当前位置:文档之家› 三角函数典型例题剖析与规律总结00

三角函数典型例题剖析与规律总结00

三角函数典型例题剖析与规律总结00
三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00

姓名年级:教学课题三角函数典型例题剖析与规律总结

阶段

基础(√)提高()强化()课时计划共次课第次课

课前

检查作业完成情况:__________________ 建议_________________________________________________________

教学过程一:函数的定义域问题

1.求函数1

sin

2+

=x

y的定义域。

分析:要求1

sin

2+

=

y的定义域,只需求满足0

1

sin

2≥

+

x的x集合,即只需求出满足

2

1

sin-

x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z

k∈即可。

解:由题意知需0

1

sin

2≥

+

x,也即需

2

1

sin-

x①在一周期?

?

?

??

?

-

2

3

,

2

π

π

上符合①的角为?

?

?

??

?

-

6

7

,

6

π

π

,由此

可得到函数的定义域为?

?

?

??

?

+

-

6

7

2,

6

2

π

π

π

πk

k()Z

k∈

小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1

,0

log≠

>

=a

a

x

f

y

a

的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。

二.函数值域及最大值,最小值

(1)求函数的值域

例。求下列函数的值域

(1)x

y2

sin

2

3-

=(2)2

sin

2

cos2-

+

=x

y x

分析:利用1

cos≤

x与1

sin≤

x进行求解。

解:(1) 1

2

sin

1≤

-x∴[]5,1

5

1∈

≤y

y

(2)

()[].0,4

,1

sin

1

1

sin

1

sin

2

sin

2

sin

22

2

2

cos-

-

-

-

=

-

+

-

=

-

+

=y

x

x

x

x

x

x

y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

(2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211-

= (2)??? ??≤≤-??? ?

?+=6662sin 2πππx x y (3)4sin 5cos 22-+=x x y (4)??

?

?

??∈+-=32,31cos 4cos 32ππx x x y 分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数

c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。

解:(1)

221sin ;261sin 1sin 11sin 10

sin 21

1min max =

==-=∴≤≤-∴??

???≤≤-≥-y x y x x x x 时当时,当 (2).11)32cos(5132cos ,1)32cos(1min max =-=+==??? ?

?

+∴≤+

≤-y x y x x 时,;当时,当πππ

(3)

[]2

2

2

592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ?

?=+-=-+-=--+∈- ??

?

∴当sin 1x =-,即2(2

x k k Z π

π=-

+∈)时,y 有最小值9-;

当sin 1x =,即2(2

x k k Z π

π=

+∈),y 有最大值1。

(4)4

13,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-

=====-=???

???-∈??????∈--=+-=y x x x x x x x x x y 时,即当时,、即

从而ππππ 小

结:求值域或最大值,最小值的问题,一般的依据是:(1)sinx,cosx 的有界性;(2)tanx 的值可取一切实数;

(3)连续函数在闭区间上存在最大值和最小值。根据上面的原则,常常把给出的函数变成以下几种形式; (1)()sin x ωα+一次形式(2)sin ()x f y =或cos ()x f y =的形式,通过()1f y ≤来确定或其他变形来确定。

三:函数的周期性

例 求下列函数的周期()x x f 2cos )(1=())6

2sin(

2)(2π-=x x f 分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。 (1) 把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加

π2+u 时,函数u cos 的值重复出现,而),(2222πππ+=+=+x x u 所以当自变量x 增加到π+x 且必

加到π+x 时,函数值重复出现,因此,x y 2sin =的周期是π。

(2) ??? ??-=+-

62sin 2)262

sin(2πππ

x x 即())62sin(2)()62sin(2642

1

sin 2ππππ-=∴-=??????-+x x f x x 的是π4。

小结:由上面的例题我们看到函数周期的变化仅与自变量x 的系数有关。一般地,函数)sin(?ω+=x A y 或

)cos(?ω+=x A y (其中?ω,,A 为常数,),0,0R x A ∈>≠ω的周期ω

π

2=

T 。

四.函数的奇偶性 例 判断下列函数的奇偶性

x

x

x x f x x x f sin 1cos sin 1)()2)(sin()()1(2+-+=

+=π 分析:可利用函数奇偶性定义予以判断。 解:(1)函数的定义域R 关于原点对称。

是偶函数。)()(sin )sin()()(,sin )sin()(x f x f x x x x x f x x x x x f ∴=-=--=--=+=ππ (2函数应满足∴?

