -a )2+(y -b )2=r 2的参数方程是__________________.参数α的几何意义是OP 与x 轴正方向的夹角(P 为圆上任意一点,O 为圆心).(3)圆的圆心在原点,半径为r ,它与x 轴负半轴的交点为A (-r,0),点P (x ,y )是圆周上任意不同于A 的一点,此时,圆的参数方程是⎩⎪⎨⎪⎧x = 1-k 2r 1+k2,y =2kr1+k2(k 为参数).参数k 的几何意义是直线AP 的斜率.选取不同的参数,可以得到不同形式的圆的参数方程.其中(1)(2)两种形式可结合推导过程记忆,(3)了解就行.【做一做1-1】已知圆的方程为x 2+y 2=4x ,则它的参数方程是__________.【做一做1-2】直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ).A .相切B .相离C .直线过圆心D .相交但直线不过圆心 2.椭圆的参数方程(1)椭圆x 2a 2+y 2b2=1(a >b >0)的参数方程是________________.参数φ的几何意义是以原点为圆心,a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角.(2)中心在点C (x 0,y 0),长轴平行于x 轴的椭圆的参数方程是__________________.参数φ的几何意义是以C 为圆心,以a 为半径所作圆上一点P 和椭圆中心C 的连线CP 与x轴正半轴的夹角.【做一做2-1】椭圆x 24+y 29=1的参数方程为__________.【做一做2-2】椭圆⎩⎨⎧x =32cos φ,y =23sin φ(φ为参数)的焦距是__________.3.双曲线的参数方程双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程是________________.【做一做3】已知某条曲线的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫a +1a ,y =12⎝ ⎛⎭⎪⎫a -1a (a 为参数),则该曲线是( ).A .线段B .圆C .双曲线D .圆的一部分1.椭圆的参数方程中参数φ的几何意义剖析:从几何变换的角度看,通过伸缩变换,令⎩⎪⎨⎪⎧x ′=1ax ,y ′=1b y ,椭圆x 2a 2+y 2b2=1可以变成圆x ′2+y ′2=1.利用圆x ′2+y ′2=1的参数方程⎩⎪⎨⎪⎧x ′=cos φ,y ′=sin φ(φ是参数)可以得到椭圆x 2a 2+y 2b 2=1的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图.2.圆锥曲线的参数方程不是唯一的剖析:同一条圆锥曲线的参数方程形式是不唯一的.例如,椭圆x 2a 2+y 2b2=1的参数方程可以是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的形式,也可以是⎩⎪⎨⎪⎧x =a sin φ,y =b cos φ的形式,二者只是形式上不同而已,但实质上都是表示同一个椭圆.同样对于双曲线、抛物线也可以用其他形式的参数方程来表示,只是选取的参数不同,参数的几何意义也就不同.答案:1.(1)⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数) OP 与x 轴正方向的夹角(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数)【做一做1-1】⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π) x 2+y 2=4x 可化为(x-2)2+y 2=4,∴圆心为(2,0),半径r =2.∴参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π).【做一做1-2】D 将圆的参数方程化为普通方程为x 2+y 2=4,所以圆心到直线3x -4y -9=0的距离d =|-9|32+42=95<2,∴直线与圆相交. 点(0,0)不在直线3x -4y -9=0上,故直线与圆相交但不过圆心.2.(1)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ(φ为参数) (2)⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数) 【做一做2-1】⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数) 根据题意,a =2,b =3,∴参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数).【做一做2-2】26 根据参数方程,可知a =32,b =23.∴c =32 2- 23 2=18-12=6, ∴焦距为2c =2 6.3.⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ(φ为参数)【做一做3】C题型一 圆的参数方程的应用【例1】已知点P (x ,y )在圆x 2+y 2=1上,求x 2+2xy +3y 2的最大值和最小值. 分析:利用参数方程,转化成三角函数的问题来解决.反思:利用参数方程求最值问题是其常见的应用,求解时注意三角公式的应用. 题型二 椭圆的参数方程的应用【例2】在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y 2=1上一个动点,求x +y的最大值.分析:将普通方程化为参数方程,利用三角函数的相关知识求最值.反思:利用圆锥曲线的参数方程求最值问题,实质是利用三角函数求最值问题. 题型三 双曲线的参数方程的应用【例3】如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1,F 2是两个焦点,证明|PF 1|·|PF 2|=|OP |2.分析:设P ⎝⎛⎭⎪⎫1cos φ,tan φ,证明等式两边等于同一个式子即可.反思:利用圆锥曲线的参数方程证明恒等式,方法简单、明确,有利于掌握应用.答案:【例1】解:圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数).∴x 2+2xy +3y 2=cos 2α+2cos αsin α+3sin 2α=1+cos 2α2+sin 2α+3×1-cos 2α2=2+sin 2α-cos 2α=2+2sin(2α-π4).则当α=k π+3π8(k ∈Z )时,x 2+2xy +3y 2取最大值为2+2,当α=k π-π8(k ∈Z )时,x 2+2xy +3y 2取最小值为2- 2.【例2】解:椭圆方程x 23+y 2=1的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数).设椭圆上任一点P (3cos θ,sin θ),则x +y =3cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π3. ∵sin ⎝⎛⎭⎪⎫θ+π3∈[-1,1], ∴当sin ⎝⎛⎭⎪⎫θ+π3=1时,x +y 取最大值2. 