如何通过实时示波器进行抖动测试和分析
- 格式:pdf
- 大小:491.84 KB
- 文档页数:8
示波器实验报告数据分析引言示波器是一种常见的电子仪器,用于测量和显示电信号的波形。
在本次实验中,我们使用示波器对特定电路中的信号进行测量,并对所得到的数据进行分析。
本文将按照以下步骤进行数据分析。
步骤1. 实验设置首先,我们需要介绍实验的设置。
在本次实验中,我们使用了一个示波器和一个电路。
电路的详细信息可以在实验手册中找到。
示波器的设置如下:•垂直设置:将垂直刻度设置为适当范围,使得测量的信号波形能够完整显示在示波器屏幕上。
•水平设置:将水平刻度设置为合适的时间范围,以便观察到信号的变化。
•触发设置:根据实验要求,设置触发电平和触发源。
2. 数据采集在示波器设置完成后,我们可以开始采集数据了。
根据实验手册的要求,将电路接入示波器,并启动数据采集。
确保示波器的触发设置正确,并等待信号的出现。
3. 数据分析一旦数据采集完成,我们可以开始对数据进行分析。
以下是一些常见的数据分析方法:3.1 峰峰值测量峰峰值是信号振幅的一个重要指标。
使用示波器的峰峰值测量功能,我们可以测量信号的最大振幅和最小振幅,并计算出其峰峰值。
根据实验手册的步骤,进行峰峰值测量。
3.2 频率测量频率是信号周期性变化的频率。
使用示波器的频率测量功能,我们可以测量信号的频率。
根据实验手册的步骤,进行频率测量。
3.3 波形分析波形分析可以帮助我们理解信号的特性。
使用示波器的波形分析功能,我们可以观察信号的波形形状、周期、幅度等特征。
根据实验手册的步骤,进行波形分析。
3.4 信号处理如果需要对信号进行进一步的处理,我们可以使用示波器的信号处理功能。
示波器通常提供一些常见的信号处理功能,如滤波、平均等。
根据实验手册的要求,进行信号处理。
4. 结果与讨论在完成数据分析后,我们需要总结并讨论实验结果。
根据我们的数据分析,我们可以得出一些结论,并解释实验结果的意义。
在这一部分,我们可以讨论实验中可能出现的误差、实验结果的可靠性等。
结论通过本次示波器实验的数据分析,我们可以得到有关电路信号特性的重要信息。
抖动的概念及其测量方法摘要:在数字通信系统,特别是同步系统中,随着系统时钟频率的不断提高,时间抖动成为影响通信质量的关键因素。
本文介绍了时间抖动(jitter)的概念及其分析方法。
关键字:时间抖动、jitter、相位噪声、测量一、引言随着通信系统中的时钟速率迈入GHz级,抖动这个在模拟设计中十分关键的因素,也开始在数字设计领域中日益得到人们的重视。
在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。
不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。
有资料表明在3GHz 以上的系统中,时间抖动(jitter)会导致码间干扰(ISI),造成传输误码率上升。
在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。
本文向数字设计师们介绍了抖动的基本概念,分析了它对系统性能的影响,并给出了能够将相位抖动降至最低的常用电路技术。
二、时间抖动的概念在理想情况下,一个频率固定的完美的脉冲信号(以1MHz为例)的持续时间应该恰好是1us,每500ns有一个跳变沿。
但不幸的是,这种信号并不存在。
如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。
这种不确定就是抖动。
抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。
在绝大多数文献和规范中,时间抖动(jitter)被定义为高速串行信号边沿到来时刻与理想时刻的偏差,所不同的是某些规范中将这种偏差中缓慢变化的成分称为时间游走(wander),而将变化较快的成分定义为时间抖(jitter)。
图1 时间抖动示意图1.时间抖动的分类抖动有两种主要类型:确定性抖动和随机性抖动。
确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。
随机抖动是指由较难预测的因素导致的时序变化。
例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。
抖动测量的几种方法测试抖动常用在测试数据通信IC或测试电信网络中。
抖动是应该呈现的数字信号沿与实际存在沿之间的差。
时钟抖动可导致电和光数据流中的偏差位,引起误码。
测量时钟抖动和数据信号就可揭示误码源。
测量和分析抖动可借助三种仪器:误码率(BER)测试仪,抖动分析仪和示波器(数字示波器和取样示波器)。
选用哪种仪器取决于应用,即电或光、数据通信以及位率。
因为抖动是误码的主要原因,所以,首先需要测量的是BER。
若网络、网络元件、子系统或IC的BER超过可接受的限制,则必须找到误差源。
大多数工程技术人员希望用仪器组合来跟踪抖动问题,先用BER测试仪、然后用抖动分析仪或示波器来隔离误差源。
BER测试仪制造商需要测量其产品的BER,以保证产品符合电信标准。
当需要表征数据通信元件和系统时,BER测试对于测试高速串行数据通信设备也是主要的。
BER测试仪发送一个称之为伪随机位序列(PRBS)的预定义数据流到被测系统或器件。
然后,取样接收数据流中的每一位,并对照所希望的PRBS图形检查输入位。
因此,BER测试仪可以进行严格的BER 测量,有些是抖动分析仪或示波器不可能做到的。
尽管BER测试仪可进行精确的BER测量,但是,对于10-12BER(每1012位为1位误差)精度的网络或器件测试需数小时。
为了把测试时间从数小时缩短为几分钟,BER测试仪采用“BERT sCAN”技术,此技术用统计技术来预测BER。
可以编程BER测试仪在位时间(称之为“单位间隔”或“UI”)的任何点取样输入位。
“澡盆”曲线表示BER是取样位置的函数。
若BER测试仪检测位周期(0.5UI)中心的位,则抖动引起位误差的概率是小的。
若BER测试仪检测位于靠近眼相交点上的位,则将增大获得抖动引起位误差的似然性。
抖动分析仪BER测试仪不能提供有关抖动持性或抖动源的足够信息。
抖动分析仪(往往称之为定时时间分析仪或信号完整性分析仪)可以测量任何时钟信号的抖动,并提供故障诊断抖动的信息。
利用示波器观察交流电路中的振幅交流电路中的振幅是指电流或电压的最大值,用来衡量交流电信号的强度和幅度大小。
为了准确观察交流电路中的振幅,我们可以使用示波器来进行测量和分析。
本文将介绍示波器的使用方法以及观察交流电路振幅时需要注意的事项。
一、示波器的使用方法1. 连接电路:首先,将交流电源与待观察的电路连接。
确保电路正常工作并提供给示波器一个稳定的交流信号。
2. 连接示波器:将示波器的探头分别连接到待测量的电流或电压信号上。
通常,示波器会提供多个通道,可同时观察不同的电信号。
3. 示波器设置:打开示波器,并按照具体型号的说明书进行设置。
通常,我们需要选择合适的时间基准、电压刻度和触发模式等参数,以便表示出交流电路中的振幅信息。
4. 观察测量:根据示波器的显示屏,观察到的波形通常是一个连续的曲线,表示电信号的变化情况。