?????∈+

≠∈∴≠+.,2320sin 1Z k k x R x x x π

π,且函数的定义于为函数的定义域不关于原称。∴ 函数既不是奇函数又不是偶函数。

评注:判断函数奇偶性时,必须先检查定义域是否关于原点对称的区间,如果是,再验证)(x f -是否等于(x

f -)(x f ,进而判断函数的奇偶性,如果不是,则该函数必为非奇非偶函数。

五:函数的单调性 例:下列函数,在??

?

?

??ππ,2上是增函数的是( ) x y A sin .= x y B

cos = x y C

2sin = x y D

2cos =

分析:判断。在各象限的单调性作出与可根据x x x x cos sin .22,2

ππππ

≤≤∴≤≤

解:

sin y x =与cos y x =在2ππ??

????

,上都是减函数,∴排除,A B ,2x ππ≤≤,22,x ππ∴≤≤知sin y x =[]2,2x ππ∈内不具有单调性,∴又可排除C ,∴应选D 。

小结:求形如)0,0)(cos()sin(>≠+=+=ω?ω?ωA x A y x A y 其中或的函数的单调区间,可以通过解不等式法去解答,列不等式的原则是:

式的方向相同(反)。

的单调区间对应的不等与时,所列不等式的方向)视为一个整体;(把“)(cos ),(sin )0(02)"0()1(R x x y R x x y A A x ∈=∈=<>>+ω?ω

练习:1. 函数x

y sin 1

=

的定义域为( ) {}

[)(]

{}0.

1,00,1.

,.

.≠-∈≠∈x x D C Z k k x R x B R A π

2. 函数)6cos(π

+

=x y ,???

???∈2,0πx 的值域是( ) ??

??????

?

?????

????-??

? ??-

1,211,2323,2121,23.

D

C

B

A 3. 函数)0)(4

sin(>+

=ωπ

ωx y 的周期为

3

,则ω=------------. 4. 下列函数中是偶函数的是( )

1sin sin sin 2sin .+==-==x y D x y C x y B x y A

5. 下列函数中,奇函数的个数为( )

(1)x x y sin 2=(2)[]π2,0,sin ∈=x x y (3)[]ππ,,sin -∈=x x y (4)x x y cos =

432.1.D C B A

6. 在区间??

?

??2,

0π上,下列函数为增函数的是( ) x y D

x

y C

x

y B

x

y A cos sin cos 1sin 1.-=-=-

==

7. 函数x y 2sin =的单调减区间是( )

[]

()

Z k k k D k k C

k k B k k A ∈?

????

?

+-++?

????

?

++??

????++4,423,243,4223,22ππππππππππππππππ

8. 如果4

π

≤x ,则函数

x x y sin cos 2+=的最小值是——————

9. 函数)2

434

(

tan π

ππ

≠≤=x x

x y 且的值域为( ) []

(][)

(]

[)+∞-∞-+∞-∞--,11,,11,1,1D

C

B

A

答案:B B 3 C C D B 2

2

1- B

中考数学压轴题专题锐角三角函数的经典综合题

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3 AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得33,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ?=6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30 CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴33∴3 ∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235

上海高一反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin 0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x = ,x [,]22ππ ∈- 解:x = 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =x =π-(2)1sin x 4=-,x [,]22ππ∈- 解:1 x arcsin 4 =- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2 π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsin a =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,

再用诱导公式处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x arcsin =x =π-(3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+ 例4:求函数y 2arcsin(52x)=-的定义域和值域。 解:由152x 1-≤-≤,则x [2,3]∈,arcsin(52x)[,]22ππ-∈-,则y [,]∈-ππ。 变式:y sin x arcsin x =+ 解:x [1,1]∈-,y [sin1,sin1]22 ππ ∈--+ 思考:当3x [,]44 ππ ∈-时,求函数y arcsin(cos x)=的值域。 解:当3x [, ]44ππ∈-时t cos x [=∈,而y arcsin t =为增函数,则y [,]42 ππ∈-。 例5:求下列函数的反函数 (1) y sin x =,x [,]2 π∈π 解:y [0,1]∈,x [,0]2 π-π∈-且sin(x )sin x y -π=-=-,则x arcsin(y)-π=-, 则x arcsin y =π-,则反函数是1f (x)arcsin x -=π-,x [0,1]∈。 (2) y arcsin x =,x [0,1]∈ 解:y [0,]2π∈,x sin y =,则反函数是1f (x)sin x -=,x [0,]2 π∈。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