【例3】证明:设P ⎝ ⎛⎭⎪⎫1cos φ,tan φ,∵F 1(-2,0),F 2(2,0),∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ =2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1. ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1如图,已知椭圆24x +y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,则|OP |·|OQ |的值是( ).A .1B .2C .3D .42点M 0(0,2)到双曲线x 2-y 2=1的最小距离(即双曲线上任一点M 与点M 0的距离的最小值)是( ).A .1B .2 C.3 3参数方程=4sin ,=5cos x y θθ⎧⎨⎩(θ为参数)表示的曲线为__________.4已知抛物线y 2=2Px ,过顶点的两条弦OA ⊥OB ,求以OA ,OB 为直径的两圆的另一交点Q 的轨迹.答案:1.D 设M (2cos φ,sin φ),B 1(0,-1),B 2(0,1).则MB 1的方程为y +1=sin φ+12cos φx ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程为y -1=sin φ-12cos φx ,∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ·⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.2.C ∵双曲线方程为x 2-y 2=1,∴a =b =1.∴双曲线的参数方程为⎩⎪⎨⎪⎧x =1cos θ,y =tan θ.设双曲线上一动点为M ⎝⎛⎭⎪⎫1cos θ,tan θ,则|M 0M |2=1cos θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4)=2tan 2θ-4tan θ+5=2(tan θ-1)2+3.当tan θ=1时,|M 0M |2取最小值3, 此时有|M 0M |= 3.3.椭圆 参数方程⎩⎪⎨⎪⎧x =4sin θ,y =5cos θ(θ为参数)可化为⎩⎪⎨⎪⎧sin θ=x4,cos θ=y5(θ为参数)①②①2+②2,得x 216+y 225=1,所以曲线为椭圆.4.分析:用参数方程形式设出A ,B 的坐标,求出以OA ,OB 为直径的圆的方程,再求交点.解:设A (2pt 21,2pt 1),B (2pt 22,2pt 2),设Q (x ,y ),则以OA 为直径的圆的方程为x 2+y 2-2pt 21x -2pt 1y =0,以OB 为直径的圆的方程为x 2+y 2-2pt 22x -2pt 2y =0,即t 1,t 2为关于t 的方程2pxt 2+2pyt -x 2-y 2=0的两根.∴t 1t 2=- x 2+y 22px.又OA ⊥OB ,∴t 1t 2=-1,x 2+y 2-2px =0(x ≠0).∴另一交点Q 的轨迹是以(p,0)为圆心,p 为半径的圆(除去原点(0,0)).。
第二课时 圆的参数方程及应用
一、教学目标:
知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。
利用圆的几何性质求最值(数形结合)
过程与方法:能选取适当的参数,求圆的参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:能选取适当的参数,求圆的参数方程
教学难点:选择圆的参数方程求最值问题.
三、教学方法:启发、诱导发现教学. 四、教学过程:
(一)、圆的参数方程探求
1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。
)(sin cos 为参数θθ
θ⎩⎨
⎧==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。
说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。
(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。
思考交流:你能回答课本第33页的思考交流题吗?
3、若如图取<PAX=θ,AP 的斜率为K ,并阅读课本P33页。
结论:。
半径,并化为普通方程所表示圆的圆心坐标、为参数、指出参数方程)(sin 235cos 22ααα+=-=⎩
⎨
⎧y x
4,反思归纳:求参数方程的方法步骤。
(二)、应用举例
例1、【课本P33页例3】已知两条曲线的参数方程
⎩⎨⎧==θθ
sin 5cos 5:1y x C (θ为参数)和⎩⎨⎧+=+=0
0245
sin 345cos 4:t y t x C (t 为参数) (1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。
学生练习,教师准对问题讲评。
(二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)
例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值,
(3)P 到直线x+y- 1=0的距离d 的最值。
解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ),
(1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θ
θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为。
(2) x+y= 3+cos θ+ 2+sin θ
( θ + 4
π
)∴ x+y 的最大值为
,最
小值为。
(3)2
|
)4
sin(24|2
|
1sin 2cos 3|π
θθθ++=
-+++=
d
3cos 2sin x y θ
θ
=+⎧⎨
=+⎩
显然当1)4
sin(±=+
π
θ时,d 取最大值,最小值,分别为1+1-2、 过点(2,1)的直线中,被圆x 2
+y 2
-2x+4y=0截得的弦:为最长的直线方程是_________;为
最短的直线方程是__________;
3、若实数x ,y 满足x 2
+y 2
-2x +4y =0,则x -2y 的最大值为 。
(三)、课堂练习:学生练习:1、2
(四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。
2、参数取的不同,可以得到圆的不同形式的参数方程。
从中体会参数的意义。
3、利用参数方程求最值。
要求大家掌握方法和步骤。
(五)、作业:课本P39页A 组6、7、8 B 组5
1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D )
A .一个定点
B .一个椭圆
C .一条抛物线
D .一条直线 2、已知)(sin cos 2为参数θθ
θ
⎩⎨
⎧=+=y x ,则22)4()5(++-y x 的最大值是6。
8.曲线y y x 222=+的一个参数方程为)(sin 1cos 为参数θθ
θ
⎩⎨
⎧+==y x。