通过观察波形的高度,可以直接得到交流电路中电流或电压的振幅数值。
二、观察交流电路振幅时需要注意的事项1. 示波器的校准:在进行观察前,应确保示波器的校准正常,以确保测量结果的准确性。
2. 示波器的带宽:示波器的带宽决定了示波器能够显示的频率范围。
如果待测量的交流信号频率超过了示波器的带宽,可能会导致波形失真或无法正常显示振幅值。
因此,在进行观察前,应选择合适的示波器带宽。
3. 波形合适的选择:示波器通常提供多种波形显示方式,如正弦波、方波、三角波等。
选择合适的波形显示方式,可以更直观地观察到交流电路中的振幅变化。
4. 评估单位:观察波形时,要注意观察示波器刻度的单位,通常为伏特或安培。
准确评估出交流电路中的振幅数值,并结合原电路设计和参数进行判断和分析。
结论利用示波器观察交流电路中的振幅可以更直观地了解电路的工作状态和性能表现。
通过正确设置示波器和注意观察事项,可以准确测量交流电路中的振幅数值,并对电路进行分析和优化。
因此,在实际应用中,合理使用示波器是进行交流电路研究和故障排查的重要工具之一。
示波器的射频测量和分析技巧射频测量和分析技术是现代通信、无线电和电子领域中的关键技术之一。
示波器作为一种重要的测量仪器,被广泛用于射频电路的测试和分析。
本文将介绍示波器在射频测量和分析中的常用技巧和方法,以帮助读者更好地理解和应用这一技术。
一、示波器的基本原理简介示波器是一种用于测量电信号波形的仪器。
它通过将待测信号连接到水平和垂直偏转系统,可以显示出信号的波形和特征。
示波器主要由示波管、扫描电路、触发电路和垂直放大器等组成。
二、射频信号的测量技巧1. 垂直放大器的设置在射频测量中,正确设置垂直放大器是非常关键的。
首先,选择适当的垂直增益,使得待测信号能够充分展示在示波器的屏幕上;其次,根据信号的幅度范围选择合适的垂直灵敏度,确保信号能够在示波器的垂直方向上合理分布。
2. 水平扫描的设置对于射频信号的测量,正确设置水平扫描参数也非常重要。
首先,通过调整扫描速率和时间基准,使得待测信号的周期和特征能够在示波器屏幕上得以清晰显示;其次,选择合适的水平灵敏度,确保信号能够在示波器的水平方向上合理分布。
3. 触发电路的应用射频信号的触发对于测量和分析来说是至关重要的。
通过调整触发电路的阈值和触发方式,可以实现对特定信号的检测和显示。
在射频测量中,通常选择边沿触发方式,并根据信号波形的特点调整触发电平和触发延迟,以确保触发的准确性和稳定性。
三、射频信号的分析技巧1. 频率测量示波器可以通过测量信号的周期或脉宽,计算出信号的频率。
在射频测量中,通常选择自动或单次测量模式,并利用示波器上的软件工具实现频率的测量和分析。
2. 波形分析示波器通过显示信号的波形和特征,可以对射频信号进行进一步的分析。
通过观察波形的振幅、频率、相位和时序等参数,可以判断信号的稳定性、失真情况和干扰程度,从而指导后续的电路设计和优化。
3. 频谱分析频谱分析是射频信号分析中常用的方法之一。
示波器可以通过傅里叶变换将时域信号转换为频域信号,并显示出信号的频谱分布。
利用示波器观察频闪信号的技巧与操作要点示波器是一种广泛应用于电子工程领域的仪器,它可以通过观察电信号的波形来帮助工程师解决问题。
而频闪信号是一种特殊的电信号类型,其波形在时间轴上具有明显的高频闪动。
在进行频闪信号观察时,我们需要注意以下几个技巧与操作要点。
1. 设置示波器的时间和垂直尺度示波器上的时间和垂直尺度设置对于观察频闪信号非常重要。
首先,我们需要将时间尺度调整到合适的范围,以便能够清晰地观察到频闪信号的周期性变化。
如果时间尺度过大,波形可能会被拉长;如果时间尺度过小,波形可能会被压扁。