反三角函数典型例题

精品文档 5 5 (1) sin x 解: (2) sin x [0,] 解: (3) sin x 处] 解: 3 ?胚或 arcs in 或 x 3 .3 arcsin .3 arcsin - 3 反三角函数典型例题 例2:求下列反正弦函数值 1 sin( arcs in )该如何求? 2 4 用反正弦函数值的形式表示下列各式中的 变式:x [一,]? 2 解: x [2,] 时,n —x 【°,2], sin( n — x) =sinx = £ ? n — x = arcsin —3 ,贝U x = n — arcsin — 3 5 5 解: x = arcsin — 3 或 x = n — arcsin —3 5 例1:在下列四个式子中,有意义的为 解:(4)有意 义。 (1) arcs in . 2 ; (2) arcsin _ ; (3) 点评:arcsinx 4 1,1]。 sin( arcs in 2) ; ( 4) arcsin(sin2)。 (1) arcsin - 2 (2) arcsin0 解:0 (3) arcsin(-) 2 点评: 1 熟练记忆:0,- 2 解:- 6 2, (4) arcs ini 1的反正弦值。 思考: (1)sinx £,x [ -,^] 解: .43 x = arcs in 5 变式:x [0, ]? ⑵ sin x - 4 变式:si nx 2 2 x [—,2 ] 2 解: .1 arcs in 4 3 解:x [ ,2 2 ]时,2 - x [0,2], 1 sin( 2 n — x) = — sinx =— 4 2 n — x = 1 山 arcs in ,贝U x = 2 n — arcs in — 点评:当 x [ 2, 2 ] 时, x arcsina ;而当 处理对应角之三角比值即可。 [舊],可以将角转化到区间[ 形]上,再用诱导公式 练习:

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

(完整word版)反三角函数典型例题.docx

反三角函数典型例题 例 1:在下列四个式子中,有意义的为 __________: 解:( 4)有意义。 ( 1) arcsin 2 ;( 2) arcsin ;( 3) sin(arcsin 2) ;( 4) arcsin(sin 2) 。 4 点评: arcsin x —— x [ 1,1]。 例 2:求下列反正弦函数值 ( 1) arcsin 3 解: ( 2) arcsin0 解: 0 2 3 ( 3) arcsin( 1) 解: (4) arcsin1 解: 2 6 2 点评:熟练记忆: 0, 1 2 3 、 , , 的反正弦值。 2 2 2 1 思考: sin(arcsin 1 4) 该如何求? 2 例 3:用反正弦函数值的形式表示下列各式中的 x (1) sin x 3 , x [ , ] 3 5 解: x = arcsin 2 2 5 变式: x [ , ] ? 2 解: x [ , ] 时, π- x [0, 3 ] , sin(π- x)= sinx = 2 2 5 ∴ π- x = arcsin 3 ,则 x =π- arcsin 3 5 5 变式: x [0, ] ? 解: x =arcsin 3 或 x = π-arcsin 3 5 5 (2) sin x 1 , x [ , ] 解: x arcsin 1 4 2 2 4 变式: sin x 1 , x [ 3 ,2 ] 4 2 解: x [ 3 ] 时, 2π- x [0, ] , sin(2π- x)=- sinx = 1 ,2 4 2 2 ∴ 2π- x = arcsin 1 ,则 x =2π- arcsin 1 4 4 点评: 当 x [ , ] 时, x arcsina ;而当 x [ , ] ,可以将角转化到区间 [ , ] 上,再用诱导公式 2 2 2 2 2 2 处理对应角之三角比值即可。 练习: (1) sin x 3 [ , ] 解: x , x 3 2 2 2 (2) sin x 3 [0, ] 解: x arcsin 3 3 , x 或 x arcsin 3 3 3 (3) sin x 3 , x [ , 3 ] 解: x arcsin 3

三角函数基础题型归类(一)

2 - α , 例 1. (1)求值: cos600 ; (2)化简: cos 2( π 精品资料 欢迎下载 三角函数基础题型归类(一) 1、运用诱导公式化简与求值: 要求:掌握 2k π + α , π + α , -α , π - α , π π 2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限. π -α )+cos 2( +α ) 4 4 1 3π 练 1 (1)若 cos(π +α )= - , 2 2 <α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ?) 的值为 . 17 (3)sin( - π )的值为 . 6 (4) 2、运用同角关系化简与求值: sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α = ),并能灵活运用. 方法:平方法、切弦互化. cos α 例 2 (1)化简 sin x 1 + sin x 1 - ; (2)已知 sinx+cosx = , 且 0

反三角函数及最简三角方程.docx

标准实用 反三角函数及最简三角方程 一、知识回顾: 1、反三角函数: 概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作 22 y arcsin x . y sin x( x R) ,不存在反函数. 含义: arcsin x 表示一个角;角,;sin x . 22 反余弦、反正切函数同理,性质如下表. 名称函数式定义域值域奇偶性单调性 反正弦函数y arcsin x1,1 增, 2奇函数增函数 2 y arccosx arccos( x)arccosx 反余弦函数1,1 减0,减函数 非奇非偶 反正切函数y arctanx R增, 2奇函数增函数 2 y arc cot x arc cot( x)arc cot x 反余切函数R减0,减函数 非奇非偶 其中: ().符号 arcsin x 可以理解为-, ] 上的一个角弧度,也可以理解为 1[ 2 () 2 区间[- , ] 上的一个实数;同样符号 arccos x 可以理解为 [0 ,π 上的一个角2 ] 2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数; (2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y 22 =x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; (3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0, 22 π],arctan(tanx)=x, x∈(-,)的运用的条件; 22 (4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。 22 2、最简单的三角方程 方程方程的解集 a1x | x2k arcsin a, k Z sin x a a1x | x k 1 k arcsin a, k Z a1x | x2k arccos a, k Z cos x a a1x | x2k arccos a, k Z tan x a x | x k arctana, k Z cot x a x | x k arc cot a, k Z 其中: (1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三 角方程是否有解,如果有解,求出三角方程的解集; (2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

完整版锐角三角函数练习题及答案.doc

锐角三角函数 1 .把 Rt △ABC 各边的长度都扩大 3 倍得 Rt △A′B′C′,那么锐角 A , A ′的余弦值的关系为() A .cosA=cosA ′B. cosA=3cosA ′C. 3cosA=cosA ′ D .不能确定 2 .如图 1 ,已知 P 是射线 OB 上的任意一点, PM ⊥ OA 于 M ,且 PM :OM= 3 : 4 ,则 cos α的值等于() A .3 B. 4 C. 4 D . 3 4 3 5 5 图 1 图 2 图 3 图 4 图 5 3 .在△ABC 中,∠C=90 °,∠A ,∠B,∠C 的对边分别是a, b , c,则下列各项中正确的是() A .a=c ·sin B B. a=c ·cosB C.a=c ·tanB D.以上均不正确 4 .在 Rt △ABC 中,∠C=90 °,cosA= 2 ,则 tanB 等于()3 A .3 B. 5 C. 2 5 D . 5 5 3 5 2 5 .在 Rt △ABC 中,∠C=90 °,AC=5 ,AB=13 ,则 sinA=______ , cosA=______ , ?tanA=_______ . 6 .如图 2 ,在△ABC 中,∠C=90 °,BC: AC=1 : 2 ,则 sinA=_______ ,cosA=______ , tanB=______ . 7 .如图 3 ,在 Rt △ABC 中,∠C=90 °,b=20 , c=20 2 ,则∠B 的度数为 _______. 8 .如图 4 ,在△CDE 中,∠E=90 °,DE=6 , CD=10 ,求∠D 的三个三角函数值. 9 7 .已知:α是锐角, tan α=,则sinα=_____,cosα=_______. 24 10 .在 Rt △ABC 中,两边的长分别为 3 和 4 ,求最小角的正弦值为 10 .如图 5 ,角α的顶点在直角坐标系的原点,一边在x 轴上, ?另一边经过点 P( 2 ,2 3),求角α的三个三角 函数值. 12 .如图,在△ ABC 中,∠ABC=90 °,BD ⊥ AC 于 D,∠CBD= α,AB=3 ,?BC=4 ,?求 sin α,cos α,tan α的值. 解直角三角形 一、填空题 3 1.已知 cosA=,且∠B=900-∠A,则sinB=__________. 2

人教版初中数学锐角三角函数的经典测试题及答案解析

人教版初中数学锐角三角函数的经典测试题及答案解析 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B = ,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD 的值( ) A .35 B .34 C .45 D .67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE =12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :12 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B = , ∴AC :BC =3:4, ∴AE :BE =3:4 ∴AE =37 AB , ∵CD 为AB 边上的中线, ∴AD =12 AB ,

∴3 6 7 17 2 AB AE AD AB ==, 故选:D. 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC上找一点B,取145 ABD ∠=o,500 BD m =,55 D ∠=o,要使A,C,E成一直线,那么开挖点E离点D的距离是() A.500sin55m o B.500cos55m o C.500tan55m o D. 500 cos55 m o 【答案】B 【解析】 【分析】 根据已知利用∠D的余弦函数表示即可. 【详解】 在Rt△BDE中,cosD= DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.在半径为1的O e中,弦AB、AC32,则BAC ∠为()度.A.75B.15或30C.75或15D.15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知: 32 AE.

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

相关主题
文本预览
相关文档 最新文档