其次,垂直尺度的设置也需要注意。
根据频闪信号的幅度大小,我们需要将垂直尺度调整到适当的范围,以保证波形能够完整地显示在示波器屏幕上。
2. 观察频闪信号的频率频闪信号的频率是指波形在单位时间内重复出现的次数。
在观察频闪信号时,我们可以通过示波器上的水平基准线来判断其频率。
当频率较高时,波形在示波器屏幕上的闪动速度也会加快。
如果频闪信号的频率较低,我们可以通过适当缩小时间尺度来观察到更加清晰的波形。
3. 识别频闪信号的占空比频闪信号的占空比表示一个完整周期中高电平信号所占的时间比例。
占空比可以通过示波器上两个相邻触发点之间的时间差来进行测量。
在观察频闪信号时,我们需要将示波器的触发模式设置为"边沿触发",并且选择合适的触发边沿来捕获波形。
通过观察波形的高电平和低电平持续时间,我们可以计算得到频闪信号的占空比。
4. 检测频闪信号的峰值电压频闪信号的峰值电压表示信号幅度的最大值。
在示波器上,我们可以使用垂直刻度尺来测量波形的幅度大小。
通过调整垂直刻度尺的放大倍数,我们可以将波形的峰值电压放大到适当的尺度,以便获得更准确的测量结果。
同时,示波器上也常常提供了峰值电压自动测量功能,可以帮助我们快速获取频闪信号的峰值电压。
5. 注意示波器的带宽限制示波器的带宽限制是指在一定频率范围内,示波器能够准确显示信号的能力。
基于数字示波器的高精度抖动测试方法越来越多的高速计算机和通信系统开始采用高速串行总线在芯片间,背板间和系统设备间传送高速数据。
在串行数据传输过程中,任何微小的高速时钟和数据抖动都会对整个系统产生巨大的影响,在这种情况下,抖动已经成为设计高速数字系统成败的关键。
最典型的应用是传统的33M PCI 并行总线正在被采用高速串行技术的PCI-Express 取代,它的最新标准支持的数据率已经到5Gb/s,一个UI 的宽度才200ps,任何微小的抖动都会导致数据传输错误。
从当前各种高速串行总线和数据链路的定时余量规范中表明,在整个数字系统中更加严格地控制抖动是必须的。
只有全面有效的测试和分析抖动,其根本原因才能被隔离,从而针对引起系统抖动的原因来减少抖动,提高系统性能和稳定性。
像PCI-Express、FBD、InfiniBand、SerialATA 和DVI 等都对于时钟和数据抖动有明确要求。
本文针对示波器进行的实时抖动测试方法,探讨了影响抖动测试结果的关键因素。
典型的抖动测试方法为成功地设计高速数字系统,不仅需要理解什么是抖动,计算抖动的大小,还需要对不同的抖动分量进行隔离和分解,分析造成抖动的原因,进而避免在高速系统中出现抖动造成的系统故障。
在了解抖动测试前,明智选择合适的抖动测试工具和方法成为整个抖动测试工作的第一步。
目前有几种抖动测试工具可供选择,误码仪(BERT)直接测试系统的误码率,但是价位昂贵,功能单一,不适合设计人员和调试人员;采用时间间隔分析仪测试抖动也存在功能单一,抖动分析能力不足的限制。
高性能数字示波器成为当前最流行的抖动测试工具。
对于数字示波器而言,典型的抖动测试方法主要有2 种:1) 采用数字存储示波器的等效采样模式或直接使用采样示波器,通过直方图统计测量定时抖动。
等效采样的缺点是无法消除示波器自身的触发抖动对测试结果的影响,并且由于它采用的是多次触发、多次采。
示波器进行时钟抖动测试的精度分析抖动是指数字信号中不期望的相位调制,同时也是衡量高速数字信号质量的最重要的指标。
现在各种通信标准都对通信设备的抖动的指标有严格的要求,各种总线的一致性测试中也会对随机抖动、确定性抖动、时间间隔误差、总体抖动等有要求。
示波器是很强大的工具,目前很多windows平台的示波器都提供了一些抖动分析的软件,可以提供直方图、时间图、抖动频谱、RJ/ DJ分解、浴盆曲线等一系列漂亮的测试报告。
但是事实上,很多用户在使用示波器进行精确抖动测量时却不能得到很好的结果。
比如明明要求被测时钟的抖动小于0.5ps RMS,实际测出来却是5ps RMS,数量级的错误使得很多用户开始怀疑测量结果和测量方法的可信程度。
这些错误结果的出现除了部分是由于对抖动概念理解不够从而设置错误外,还有很大一部分原因是不了解所使用的示波器的抖动测量能力,也就是您在使用的这台示波器究竟能测量到多小的抖动,以及和那些因素有关。
衡量示波器实际能测量到的最小的抖动的指标是抖动测量本底(J itter measurement floor)。
如果被测件的实际抖动小于示波器的抖动测量本底,这些抖动是不可能被测量到的。
抖动测量本底这个指标和示波器的采样时钟抖动、底噪声以及被测信号都有关系,其表现为示波器对测量结果增加的随机抖动的大小。
由于不同示波器厂商用不同的方法定义抖动测量本底,这就要求购买或使用示波器的工程师深入理解不同指标定义的含义。
通常用来衡量示波器抖动测量能力的指标有2个:固有抖动(Int rinsic Jitter)和抖动测量本底(Jitter Measurement Floor)。
这2个指标间有关系但又不完全一样,下面就来解释一下。
1、固有抖动示波器的固有抖动,有时又叫采样时钟抖动,是指由于示波器内部采样时钟误差所造成的抖动。
由于现在高带宽示波器的采样时钟频率都非常高,可高达80G/s或者更高,因此要保证每一个实际的采样点都落在其应该在的理想位置是个非常有挑战性的工作。
常见物体和示波器的摆动分析摆动是一种我们日常生活中经常遇到的物理现象。
从钟摆摆动到晃动的秋千,摆动的物体无处不在。
而示波器是一种用于检测和显示波形信号的仪器。
在本文中,我们将探讨常见物体的摆动行为以及如何使用示波器进行摆动分析。
首先,让我们来看看常见物体的摆动行为。
钟摆是最常见的摆动物体之一。
当一个钟摆被拉到一定角度,然后被释放时,它会围绕着支点左右摆动。
这种周期性的摆动被称为简谐振动。
钟摆的摆动周期取决于摆长,即钟摆线与垂直方向的夹角。
除了钟摆,秋千也是一种常见的摆动体验。
当我们坐在秋千上时,我们可以踢腿来给它一个初始的推动。
秋千的摆动行为是由地心引力和靠近地球表面的重力加速度所决定的。
秋千的摆动周期取决于摆长和初始推动的力量。
另一个常见的摆动现象是摆钟。
摆钟使用一个摆轮来保持时间的准确性和稳定性。
摆轮的摆动行为取决于重力和时钟机制的设计。
摆钟的摆动周期可以通过测量摆动的时间来确定,因为摆钟的摆动周期与时间直接相关。
对于这些摆动现象,示波器是一个重要的工具,用于分析和测量摆动行为。
示波器可以检测和显示周期性的电信号或其他信号的波形。
在摆动分析中,示波器可以用于测量和显示物体的摆动周期、幅度和频率。
示波器的工作原理是通过将电信号与时间进行关联来显示波形。
当摆动物体的运动与电信号发生耦合时,示波器可以记录和显示物体摆动的波形。
示波器的屏幕显示一个波形图,其中横轴表示时间,纵轴表示电压或其他物理量。
在进行摆动分析时,示波器可以设置不同的测量参数来获得所需的数据。
例如,可以使用示波器的光标功能来测量摆动的周期。
通过将光标放置在波形的峰值和谷值之间,示波器可以准确地测量摆动的时间间隔。
通过测量多个周期并求平均,可以提高测量的准确性。
此外,示波器还可以通过测量波形的幅度来分析物体的摆动行为。
幅度是波形从平衡位置到最大偏移量的距离,可以用于衡量物体的振幅大小。
示波器可以在屏幕上直接显示幅度,或者通过测量波形的峰值来计算幅度。